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ABSTRACT

Context. The GRAVITY+ upgrade implies a complete renewal of its adaptive optics (AO) systems. Its complex design, featuring
moving components between the deformable mirrors and the wavefront sensors, requires the monitoring and auto-calibrating of the
lateral mis-registrations of the system while in operation.
Aims. For preset and target acquisition, large lateral registration errors must be assessed in open loop to bring the system to a state
where the AO loop closes. In closed loop, these errors must be monitored and corrected, without impacting the science.
Methods. With respect to the first requirement, our method is perturbative, with two-dimensional modes intentionally applied to the
system and correlated to a reference interaction matrix. For the second requirement, we applied a non-perturbative approach that
searches for specific patterns in temporal correlations in the closed loop telemetry. This signal is produced by the noise propagation
through the AO loop.
Results. Our methods were validated through simulations and on the GRAVITY+ development bench. The first method robustly
estimates the lateral mis-registrations, in a single fit and with a sub-subaperture resolution while in an open loop. The second method
is not absolute, but it does successfully bring the system towards a negligible mis-registration error, with a limited turbulence bias.
Both methods proved to robustly work on a system still under development and not fully characterised.
Conclusions. Tested with Shack-Hartmann wavefront sensors, the proposed methods are versatile and easily adaptable to other AO
instruments, such as the pyramid, which stands as a baseline for all future AO systems. The non-perturbative method, not relying on
an interaction matrix model and being sparse in the Fourier domain, is particularly suitable to the next generation of AO systems for
extremely large telescopes that will present an unprecedented level of complexity and numbers of actuators.

Key words. instrumentation: adaptive optics - methods: data analysis - methods: numerical - techniques: miscellaneous

1. Introduction

GRAVITY+ (Gravity+ Collaboration et al. 2022) is a combined
upgrade of the GRAVITY instrument and of its host observa-
tory the Very Large Telescope Interferometer (VLTI, GRAVITY
Collaboration et al. 2017) of the European Southern Observatory
(ESO). Among other work packages, it features a major update
of its adaptive optics (AO) systems, with a renewal of all the
instances installed on each of the four unit telescopes (UTs) of
the VLTI.

The role of an AO system is to compensate in real time
for the wavefront aberrations induced by atmospheric turbu-
lence (Roddier 1999). These phase aberrations are measured by
a wavefront sensor (WFS) whose signals are analysed by a real
time computer (RTC) and turned into a set of commands sent to
a deformable mirror (DM) that compensates the optical aberra-
tions. To be effective, this feedback loop must run faster than the
turbulence temporal evolution, with typical frequencies ranging
from several hundred Hertz to a kilo-Hertz.
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In the case of the GRAVITY+ adaptive optics (GPAO,
Le Bouquin 2023), the RTC is based on the upgrade of the
Standard Platform for Adaptive optics Real Time Applications
(SPARTA-upgrade, Suárez Valles et al. 2012; Shchekaturov
2023; Dembet 2023) which inherits the high level functionalities
developed for the Spectro Polarimetric High-contrast Exoplanet
REsearcher (SPHERE, Beuzit et al. 2019) and the Adaptive
Optics Facility (AOF, Oberti et al. 2018). Overall, GPAO fea-
tures a 43×43 DM with about 1200 actuators within the 100 mm
pupil and Shack-Hartmann wavefront sensors (SH-WFSs, Shack
& Platt 1971): a 30×30 laser guide star (LGS) WFS, and a vari-
ety of natural guide stars (NGS) WFSs (visible 40×40, visible
4×4, infrared 9×9). The pupil of the system is given by the sec-
ondary mirror (M2) of the telescope, defining the beam size and
position. The DM is located in the Coudé train of the telescope,
rotating with the azimuth, while the WFSs are at the Coudé
focus, fixed to the ground. Moreover, a number of sub-system
within the AO WFS have to also track the azimuth and/or the el-
evation angles (a K-mirror, an atmospheric dispersion compen-
sator, and the table used to patrol the field). The elevation and the
azimuth rotations of the telescope itself have wobble amplitude
of 2% of the pupil diameter. The tracking sub-systems within the
WFS have typical wobble amplitude of 5% of the pupil diameter.
As a consequence of this configuration, for the most resolving
SH-WFS (40×40), the combined wobble amplitude corresponds
to several subapertures.

This significant wobbling of the system leads to two impor-
tant requirements for GPAO: (I) GPAO needs a means to quickly
estimate large lateral-registration during the acquisition of the
target to within an accuracy to achieve stable closed loop opera-
tion, controlling most of the observable modes (typically 20 % of
the subaperture size, see for instance Oberti et al. 2016); (II) dur-
ing the subsequent observation, the azimuth and elevation an-
gle continues to evolve, and so do their intrinsic wobbles, and
GPAO needs a mean to track this small and continuously chang-
ing lateral-registration, while the AO loop is closed. However,
because the DM is not the instrument pupil, the imprint of the
photometric pupil in the WFS cannot be used to track this lateral-
registration, as is typically done in most AO systems. This is
even more applicable when the system operates on the internal
light source of the VLTI, which does not properly define a pho-
tometric pupil because of its location at the Nasmyth focus (i.e.
after M2). Therefore, there is a need for a proper, direct mea-
surement of the DM/WFS lateral-registration at a level of 20 %
of the sub-aperture diameter at instrument preset and through
operation.

One complete instance of GPAO out of the four is currently
being integrated and tested at the Lagrange laboratory in Nice
(Millour et al. 2022). The test bench features multiple sources, a
turbulent phase screen, a pupil mask mimicking the VLT, and
a beam expander to properly illuminate the DM and the SH-
WFSs with the correct beam size and f-number. The bench per-
mits operation of GPAO in both NGS and LGS modes, with the
caveat that the LGS source does not incorporate spot elongation
and cone effect. The results presented in this paper focus on the
NGS VIS WFS (40×40, point source) mode but all tests have
also been performed with the LGS WFS as well (30×30, ex-
tended source).

Regarding the mis-registration errors, the registration of a
couple DM/WFS is defined by how the actuator geometry of the
former is seen by the optics geometry of the latter1. This global

1 For example the Fried geometry (Fried 1977), where the DM actua-
tors are optically placed at the corner of the SH-WFS subapertures.

geometry is defined in the design phase of the instrument. A
mis-registration error occurs when there is a mismatch between
the designed values and the real system. Among others (Her-
itier 2019, Sect. 2.1), the classical (and most impacting) mis-
registrations are the x and y-shifts (lateral translation of the DM
with respect to the WFS), the clocking (rotation of the DM with
respect to the WFS), and the magnification and anamorphosis
(stretches of the DM with respect to the WFS).

Different techniques exist to assess the mis-registration state
of an AO system. For instance, in the case where the DM is also
the pupil of the instrument, the WFS photometry can be used to
track the lateral error (Kolb 2016). However, most of the tools
to track mis-registrations use the interaction matrix (IM) of the
AO system (Roddier 1999). Close to its functioning point, an AO
system is assumed to be linear and the IM links the commands
sent to the DM to the measures provided by the WFS2. If the AO
system is sensitive to the considered mis-registration, an align-
ment error should then leave a signature in its IM.

In early AO systems, with a limited number of actuators and
with an internal calibration source providing high signal-to-noise
ratios (S/Ns), IMs were experimentally measured and the AO
systems were run with ‘as-built’, rather than ‘as-designed’ IMs
(Oberti et al. 2006). Doing so, any mis-registration error is cal-
ibrated and taken into account by the AO loop. The arrival of
telescopes with adaptive secondary mirrors, such as the Multi-
ple Mirror Telescope (Brusa et al. 2003), the Large Binocular
Telescope (Riccardi et al. 2003), or the AOF (Ströbele et al.
2006), complicated the identification of registration errors. In-
deed, without any focal plane available upstream of the DM, and
thus no reference source, the AO system must be calibrated di-
rectly on-sky at night. Different techniques to measure the full
IM were implemented, such as fast ‘push-pull’ commands to
freeze the turbulence or command modulation and signal demod-
ulation to increase the S/N (Oberti et al. 2006; Pinna et al. 2012;
Lai et al. 2021). But such IMs are generally noisy and depend
on the experimental conditions (Kolb 2016). In addition, night
time is precious and the increase of AO system complexity is
synonymous to longer and more sensitive calibrations.

To tackle these issues, new methods emerged, based on the
fact that a physical modelling of the interaction matrix is gener-
ally available, so-called synthetic IM (Oberti et al. 2006; Heri-
tier et al. 2018a). By definition, these matrices are noiseless but
sensitive to model errors, that is to say a mismatch between the
numerical model and the real system (Kolb et al. 2012). If the
first order of WFS physics is correctly implemented, the mis-
registrations become this main source of error (Heritier 2019)
and the synthetic model thus only depends on a limited number
of parameters. These parameters can be fitted through calibra-
tions to obtain pseudo-synthetic interaction matrices (PSIMs),
where the ‘pseudo’ emphasises that inputs from the real system
are used in the synthetic model (Oberti et al. 2006).

In general, the parameter fitting is performed on IMs ac-
quired for this purpose during dedicated calibration procedures,
on internal sources or on-sky (Oberti et al. 2004; Neichel et al.
2012; Kolb 2016; Heritier et al. 2018a). Nonetheless, mis-
registrations are susceptible to evolve during observation due to
mechanical flexion or thermal evolution. And future Extremely
Large Telescopes (ELTs, Johns 2006; Gilmozzi & Spyromilio
2007; Boyer 2018) will bring this challenge to another level, with
unprecedented distances between DMs and WFSs, with poten-
tially different moving/rotating parts in-between, prone to mis-

2 Or possibly multiple DMs and multiple WFSs depending on the con-
sidered system.
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alignment. It then becomes impossible to perform regular cal-
ibrations and it is thus necessary to track the evolution of the
mis-registrations directly during the scientific acquisitions with
online tools for AO system auto-calibration. A strategy that has
proven to be effective is recovering the IM directly from AO
telemetry data (Béchet et al. 2012; Kolb et al. 2012). These meth-
ods introduced the fact that the measurement noise propagates
through the AO loop, producing meaningful signal from which
the IM can be estimated. Nonetheless, a large amount of teleme-
try data must be gathered so that the IM structure emerges from
the loop noise, strongly increasing the recording and computa-
tion times. In addition, Heritier (2019, Sect. 4.3) showed that
such an approach can be corrupted by the temporal error of the
AO loop, with a bias induced by a frozen flow turbulence.

To further save time while increasing the S/N and debiasing
the error estimation, recent works have started to focus on partial
IM acquisition, focussing on dedicated and well chosen modes
injected in the AO loop (Heritier et al. 2021). Contrary to online
IM estimation, this method is invasive and may corrupt the sci-
ence depending on the chosen modes and the amplitude to apply
to get meaningful S/N. A trade-off must be balanced, for exam-
ple, by applying the disturbance during the shutter closing time
of the science instrument if possible. Such an invasive method is
the current baseline of the AO systems of the first generation of
instruments of the ESO ELT.

Finally, all these methods are based on the minimisation of
the difference between the measured IM and the PSIM. Such
PSIM models are generally complex and not directly invertible.
Under the assumption that the mis-registration errors are small,
the PSIMs are linearised close to their functioning point to get
sensitivity matrices, leading to an iterative fit of the parameters,
potentially laborious and slow and with a limited capture range
(Kolb et al. 2012; Neichel et al. 2012; Heritier et al. 2018a).
There have been several variants or improvements of this tech-
nique in recent years. Heritier (2019, Sect. 2.5.4) recomputes
iteratively the sensitivity matrix in order to increase the cap-
ture range and achieve a larger linearity. Heritier et al. (2021)
performed a numerical demonstration that such modal IMs, and
thus the mis-registrations, can be estimated in a closed loop with
a dedicated perturbation in the command, while controlling the
linearity sensitivity of the estimator; however the applicability of
this method in the lab or on-sky is yet to be confirmed.

To meet the two requirements of GPAO introduced above:
(1) there is still a lack of a fast and robust method with a large
capture range and that works in open loop to quickly align
the system at preset and during science target acquisition; and
(2) during operation, we still miss a fast3 and non-invasive tool
to monitor the lateral error, with the additional constraints that
the solutions must be adaptable to the SPARTA architecture. To
answer these two requirements, we present (in Sects. 2 and 3 of
this paper) two new methods to fit the lateral errors in the sys-
tem. The first one is based on a perturbative approach, whereby
two-dimensional (2D) modes are applied on the system in open
loop in order to be spatially correlated to a reference. The second
one is a non-perturbative approach working in closed loop by
analysing correlation signals in the telemetry of the commands.

We present the methods in Sects. 2.1 and 3.1. For each
method, (i) its general idea is given; (ii) then its theoretical steps

3 We notice that this constraint on the speed could be relaxed for the
VLTI where the physics of the mis-registrations is bound to be slow af-
ter the preset. Nonetheless, we aim to test on-sky the method efficiency
in preparation of the future ELTs where the timescale of the misalign-
ment evolution will be much shorter.
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Fig. 1. General idea of the spatial 2D correlation method for differ-
ent KL modes mKL ∈ {6, 20, 35, 46}. When different modes are applied
on the DM (first line), the patterns seen by the WFS show different
spatial scales (second line). The grey pixels correspond to the missing
slopes wWFS(x) = 0 in the PSIM model that are hidden by the pupil. A
lateral mis-registration would shift the peak in the correlation between
the PSIM and the measured IM (third line).

are developed; and (iii) finally, we summarise its main advan-
tages. Then, in Sects. 2.2 and 3.2, we assess the precision and
the limits of the methods via end-to-end simulations. Finally, in
Sects. 2.3 and 3.3, we validate our approaches on a real system
in the GPAO development bench.

2. Perturbative 2D modal estimator

2.1. Proposed method

2.1.1. General concept

A SH-WFS produces spatial measurements of the input wave-
front’s gradient. Thus, when a spatial pattern is applied on the
DM, a specific spatial pattern will be seen in the SH-WFS data.
The pattern applied on the DM can be its individual influence
functions (zonal IM) or dedicated modes such as Zernike poly-
nomials or Karhunen–Loève (KL) functions (Dai 1995) obtained
by combining DM commands (modal IM). Figure 1 presents
some KL modes applied in the DM space (first line) and their
counter-part on the x-slopes of the SH-WFS (second line) when
reshaped in 2D. As expected, the patterns in the 2D represen-
tation of SH-WFS slopes are highly structured with a pattern
specific to each mode.

The idea of the proposed method is to use IMs that are
Nyquist-sampled, in the sense that the highest spatial frequency
in the generated gradients is sampled by at least two subaper-
tures. In this case, a lateral mis-registration in the system can
be approximated by a, possibly sub-subaperture, geometric shift
of the measurements. Thus, the 2D spatial correlation of a mea-
sured modal IM with a reference modal IM should be usable
as a lateral error estimator. Contrary to other solutions based on
modal perturbations, such as the one proposed by Heritier et al.
(2021), this method does not use a synthetic IM model fitting that
implies the tuning of its parameters, but it uses the 2D represen-
tation of the measured IMs to directly estimate the parameters of
interest.
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Measured IM Modal correlation α-map Over-sampling
(a) (b) (c) (d)

Fig. 2. Simulated example of the spatial 2D correlation method.
Panel a: simulation of a measured and shifted modal IM (x-slopes)
for mKL = 35. The grey and dark pixels correspond to the non-valid
slopes wvalid(x) = 0 in the measured IM. Panel b: cross-correlation of
the shifted mode of Panel a with the reference modal IM for mKL = 35
(see Fig. 1). Panel c: map of the fitted coefficients α. Panel d: over-
sampling of Panel c with an interpolation via sinc functions.

Nonetheless, as seen in the auto-correlation of the KL modes
in Fig. 1 (third line), the sensitivity of the correlation to a mis-
alignment will depend on the considered mode, as already men-
tioned by Heritier et al. (2021). Low spatial frequency modes,
such as mKL = 6, produce a single but extended correlation peak
while high spatial frequency modes, such as mKL = 35, produce
localised but multiple correlation peaks. By working with dif-
ferent modes, our method aims at combining the large capture
range of the low spatial frequencies with the sensitivity of the
high spatial frequencies. The only constrain is to use KL modes
whose gradients are properly sampled by the WFS.

2.1.2. Estimation of the registration error from a modal IM

As explained in the previous section, the method implies to
reshape the slopes of the modal IM on 2D spatial positions
x = (x, y) lying on a 2D Cartesian grid of pitch∆, the subaperture
size. Nonetheless, on such a square grid, some slopes are miss-
ing in the model (pupil external edge and central obscuration by
the secondary mirror) and are set to zero. They are highlighted
in grey in Fig. 1. In the following, we note this mask of modelled
slopes:

wWFS(x) =
{

1 if the slope at x is in the IM,
0 otherwise.

(1)

On top of the slopes outside the pupil, partially illuminated sub-
apertures of the SH-WFS, noisier than the others, are invalidated
and considered as missing data. In the following, we note this
mask of valid slopes:

wvalid(x) =
{

1 if the slope at x is valid,
0 otherwise.

(2)

As emphasised in black in Fig. 2a and compared to the modelled
slopes in Fig. 1, this corresponds to an additional missing ring
of one subaperture width on the outer ring and the corners of the
inner ring of the pupil.

In the following, we note Mint
m (x) (resp. M̃int

m (x)) the refer-
ence modal IM of the system without any mis-registration (resp.
the measured modal IM). Here, x is the 2D position in terms of
subaperture of the SH-WFS and m is the index of the considered
mode. The reference IM can be an IM measured during calibra-
tion on a well-aligned system, relaxing the need of a synthetic
IM. For GPAO, we chose to use a synthetic IM which is com-
puted once for all.

For a given mode m, the cross-correlation of the 2D IMs is
given by:[
M̃int

m ⃝⋆ Mint
m

]
(δ) ≜

∑
x

M̃int
m (x)Mint

m (x − δ) = α(δ) . (3)

In terms of δ, Eq. (3) would give maps similar to the third line
of Fig. 1 or Fig. 2b. These maps can quickly be obtained by per-
forming the cross-correlation in the Fourier space. Then, finding
the value of δ maximising this correlation α(δ) could give a hint
on the lateral error. Nonetheless, as discussed above, the sensi-
tivity of this solution will depend on the chosen mode m and this
modal estimator does not provide a natural way to combine the
different modes into a single general estimator. In addition, such
a cross-correlation assumes that all the summed 2D positions x
are relevant. It does not account for the valid subapertures in
the model nor in the measures via Eqs. (1) and (2). As a conse-
quence, this will strongly bias the estimated error in case of large
mis-registrations due to pupil truncation effects.

In our method, we rather define α(δ) in terms of how similar
the two IMs are in terms of mean squares, jointly accounting for
all the modes,

α(δ) = argmin
β

∑
x,m

w(x, δ)
(
M̃int

m (x) − βMint
m (x − δ)

)2
, (4)

with:

w(x, δ) = wvalid(x)wWFS(x − δ) . (5)

The weight factor w(x, δ) discards from the cost function the
invalid pairs [M̃int

m (x), Mint
m (x − δ)] if one of the elements is es-

timated on an invalid position. Equation (4) has an analytical
solution given by

α(δ) =
∑

x,m w(x, δ)M̃int
m (x)Mint

m (x − δ)∑
x,m w(x, δ)

[
Mint

m (x − δ)
]2 , (6)

=

∑
m

[
wvalid M̃int

m ⃝⋆ wWFS Mint
m

]
(δ)∑

m

[
wvalid ⃝⋆ wWFS

[
Mint

m

]2]
(δ)

. (7)

Thus, the coefficient map α(δ) is expressed by the ratio of the
modal sum of 2D cross-correlations.

To achieve super-resolution without the need of a complex
model fitting method, this low resolution map α(δ) is further
up-sampled by zero-padding its Fourier transform by a fac-
tor mup = 8. This factor ensures a resolution of 12.5 % of a sub-
aperture, finer than the target error of 20 % mentioned in Sect. 1.
This step does not add any information, but it is equivalent to
an interpolation with a sinc function, oversampling the maxi-
mum region with a continuous function. Other methods involv-
ing polynomial fit or an iterative weighted center of gravity could
be used but slower and prone to converge to local maxima. On
the contrary, using a zero-padding operation is numerical very
efficient, and handle all maxima at once. In the end, the posi-
tion of the global maximum of the obtained map gives the es-
timated lateral mis-registration δ̃ at the resolution given by the
up-sampling parameter mup in a single pass:

δ̃ = argmax
δ

α(δ) . (8)

Looking closer at the definition of α in Eq. (4), it appears
that α

(
δ̃
)

gives the optimal coefficient to maximise the similar-

ity between Mint
m and M̃int

m in the sense of the mean squares. In
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other words, α
(
δ̃
)

gives the correction to apply on the amplitude
of the guessed PSIM to obtain the real global amplitude of the
measured IM.

In the following, we pragmatically chose to use the set of the
50 first KL modes. As discussed in Sect. 4.1 and Appendix A, it
was beyond the scope of this paper to further optimise the con-
sidered modes. The chosen option produces a modal base that
can be shared with all the GPAO modes (9×9, 30×30 and 40×40
SH-WFS). In the following, we work within the framework of
the 40×40 SH-WFS GPAO mode.

2.1.3. Advantages of the spatial correlation estimator

Here, we list the main advantages of the proposed method.
First, by accounting for the valid subapertures with an appro-
priate map Eq. (1), this method is robust to large errors and
strongly misaligned systems. It has a large capture range because
of the exhaustive exploration of the parameter space permitted
by Eq. (8). The estimator is absolute. It provides unbiased and
super-resolved measures, up to the resolution of the up-sampling
parameter mup.

Afterwards, the application of the method is fast: by fo-
cussing only on a limited numbers of modes, the acquisition of
the modal IM is quick to obtain. And it is fast to compute: the
convolutions in Eq. (7), with proper zero-padding, can be com-
puted using fast 2D discrete Fourier transforms and the fit of the
lateral error is obtained in a single pass via Eq. (8). Thus, there is
no need to recompute several PSIM to iterate the parameter fit.

Furthermore, the need of a PSIM model is reduced to the
minimal need: a single computation to get the reference IM from
which the command matrix of the AO loop is derived. For com-
plex systems where a PSIM model is not available, this need
could be removed by using a measured IM obtained during cali-
bration on an aligned system.

Because it is based on lots of redundant measures to retrieve
only the two parameters of the lateral error, the proposed es-
timator has a high S/N. This makes it particularly suitable for
open-loop calibration where the turbulence strongly corrupts the
slopes of the measured modal IM, as far as the measurement
strategy freezes, in average, the turbulence (Kolb 2016). In ad-
dition, Heritier et al. (2021) has shown that these kinds of ap-
proaches are not biaised by the turbulence wind.

Finally, an interesting by-product of the method is the global
amplitude of the IM, which is given by the amplitude of the cor-
relation peak. Although this does not provide the individual am-
plitude on each actuator of the DM, this is an interesting pa-
rameter for the monitoring and re-calibration of the system and
its AO loop. Even if this beyond the scope of this paper which
focuses on SH-WFS, we also notice here that estimating the am-
plitude of the IM could be trickier with a pyramid WFS as the
optical gains will vary with the considered modes. This would
change their relative weighting in Eq. (7), but should not modify
the definition of the best position.

2.2. Simulations: large capture range

The modal correlation estimator was tested with the AOF tool
embedded in SPARTA in charge of generating PSIMs. As de-
scribed by Kolb et al. (2012), it uses a geometrical model of the
SH-WFS. The slopes are obtained by computing the wavefront
phase difference on the opposite edges of each subaperture. For
the DM, we used a pseudo-synthetic model. For each actuator a
of the ALPAO DM, its influence function ψa is described with a

symmetrically radial profile:

ψa(x) = Aa.e−αa(|x|/∆DM)βa

, (9)

where ∆DM is the actuator pitch, where Aa is the amplitude of
the actuator, and where αa and βa = are the parameters of the
super-Gaussian profile. The values of these parameters are fitted
on the real influence functions measured and kindly provided
by ALPAO. The actuator positions and influence functions are
stretched according the GPAO design4 and consequently do not
lie on a Fried geometry (Fried 1977). The KL modes are de-
fined on the actuator command space, following the covariance
method described by Bertrou-Cantou et al. (2022).

To test the method, a zonal PSIM was generated with ex-
treme lateral registration error of δ =

(
δx, δy

)
= (13.35, 8.65)∆

and an amplitude of 4 µm for the DM actuators in the visible
NGS mode of GPAO (40×40 SH-WFS). Noisy measurements
were simulated by adding a centered Gaussian noise on the
slopes with a standard deviation of σslope = 0.25 pixel, corre-
sponding to a noise of 200 mas in the GPAO design. Results are
shown in Fig. 2, using KL modes from mKL = 4 to mKL, max = 50.

Figure 2a shows the mKL = 35th mode of the modal IM
obtained after projecting the zonal IM on the KL modes. Com-
pared with its centered representation in Fig. 1, the introduced
shift is visible with a slope pattern clearly off-centered from the
WFS pupil. In addition, it appears that the noise on the zonal
IM propagates towards the modal IM. For information, the cor-
relation of this shifted noisy pattern with its reference is given
in Fig. 2b. The results is smooth, but finding the position of the
maximal correlation is ambiguous with several potential loca-
tions (red regions).

This ambiguity is lifted when looking at the map of the fitted
coefficients α in Fig. 2c. Only one clear location emerges for the
maximal correlation. The noise on this map is negligible and its
oversampled version of Fig. 2d leads to an estimated shift of δ̃ =
(13.375, 8.625)∆ and an amplitude of 3.99 µm. The results is in
the resolution of 1/mup = 0.125 of a subaperture. The amplitude
is also correctly estimated, within a percent.

For information, the impact of the number of modes on
the estimator performances is briefly discussed in Appendix A.
As studied in Appendix B.1, the cross-talk with other mis-
registration parameters (rotation and magnification) is negligible
for realistic cases.

2.3. Experimental results: System alignment at preset

The 2D modal estimator was tested in the GPAO development
bench. To show that the method does not rely on a Fried geom-
etry, an angle of 35◦ was applied between the DM pupil and the
WFS pupil. The wind was emulated by spinning the phase plate
at its maximal speed. This produces a wind of v0 ≃ 8.4 m s−1

with a Fried parameter of r0 ≃ 14 cm. The WFS stage was
translated by several subapertures, as illustrated in Fig. 3a. A
few iterations of the lateral error corrective loop were performed
with a gain of 0.8 as shown in Fig. 4. To freeze the turbulence,
the modal IMs were measured with the fast ‘push-pull’ method
(Kasper et al. 2004; Oberti et al. 2006; Kolb 2016), playing se-
quentially the different modes. The AO loop was open.

Qualitatively speaking, the shift of the pupil in Fig. 3a is
clearly visible in the modal IM of Fig. 3c despite the high level

4 In each instance of GPAO, the DM, placed in the Coudé train of its
UT, is tilted with respect to the incident beam by an angle of ∼ 13.3◦,
leading to a stretch of ∼ 2.7 % (Le Bouquin 2023) and ∆DM , ∆.
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Fig. 3. Example in the GPAO bench of the 2D modal estimator. Pan-
els a,b: SH-WFS pixels before and after the alignment. Green circles:
WFS pupil edges. Panel c,e,f: x-slopes of the modal IM for mKL = 40
before (Panel c) and after (Panel e) alignment and reference (Panel f).
Panel d: over-sampled map of the coefficient α before alignment.

0 5 10 15 20 25

Time (s)

-9
0
0

-6
0
0

-3
0
0

0

L
at

er
al

er
ro

r
(%
"

)

/x
/y

Fig. 4. Convergence of the lateral error corrective loop with the 2D
modal estimator at GPAO preset.

of noise. The under-illumination threshold of SPARTA automat-
ically sets the slopes of poorly illuminated subapertures to zero.
The over-sampled map of Fig. 3d has a clear optimal area.

The corrective loop converges in only three iterations, as
seen in Fig. 4. The period of the iteration is dominated by the
overhead times of SPARTA when measuring the IM and the time
to move the actuator of the translating stage. The time to actually
poke the DM is 10 ms per mode, so half a second, and the time
to correlated the measured IM with the model is negligible. Af-
ter the alignment, the noisy pattern of the modal IM of Fig. 3e,
convingly matches the reference pattern of Fig. 3f. Furthermore,
it can be seen from Fig. 3b that the photometric pupil of the sys-
tem is off-centred5. Some subapertures do not get flux despite
being in the SH-WFS pupil (top-left) while some others outside
the pupil are illuminated (bottom-right). This supports the fact
that except for a rough alignment of the system, the photometric
pupil cannot be used to align the DM actuator geometry and the
SH-WFS.

To quantitatively assess the alignment efficiency, interac-
tion matrices were measured prior and after the system auto-
alignment. For these measurements, the phase plate was stopped

5 As a side remark, the eight white squares in Fig. 3b come from the
activation during the instrument calibration of the dark follower of the
eight octants of the camera.

Table 1. System auto-alignment with the 2D modal estimator

Amplitude δx / δy θ δρx / δρy

(µm) (%∆) (◦) (%)
t = 0 s 3.6 -908.5 / -377.4 35.5 0.8 / 1.4

t = 25 s 3.9 0.9 / -3.6 35.2 0.6 / 1.3

Notes. PSIM parameters fitted by SPARTA on the IM measured before
(t = 0 s) and after (t = 25 s) the system auto-alignment with the 2D
modal estimator. θ: clocking. δρx / δρy : stretches along the x and y-axes.

to prevent any bias. SPARTA embeds an AOF tool to estimate
the mis-registration parameters of the system by PSIM iterative
model fitting, as described by Kolb et al. (2012). The results are
presented in Table 1.

The initial lateral error is δ = (−908.5,−377.4)%∆. From
Fig. 4, with the phase plate spinning, the error initially found by
the 2D modal estimator is δ̃ = (−937.5,−400.0) %∆. Remem-
bering that mup = 8, this estimation lies within three resolution
elements of 12.5 %∆ of the up-sampled map α. This is thus bet-
ter than half a subaperture and despite the fact that the system
presents a magnification of ∼ 1 %, not considered in the esti-
mator. After convergence (δ̃ = 0), Table 1 shows that the actual
lateral misalignment is well below the up-sampled map α reso-
lution, with a residual of a few percent of a subaperture.

At convergence, the amplitude fitted by the 2D modal estima-
tor is 3.4 µm. If this is the correct order of magnitude, it is ∼ 13 %
below the amplitude given by the SPARTA fit given in Table 1.
Several factors can explain this discrepancy. First, the IM is mea-
sured by playing a Hadamard set of zonal commands (Kasper
et al. 2004; Oberti et al. 2004), producing potentially strong lo-
cal slopes on the DM and thus not the same linearity point of the
system than the one of the modal IM measurement. In addition,
the
∣∣∣δρ∣∣∣ ≃ 1.5 % stretch in the system measured by SPARTA is

not included in the reference IM of the estimator. This can fur-
ther bias the model fitting of Eq. (8). Better understanding this
amplitude was not considered critical in this study. This is indeed
an interesting by-product of the method, but we mainly wanted
to focus on the system auto-alignment.

Finally and importantly, we remark here that the precision
of the alignment obtained with the 2D modal estimator is suf-
ficient to close the AO loop with an IM and a control matrix
synthesised for a perfectly aligned system (δ = 0) and control-
ling 500 modes, which corresponds to the baseline of GPAO for
standard operation. This shows that the 2D modal estimator is a
robust tool to put the system in state where the closed loop esti-
mator presented hereafter can take over the lateral misalignment
monitoring and correction.

3. Non-perturbative closed loop estimator

3.1. Proposed method

3.1.1. Block diagram of an AO loop

A standard AO loop works as follows. First, the WFS S converts
the 2D wavefront w into measurements m corrupted by noise, n:

m = S (w) + n . (10)

Next, these measurements are processed by the controller C to
compute a new command to send to the DM:

c = C(m) . (11)
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Fig. 5. Block diagram of the temporal coupling (in red) of the symmet-
ric (cosine, in blue) and anti-symmetric (sine, in green) parts of a given
spatial frequency k = (2/3D, 0) through the AO loop.

Then, this command is applied and held by the DM until the
next command arrives. For example, in the case of GRAVITY+,
m are slopes delivered by the SH-WFS and the controller is a
leaky integrator6 of leak gain gϵ and integral gain g

∫
:

ci+1 = (1 − gϵ)ci + g
∫

cδ , (12)

and where the command correction:

cδ = Mcmdm , (13)

is obtained with a command matrix Mcmd computed by inverting
the PSIM of the system filtered on a given nmod number of KL
modes.

In the following, we work under different assumptions.
Firstly, when an AO system is in closed loop, it can be lin-
earised around its operating point, and all the previously de-
scribed steps become linear operations. It is then equivalent to
describe the AO loop in the Fourier space of the commands m
and of the wavefront w that is to say in terms of 2D spatial fre-
quencies k =

(
kx, ky

)
(m−1) propagating through the system. Sec-

ondly, in such a system, without any misalignment (no lateral
shift, no clocking and no stretch between the sensor and the ac-
tuators), there is no cross-coupling between different 2D spatial
frequencies k , k′. For a spatial frequency k, the above steps
(i), (ii), and (iii) can then be represented by the block diagram
of Fig. 5 where each block is a linear operation. The symmetric
(equivalently the real part of the Fourier coefficient) and the anti-
symmetric part (equivalently the imaginary part of the Fourier
coefficient) of this spatial frequency are presented with the sub-
scripts one (blue) and two (green).

The effect of the different blocks of Fig. 5 can be described
by their transfer function defined in the temporal frequency
space f (Hz) (Åström & Murray 2021). It is a reasonable as-
sumption to consider that the transfer functions are identical for
the two spatial modes:

S 1 = S 2 = S ,
C1 = C2 = C ,

A1 = A2 = A .
(14)

6 We notice here the possibility that g
∫

and gϵ could be functions ap-
plied on ci and cδ and not pure scalars, especially if modal filtering is
applied for control and leakage (Gendron & Lena 1994).

As detailed by Madec (1999), the WFS integrates the signal
during its exposure time τWFS giving the transfer function:

S ( f ) =
1 − e−2iπτWFS f

2iπτWFS f
. (15)

Then, C is a leaky controller of transfer function:

C( f ) =
g
∫

e−2iπτlat f

1 − (1 − gϵ)e−2iπτRTC f
, (16)

where τlat is the latency of the system (communication and com-
putation times) and τRTC is the period of the RTC cycle7. Finally,
the DM acts as a zero-controller holder, maintaining the com-
mand during τDM with a transfer function similar to the WFS:

A( f ) =
1 − e−2iπτDM f

2iπτDM f
. (17)

In general, all the characteristic times are equal:

τlat ≃ τDM ≃ τWFS ≃ τRTC . (18)

3.1.2. Temporal coupling of a 2D spatial frequency

In the following, x = (x, y) denotes for the 2D spatial position.
Using the notations of Fig. 5, a lateral 2D shift δ =

(
δx, δy

)
be-

tween the DM and the WFS implies a spatial phase shift between
the spatial frequency k of the wavefront w seen by the WFS and
its correction c by the DM as follows:(1) c1 ∝ cos

(
2πkT

· x
)
⇒ w ∝ − cos

(
2πkT

· (x − δ)
)
,

(2) c2 ∝ sin
(
2πkT

· x
)
⇒ w ∝ − sin

(
2πkT

· (x − δ)
)
.

(19)

Which, after expansion, leads to:
(1) w ∝ − cos(θ) cos

(
2πkT

· x
)
− sin(θ) sin

(
2πkT

· x
)
,

w ∝ − cos(θ)w1 − sin(θ)w2 ,

(2) w ∝ + sin(θ) cos
(
2πkT

· x
)
− cos(θ) sin

(
2πkT

· x
)
,

w ∝ + sin(θ)w1 − cos(θ)w2 ,

(20)

with the coupling coefficient of:

θ = 2πkT
· δ . (21)

As emphasised by the red arrows in Fig. 5, there is now con-
sequently a cross-coupling between the symmetric (1) and anti-
symmetric (2) parts of the spatial frequency k.

The commands c1 and c2 are thus no longer independent.
Discussing on the noise propagation through an AO loop, Heri-
tier (2019, Sect. 4.1.3) already mentioned the fact that measure-
ment noise can produce signals and intuited that the larger the
mis-registration, the higher the S/N on the measures would be.
The present method is based on the fact that such a coupling
between c1 and c2 leaves a trace in their temporal correlation.
In the (spatial and temporal) Fourier space, the variance of the
command ci(k, f ) of a given spatial frequency k at a temporal
frequency f is defined by:

Vci (k, f ) ≜ ⟨ci(k, f )ci(k, f )⟩ , (22)

7 Following a previous note, g
∫
(k) and gϵ(k) can depend on the spatial

frequency k if modal control is implemented.
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Fig. 6. Imaginary part of the correlation curves C c1 ,c2 (θ, f ) in a noise
limited regime for various values of θ from 0◦ (blue) to 45◦ (red), ev-
ery 5◦. AO parameters: τWFS = 1 ms, g

∫
= 0.5, gϵ = 0.

and the correlation between c1 and c2 for this given spatial fre-
quency k at the temporal frequency f is defined by:

Cc1,c2 (k, f ) ≜
⟨c1(k, f )c2(k, f )⟩√
Vc1 (k, f )Vc2 (k, f )

. (23)

Under the assumption that the different noise terms ni and pi
are independent, we show in Appendix C that the coupling of c1
and c2 through the system produces a signature in their correla-
tion that only depends on the coefficient θ and the frequency f .
This signature is expressed by:

Cc1,c2 (θ(k), f )/θ(k) ∼
θ→0

2iI
[

µ( f )
1 + µ( f )

]
≜ iC0( f ) , (24)

with:

µ ≜ ACS . (25)

The correlation of a given spatial frequency k is thus a pure
imaginary number. Figure 6 shows the imaginary parts of the
correlation Cc1,c2 (θ, f ) for different values of the coupling coef-
ficient θ.

3.1.3. Estimation of the registration error from telemetry

First, to apply the results of Sect. 3.1.2, the spatio-temporal cube
of commands c(x, t) recorded in the closed loop telemetry must
be reshaped in terms of spatial and temporal frequencies and
split on its symmetric and anti-symmetric compounds. With the
notation of Fig. 5, this 3D cube can be written as:

c(x, t) =
∑

k

c1(k, t) cos
(
2πkT

· x
)
+ c2(k, t) sin

(
2πkT

· x
)
. (26)

with:

c1(−k, t) = c1(k, t) and c2(−k, t) = −c2(k, t) , (27)

to ensure the parity of the symmetric and anti-symmetric parts c1
and c2. As a consequence, the discrete 3D Fourier transform of c,
Fc(k, f ), is equal to:

Fc(k, f ) = c1(k, f ) − ic2(k, f ) , (28)

and thus:{
c1(k, f ) = 1

2
[
Fc(k, f ) +Fc(−k, f )

]
,

c2(k, f ) = i
2
[
Fc(k, f ) −Fc(−k, f )

]
.

(29)

Then, the imaginary part of the empirical correlation of the
closed loop telemetry is computed as follows:

C̃ cl(k, f ) = I

[
c1(k, f )c2(k, f )
|c1(k, f )||c2(k, f )|

]
. (30)

The control space k ∈ K ctrl of the AO loop is delimited by a disk
of radius kmax, in terms of cycle per diameter, so that:

π
[
kmax]2 = nmod

nact [dact]2 , (31)

where dact is the number of actuators across the diameter of the
telescope and nact is the total number of actuators of the DM.
Equation (31) states that among the [dact]2 modes in the Carte-
sian Fourier space, only the ratio of the number of controlled
modes nmod over the maximal number of degree of freedom are
controlled. We thus get from Eqs. (21) and (24) that:

∀k ∈ K ctrl, C̃ cl(k, f ) ≃ 2πC0( f )kT
· δ . (32)

Finally, the lateral error is given by:

δ̃ = argmin
δ

∑
k∈K ctrl, f>0

(
C̃ cl(k, f ) − 2πC0( f )kT

· δ
)2
. (33)

This problem is solved by expanding the dimensions along k and
f in order to reshape the equation into a matrix-vector shape,

C̃ cl(k, f ) ≃ H(k, f ) × δ , (34)

and using the pseudo-inverse H† of the obtained matrix (Moore
1920; Penrose 1955),

δ̃ =
[
H(k, f )

]†
× C̃ cl(k, f ) . (35)

3.1.4. Advantages of the closed loop estimator

As discussed below, the proposed method has numerous advan-
tages. Firstly, it is purely based on the geometry of the chosen
observable which can be the WFS measurements mi or the DM
commands ci. It only uses the history of this observable and its
correlation. Knowing explicitly the link between WFS measure-
ments and the DM commands is not needed. Thus, the method
does not rely on any PSIM model from which mis-registration
parameters must be retrieved and the method is consequently not
prone to model errors. In addition, such PSIM models are gener-
ally complex (and potentially non-invertible) and extremely slow
to compute, strongly slowing the iterative fit of the alignment er-
rors. Secondly, the model only depends on only a small number
of parameters driving the AO loop. These parameters are gener-
ally well constrained by design or proper calibration.

Furthermore, the estimator, expressed in the Fourier domain,
is sparse. This makes it extremely fast to compute, a critical as-
pect when considering the ever increasing number of actuators
and system complexity of the future ELTs.

Even if it based on noise propagation, assumptions on the
noise model remain minimal. The method only supposes that the
noise is spatially uncorrelated, but for a given spatial frequency,
it does not assume a specific noise model. If white noises ni
would excite all the spatial and temporal frequencies and thus
produce a strong signal in the command correlation, knowing
the power spectrum density of the noise sources is not needed as
it cancels out via Eq. (23), as shown in Appendix C.

Finally, a common issue with lateral error estimators based
on the AO telemetry is their sensitivity to the wind in the case
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of a frozen flow turbulence (Heritier et al. 2019; Heritier 2019).
As discussed in Appendix C.2, such a situation breaks the as-
sumption that p1 and p2 are independent, used to get Eq. (24).
Nonetheless, as far as there is noise injected in the loop to pro-
duce a correlation signal in the commands, this effect is sparse
in the temporal frequency space. Thus, compared to other meth-
ods based on AO loop telemetry (Béchet et al. 2012; Kolb et al.
2012), the wind should have a limited impact on the proposed
estimator of Eq. (33).

3.2. Simulations: Sensitivity and wind bias

3.2.1. End-to-end simulations

We used an ideal model for the DM. The influence func-
tions ψa = ψ were set to be identical for all actuators a by
replacing the parameters in Eq. (9) by their median value fit-
ted on the ALPAO DM: Aa = 9 µm, αa = 0.87 and βa = 1.31.
For a null lateral error, the actuators were placed on a 41×41
grid (dact = 41) in a Fried geometry (Fried 1977) leading to
nact = 1353 active actuators. Thus the DM pitch ∆DM is also
equal to the size of a subaperture ∆. To introduce a minimal con-
trol on loop divergence, the commands are clipped between mi-
nus one and one.

A purely geometrical model was used to simulate the SH-
WFS. The slopes were estimated by averaging the gradient ob-
tained by finite difference in each subaperture of the SH-WFS
at the wavelength λwfs = 750 nm. There is no diffractive prop-
agation of the wavefront to produce spot and consequently no
spot centroiding. Only the photon shot noise was considered and
added directly to the geometrical slopes, using Eq. (D.4) as de-
tailed in Appendix D.

Table 2 sums up the different notations used in Sects. 3.2
and 3.3. The sensitivity of the estimator to some of these pa-
rameters, especially the wind speed v0 and the noise level nph,
is studied in the following, only focussing on the lateral error δ
introduced in the system. Cross-talk with other mis-registration
is discussed in Appendix B.2.

3.2.2. Sensitivity of the closed loop estimator

The sensitivity of the closed loop estimator was assessed by in-
jecting known lateral errors δth in the system, with amplitudes
ranging from

∣∣∣δth
∣∣∣ = 0 % to 70 % of a subaperture pitch ∆ ev-

ery 5 % and angles ranging from A
[
δth
]
= 0◦ to 355◦ every 5◦.

For each case, batches of 500 consecutive closed loop iterations
in a pure noise regime wihtout any turbulence were gathered for
different numbers of controlled modes. The estimated lateral er-
rors δ̃ were de-rotated with the known angles A

[
δth
]

to compute
its mean value and its standard deviation for each amplitude

∣∣∣δth
∣∣∣.

The results are shown in Figs. 7 and 8.
From Fig. 7, it appears that the estimator follows a linear law

for errors lower than 25 % of ∆ for nmod ≤ 800. As expected,
the more modes are used and the less noisy is the estimator.
Nonetheless, the linearity range decreases with the number of
modes, suggesting limitation in the approximation of Eq. (24).
Indeed, estimating the lateral error via Eq. (33) does not solve
the inverse problem of Eq. (C.13) but its Taylor expansion of
Eq. (C.14) for negligible coefficients θ ∼ 0. As the correla-
tion curves depend on this coefficient, see Fig. 6, this can bias
the estimator. The saturation of the estimator and the associ-
ated increase of its standard deviation for nmod ≥ 500 and for∣∣∣δth
∣∣∣ > 50 % are linked with the limit of stability of the loop

Table 2. List of the main variables used in Sects. 3.2 and 3.3.

Variable Description

δ
2D lateral error of Cartesian coordinates(
δx, δy

)
and polar coordinates (|δ|,A [δ])

∆
Size of a subaperture (40 accross

the pupil diameter)

1/τWFS = 1 kHz
Frequency of the AO loop with

τlat ≃ τDM ≃ τWFS ≃ τRTC, Eq. (39)

nmod = 500 Number of controlled modes
(GPAO baseline)

500 Number of frames in the
telemetry batch (0.5 s)

v0 Wind speed of the frozen flow
θ0 Orientation of the frozen flow
nph The number of photons per subaperture

g
∫
= 0.5 Integral gain of the AO loop

gcl Sensitivity of the closed loop
estimator, Eq. (36)

ธ = 0.5 Gain of the lateral error corrective
loop, Eq. (42)

C0 Theoretical correlation curve, Eq. (24).

C̃ t Best fit curve of the temporal
correlation, Eq. (39)

C̃ 2D Best 2D fit map of the correlation
coefficients Eq. (41)

Notes. Excepted when stated otherwise, the values given in this table
are kept constant through all the simulations and experiments.
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Fig. 7. Sensitivity of the closed loop estimator for different numbers of
controlled modes in the noise limited regime (coloured curves). The
coloured areas emphasise the ±3σ regions. The black dashed (resp.
plain) line is the fitted (resp. theoretical) sensitivity of gcl ≃ 0.7 (resp.
1). The coloured dashed lines emphasise the lateral error at which the
panels of Fig. 8 are displayed.

at large mis-registrations. This leads to DM command clipping
and thus non-linearities in the system. This limit is reached at a
smaller lateral error of

∣∣∣δth
∣∣∣ = 20 % when controlling an extreme

number of modes of nmod = 1200.
Surprisingly, the sensitivity of the estimator, fitted for nmod =

250, converges for small lateral errors towards:

gcl ≃ 0.70 < 1 . (36)

This small value of gcl cannot only be explained by the approx-
imation of Eq. (24). It could come from other approximations
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made in Sect. 3.1. First, all the theory was derived for pure (and
thus infinite) spatial frequencies. But the system is size-limited
and with a circular pupil. There is not a strict definition of sym-
metric and anti-symmetric spatial frequency modes. This could
lead to some coupling across spatial frequencies not accounted
for by the model. Such coupling could also be induced in the
command matrix, obtained by filtering the PSIM with nmod KL
modes. In addition, estimating the correlation via Eq. (30) as-
sumes that the expectancy of the ratio is equivalent to the ratio
of the expectancies of Eq. (23):

C̃ cl ∼

〈
c1c2√

c1c1
√

c2c2

〉
,

〈
c1c2
〉√〈

c1c1
〉〈

c2c2
〉 . (37)

Further understanding the value of this sensitivity was not con-
sidered critical as any additional uncorrelated noise in the em-
pirical estimator of Eq. (30) would lead to an underestimation of
the correlation, via the normalisation by the variances.

Thus, the closed loop estimator is not absolute but relative,
sensitive to the presence of a lateral error. It is thus relevant in the
context of a corrective loop to act on the lateral error, whether
mechanically (via a physical actuator as in GPAO) or numeri-
cally (via an update of the synthetic model of the instrument and
its command matrix until convergence is achieved). The sensi-
tivity is known to be smaller than one, insuring a stable conver-
gence.

Figure 8 shows the best fit correlation curves:

C̃ t( f ) ≜ argmin
C

∑
k∈K ctrl

(
C̃ cl(k, f ) − 2πCkT

· δ̃
)2

(38)

=

∑
k∈K ctrl C̃ cl(k, f )kT

· δ̃∑
k∈K ctrl 2π

(
kT
· δ̃
)2 , (39)

in Figs. 8a,c,e,g as well as the maps of the best fit correlation
coefficients:

C̃ 2D(k) ≜ argmin
C

∑
f>0

(
C̃ cl(k, f ) − C0( f )C

)2
(40)

=

∑
f>0 C̃ cl(k, f )C0( f )∑

f>0 C 2
0 ( f )

, (41)

in Figs. 8b,d,f,h for some specific δth. These curves and maps are
not used to compute the estimated misalignments δ̃ which are
obtained using Eq. (33). Nonetheless, they are good indicators
to validate our AO loop modelling and its assumptions.

From the curves of Figs. 8a,c,e,g, it first appears that the tem-
poral correlation of the commands exhibits the expected signal
and with the correct shape (black curve), validating the formal-
ism of Sect. 3.1. As expected, this signal is noisier for small
lateral errors, see Figs. 8a,g versus Fig. 8b. For increased mis-
registration parameters, divergences from the approximation of
Eq. (24) start to appear, see Figs. 8b,c. The correlation peak
slightly shifts towards lower temporal frequencies, as predicted
by the curves of Fig. 6 for large coefficients θ. In addition, be-
yond the limit of loop stability, as in Fig. 8c, the correlation curve
presents artefacts related to the non-linearities induced by the
command clipping. This nonetheless does not prevent the esti-
mator from correctly obtaining the order of magnitude of the
injected lateral error and its global orientation.

Then, the 2D maps of Figs. 8b,d,f,h markedly show the ‘tip-
tilt’ feature expected along the mis-registration direction from
Eq. (21). This feature is restricted to a disk, the radius of which
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Fig. 8. Sanity check of the fits introduced in Fig. 7 (arbitrary unit) for
different numbers of controlled modes nmod and shift amplitudes
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points. Panels b,d,f,h: maps of the best fit correlation coefficients C̃
2D

.

depends on the number modes, validating Eq. (31). As for the
temporal correlation, the noise level on the 2D maps is higher
for small lateral errors, see Figs. 8b,h versus Figs. 8d,f. Once
again, artefacts are visible beyond the limit of loop stability, as
in Fig. 8c: on the highest controlled frequencies, the ‘tip-tilt’ fea-
ture is broken.

As a final remark, all these results were obtained using
batches of only 500 telemetry frames. This is significantly lower
than previous methods based on telemetry (Béchet et al. 2012;
Kolb et al. 2012) for which tens of thousand frames must be
acquired to first estimate the interaction matrix from the mea-
surements. The proposed method does not need this demanding
intermediate step and efficiently uses the available signal in the
Fourier domain where the mis-registration signature is sparse,
optimising the signal over noise ratio. We notice here that the
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impact of the number of frames in the telemetry batches is dis-
cussed in Appendix E.

3.2.3. Bias induced by a frozen flow turbulence

In this section, turbulence is added to the system. Indeed, as
mentioned by Heritier (2019, in Sect. 4.3) and discussed in Ap-
pendix C.2, the wind could bias the closed loop estimator when
the temporal error is the dominant source of perturbation. To
emulate the turbulence, a phase screen was generated for each
simulation using the power spectrum density method proposed
by McGlamery (1976) on a domain twelve times larger than the
telescope pupil. To keep the phase screen 2D-periodic, no sub-
harmonic was added (Lane et al. 1992). The screen was looped
when translating the frozen flow according to the wind speed v0
and direction θ0. All simulations were done for a typical Fried
parameter of r0 = 12 cm at λ0 = 500 nm.

To assess the impact of a frozen flow turbulence on the closed
loop estimator, both in terms of strength and orientation, simu-
lations were run for wind speeds ranging from v0 = 1 m s−1 to
80 m s−1. The simulations being time-consuming, we used the
symmetry of the problem to test wind directions only ranging
from θ0 = 0◦ to 90◦ every 7.5◦. For each simulation, the sys-
tem was initialised without any error δ = 0. nmod = 500 modes
are controlled. Batches of 500 consecutive closed loop iterations
(0.5 s) are gathered to feed the closed loop estimator. In between
each batch, the lateral error in the system was updated as follows:

δi+1 = δi +ธ δ̃ , (42)

with the gain ธ = 0.5. Combined with the closed loop estima-
tor sensitivity gcl, Eq. (36), this leads to an approximated gain
of 0.35 that insures a stable and slow convergence. The conver-
gence values were obtained as described in Appendix F. Results
are gathered in Fig. 9 for different photon noise regimes and for
both the bias parallel (plain curves) and perpendicular (dashed
curves) to the wind direction.

It first appears that as expected, the induced bias is along
the wind direction (plain vs dashed curves). As seen by Heri-
tier (2019, Sect. 4.3) with another mis-registration estimator, the
bias amplitude depends on the ratio between the noise and the
temporal error as well as the wind speed. For standard photon
noise levels of nph between 10 and 100, it stays below 10 % of
a subaperture for wind speed below 37.5 m s−1, that is to say be-
low 20 mm. This should be compared to the total VLT pupil size
of D = 8 m.

Close to the noiseless regime, with nph = 1000, the bias
peaks a bit under 30 % of a subaperture for low wind speeds.
Some simulations, not shown here, indicate that this peak de-
pends on the simulation resolution, suggesting an aliasing prob-
lem in the interpolation when translating the frozen screen. Bet-
ter characterising this peak was not considered critical as such a
situation would not be met in a real AO system. Indeed, errors
which are not considered here would add up. Among others: the
sensor readout noise and saturation, and some AO system non
linearities such as the spot centroiding method or DM command
clipping or saturation. And as discussed in Appendix C.2, the
mis-registration estimator works better in a noise-limited regime.
Considering only the photon noise is thus a conservative hypoth-
esis.

Things worsen for wind speeds higher than v0 ≥ 37.5 m s−1.
For all the noise regimes, the estimator bias increases with the
wind speed, until reaching a plateau around |δ| = 45 %∆. This
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Fig. 9. Influence of the wind speed v0 and number of photons nph on
the estimation of the lateral error δ =

(
δ∥, δ⊥

)
in the wind frame, paral-

lel (plain curves) and perpendicular (dashed curves) to the wind direc-
tion θ0. The coloured areas emphasise the ±1σ regions.

Table 3. Atmosphere layer parameters of the GPAO requirements.

Layer 1 2 3 4 5
C2

n 0.67 0.07 0.1 0.1 0.06
v0 12.2 8.3 30.3 56 32.5
θ0 150.1 79.6 -70 -7.7 -82.6

saturation corresponds to the limit at which the AO loop be-
comes unstable when controlling 500 modes. This instability
overcomes the wind perturbation in the loop global disturbance,
stabilising the estimator. This result must be interpreted care-
fully. Indeed, for such high wind speeds, our end-to-end simula-
tions reach their limits: during the exposure time, the wind evo-
lution is not negligible and it should be averaged by simulating
subframe steps.

As a consequence, the closed loop estimator was further
tested on a more realistic turbulence, defined as the reference
in the GPAO requirements (Le Bouquin 2023, Sect. 6). Ta-
ble 3 gathers the parameters of its 5 layers. Its Fried param-
eter is r0 = 10 cm. This corresponds to a seeing of 1′′. This
system is initialised with a lateral misalignment of |δ| = 70 %∆
and A [δ] = 35◦, corrected every batches of 500 telemetry com-
mands via Eq. (42) and still controlling nmod = 500 modes.

The evolution of the lateral errors with the update iteration
for different noise regimes is given in Fig. 10. For the first four it-
erations, the system is unstable and the convergence curves over-
lap for all noise regimes. They quickly drop around |δ| = 30 %∆.
Despite a layer with a wind speed beyond 50 m s−1, the diver-
gence of the estimator remains under control. For the lowest
noise level (red), it stays in the stability regime under |δ| =
35 %∆. For a realistic case of a noise dominated system (green),
the corrective loop successfully tackles the initial lateral error
and converges with a bias of |δ| ≃ 10 %∆.

We also emphasise here that real turbulence would be more
complex than additive frozen flow layers. Any boiling or uncor-
related evolution would inject extra noise in the system produc-
ing the expected correlation curves, as explained in the first part
of Appendix C.2. This would further participate to make the es-
timator robust to the frozen flow parts of the wind.
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Fig. 10. Convergence of the lateral error |δ| in function of the update
iteration for the turbulence case of the GPAO requirements, see Table 3,
and for different photon noise levels nph.
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Fig. 11. Example in the GPAO bench of the closed loop estimator. Pan-
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the limit of stability before the alignment. Green circles: WFS pupil
edges. Panel d: curves of the best temporal correlation fit C̃
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and of the theoretical correlation C0 (black). Panel e: map of the best
fit correlation coefficients C̃

2D
. The green circle encompasses the fre-

quency space theoretically controlled by the command matrix.

3.3. Experimental results: Auto-alignment in operation

In this section, the AO loop was closed using the parameters
listed in Table 2. To test the closed loop estimator, we intro-
duced a random lateral error to place the system at the limit
of stability with the phase plate spinning at its maximal speed
(v0 ≃ 8.4 m s−1, r0 ≃ 14 cm). This configuration leads to an un-
stable wave pattern on the DM commands (see Fig. 11c), which
is seen by the WFS (see Figs. 11a,b) and that is typical to a lateral
mis-registration (Heritier et al. 2018b). In addition, we kept the
angle of 35◦ between the SH-WFS pupil and the DM grid. This
angle can clearly be seen in the pattern orientation in between
Figs. 11a,b and Fig. 11c.

We recall here that, depending on the context, the estimator
can be used in two different ways: (1) to iteratively update the
parameters of the command matrix of the system with a fixed lat-
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Fig. 12. Convergence of the lateral error corrective loop with the closed
loop estimator. Double arrows indicate when the phase plate and the
corrective loop are active. The stars indicate the iteration at which
Figs. 11d,e are displayed.

Table 4. System auto-alignment with the closed loop estimator

δx / δy θ δρx / δρy

(%∆) (◦) (%)
t = 0 s 11.3 / 44.7 35.1 0.2 / 1.2

t = 300 s -1.4 / -2.25 35.1 0.3 / 1.1
t = 450 s -1.9 / -1.6 35.1 0.2 / 1.0

Notes. PSIM parameters fitted by SPARTA on the IM measured before
the system auto-alignment with the closed loop estimator (t = 0 s), after
the convergence while the phase plate was spinning (t = 300 s) and
without the phase plate (t = 400 s). θ: clocking. δρx / δρy : stretches
along the x and y-axes.

eral error until convergence or (2) to dynamically correct the sys-
tem alignment until nominal registration is reached. The needs
of GPAO introduced in Sect. 1 correspond to this latter option.
As for the simulations of Sect. 3.2.3, the gain of the corrective
secondary loop in charge of realigning the system is set to 0.5.
Combined with the closed loop estimator sensitivity gcl, Eq. (36),
this leads to an approximated gain of 0.35.

As highlighted on Fig. 12, the corrective loop is run in two
different situations. First, the phase plate is spinning. Then the
corrective loop is opened and the phase plate is stopped to as-
sess the bias induced by the wind on the closed loop estimator.
Finally, a new set of corrective loop iterations is performed. In
between all these steps, an IM is measured (with the phase plate
stopped) to quantitatively retrieve the system misalignment with
the AOF tool in SPARTA. The results are gathered in Table 4.

Despite starting in an unstable state, the corrective secondary
loop efficiently converges in a few tens of iterations. At the start
and stop of the phase plate, a small change in δ̃ can be seen
Fig. 12, suggesting that the frozen wind indeed induces a bias in
the estimator. We further insist here that the values given in the
figure are the lateral error computed by the closed loop estima-
tor for each acquired telemetry batch of 500 frames. They con-
sequently suffer from the underestimated sensitivity discussed in
Sect. 3.2.2. For example, at the initial state, δ̃ ≃ (8, 21)%∆ but
SPARTA indicates that the real error is closer to δ̃ ≃ (11, 45)%∆,
see Table 4.

With or without the phase plate, the convergence is stable but
noisy with oscillations of a few percent. The IM measured after
the corrective loop convergence with the phase plate spinning
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gives that |δ| ≃ 2.7 %∆. This bias is lower than the predictions
of the simulations introduced in Sect. 3.2.3 suggesting that they
were indeed conservative. Without the phase plate spinning, the
lateral errors slightly drops to |δ| ≃ 2.5 %∆ which is in the noise
level of the estimator as shown in Fig. 12.

For information and sanity check, Figs. 11d,e give the corre-
lation curve C̃

t
and map C̃

2D
for the point indicated with a star

in Fig. 12. Looking at Fig. 11d, the main feature is a mismatch
between the empirical correlation (grey/green) and the theoreti-
cal curve (black) at small frequencies. This discrepancy can be
attributed to the wind, as discussed in Appendix C.2 and seen in
frozen flow simulations.

Finally, the map of Fig. 11e shows that the command correla-
tion leaves a strong trace in the 2D spatial frequency space with
the typical ‘tip-tilt’ pattern. This pattern matches the theoretical
area of the nmod = 500 delimited by the coloured circle.

As a conclusion, these results prove that the closed loop es-
timator is able to correctly monitor and feed the corrective sec-
ondary loop. They also show that the theoretical model can suc-
cessfully fit real data. In addition, in these tests, the wind induced
by the phase plate had a negligible impact.

4. Conclusions and perspectives

In this work, we introduce two novel methods to estimate the lat-
eral misalignment of an AO system. First, their underlying the-
ory is presented. Then, we describe how their performance was
tested in simulations. Finally, they were experimentally validated
in the GPAO development bench with a system still largely under
development and not yet fully characterised. These methods will
be at the core of the GPAO system auto-alignment strategy while
in operation to keep the AO performances at their optimal level
throughout the observations. These methods were presented in
the context of the GPAO system for its 40×40 SH-WFS mode.
They were also successfully tested in the bench for the other
GPAO configurations (30×30 and 9×9) and, as discussed below,
they can be adapted to other AO systems, in particular for the
future ELTs.

4.1. Perturbative modal estimator

This estimator uses the spatial 2D representation of the interac-
tion matrix to look for spatial correlations of the measures with a
reference. Not based on a complex model fitting, this method has
the advantages to be fast and reliable, with a large capture range
and a high S/N and is robust to loosely constrained higher-order
mis-registrations such as clocking (to a few degrees) or stretch
(to a few percent). An interesting by-product of the method is an
estimation of the IM amplitude.

In this work, the reference is a synthetic IM, but an experi-
mental reference measured during calibration could also be used,
avoiding the need to rely on a possibly complex PSIM model
of the system. A possible evolution of this method could be to
totally get rid of the need of a reference IM. For example, by
focussing on purely symmetric or anti-symmetric modes, look-
ing at the symmetries of the modes in the measured IM and their
auto-correlation should suffice to estimate the system decenter-
ing.

In this paper, we focus on a pertubative approach in open
loop where the modal IM is actively measured by injecting
modes in the system. We also tested that the method works in
closed loop. The results are not presented in this paper but the
lateral error is successfully retrieved. Naturally, the amplitude

estimate is not reliable as the perturbations are fought by the AO
loop.

In this work, we assume that the modal IMs are obtained
with an invasive approach such as fast ‘push-pull’ of the modes
(Kasper et al. 2004; Oberti et al. 2006; Kolb 2016) or via com-
mand modulation (Esposito et al. 2006; Pinna et al. 2012; Kolb
2016). The next step will be to test the estimator on the IM
fully estimated from loop telemetry, for example as described by
Béchet et al. (2012), based on the correlation between the slopes
and the commands. Such IMs are generally noisy, but we have
shown in this study that the estimator is robust to a high level
of noise. Doing so would make the method non-pertubative, but
potentially biased by the wind in case of a strong frozen flow, as
discussed by Heritier (2019, in Sect. 4.3).

The method could also be extended to measure higher orders
of mis-registration such as clocking or stretches. Nonetheless,
these problems do not have a simple analytical solution as for
the lateral errors, Eq. (7) and would surely imply iterative fitting
of the parameters or extensive traversal of the parameter space.

In this work, we studied the influence of the number of
KL modes in Appendix A, but we did not dig into optimising
the subset of modes in order to maximise the estimator perfor-
mances. We chose the pragmatic approach to select modes that
will be seen and controlled by all the GPAO modes. Nonetheless,
it is known that different modes do not provide the same sensi-
tivity to the mis-registration parameters (Heritier et al. 2018b).
We could optimise the modal shapes to improve the lateral res-
olution or the capture range and to avoid angular redundancy to
prevent multiple secondary maxima in individual modal corre-
lations or if looking for the clocking for example. Nevertheless,
Heritier et al. (2021) have shown that fine tuning the modes is
not critical.

Finally, this method was presented in the context of a SH-
WFS, but it could be extended to other spatial WFS. For exam-
ple, it could be used for the sub-pixel alignment of the pupil im-
ages of a pyramid WFS which also contain spatial information.

4.2. Non-perturbative closed loop estimator

This estimator uses the temporal correlation of the noise in
the 2D representation of the DM commands in the closed
loop telemetry to identify cross-talks between symmetric and
anti-symmetric spatial frequencies. The main advantage of this
method, and at the origin of its development, is its sparsity in the
Fourier domain. Thus, this method is fast and particularly suited
for systems with ever increasing numbers of actuators such as
future ELTs, both in terms of execution time and memory re-
quirements. GPAO will serve as an on-sky demonstrator of this
technique, which is the current baseline to monitor and drive the
quaternary DM for the ESO ELT in its engineering single conju-
gated AO mode, based on a pyramid WFS operating in the near
infrared (Bonnet et al. 2023).

In addition, in the frequency domain, the impact of a frozen
flow is also sparse, theoretically reducing the bias induced by
the wind on the estimator. We nonetheless showed via simula-
tions that for frozen flows with high wind speeds, the induced
bias could diverge towards the loop stability limit. Nonetheless,
the bias induced by the wind was not considered of high concern
since the efficiency of the method interestingly increases with the
noise in the system, as already intuited by Heritier (2019, Sect.
4.1.3). This makes it suitable to AO loops pushed at their lim-
its (low magnitude or limit of stability or linearity) and for real
systems always noisier than simulations. Nevertheless, a pos-
sible evolution of the method would be to further work on its
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de-biasing, for example by setting the weights of the correlation
curve fitting to zero for low temporal frequency corresponding to
the maximal awaited wind-induced signal. As seen in Fig. C.1b,
this would depend on the spatial frequency insuring a correct
number of data points through all the controlled space. Another
solution would be to find a merit criterion on the correlation
curves when solving Eq. (33). Indeed, the correlation signal in-
duced by the wind strongly changes the shape of the theoretical
correlation curves of the noise and should be quantifiable. An-
other direction to investigate is the exploitation of the real part
of the correlation curves. It is discarded by the estimator of the
proposed method, but the mixture of the noise propagation and
the turbulence propagation should create a non-zero signal in the
real part of the command correlation.

Another interesting features of the method is that it does not
rely on a model of the AO system. Having access to the telemetry
of a 2D spatial observable of the closed loop is sufficient. This
could be the DM commands, as in this work, or directly the WFS
measurements. This makes it particularly suitable to the pyra-
mid WFS which directly gives the Hilbert transform of the inci-
dent wavefront perturbations in the telescope pupil for the non-
modulated spatial frequencies. Nonetheless, these WFSs have a
lower noise propagation than SH-WFSs, which could make them
more sensitive to the wind bias, as noticed by Heritier (2019,
Sect. 4.4). Therefore, further quantitative analyses should be per-
formed before translating the results to such WFSs.

In addition, this method depends on only a limited number
of parameters. We have seen that the shape of correlation sig-
nals are very sensitive to these parameters. They were fixed in
this study, but a possible evolution would be to fit these param-
eters along with the lateral errors in a global inverse problem
approach. On top of potentially reducing the estimator bias, this
could also provide a supplementary way to monitor the loop gain
or RTC performances.

A main drawback of this closed loop estimator is that it does
not provide absolute measurements. It is relative to the registra-
tion state used to generate the command matrix. We showed that
the measurement sensitivity is a priori unknown but nonetheless
less than one. This guarantees a stable convergence in closed
loop. The method is therefore suitable both for optical compen-
sation by means of a pupil steering actuator (as for GPAO) or nu-
merical compensation by command matrix updates derived from
the accumulated error measurements, as for example described
by Heritier et al. (2021).

Currently, this estimator was developed for lateral error mon-
itoring which are ‘zero-order’ mis-registrations. This means that
they only couple symmetric and anti-symmetric parts of the
same spatial frequencies. A work is undergoing to extend this
method to ‘first-order’ mis-registrations (clocking, magnifica-
tion, and anamorphoses) with promising results. The difficult
part is that such errors couple neighbouring spatial frequencies k
and k + δk, increasing the complexity of the block diagram of
Fig. 5 and the resulting correlation curves. Nonetheless, the es-
timators remain sparse in the Fourier domain and thus fast and
scalable to complex systems.

In conclusion, a long-term perspective for both estimators
would be their adaptation beyond single conjugated AO to multi-
conjugated AO systems composed of multiple DMs and multiple
WFSs. If the adaptation of the pertubative 2D modal estimator
were to be straightforward, this would be less so the case for the
non-perturbative closed loop estimator. Indeed, mis-registrations
between the different subsystems will produce numerous cross-
talks potentially difficult to disentangle in the observable tempo-
ral correlations.
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Appendix A: Impact of the number modes on the
2D modal estimator

Even if optimising the shape and the number of modes used in
the modal fit was beyond the scope of the paper, the impact of
the number of selected KL modes is presented in Fig. A.1 for
different noise configurations σslope on the IM slopes. For each
case, 1000 random simulations were performed. To assess the
noise propagation of the estimator, mup was set to 100, leading
to a theoretical resolution of one percent via the super-resolved
map α. The lateral shift was fixed to δx = δy = δ0 = 4.18∆.
Thus the problem is symmetric and the figure presents the global
statistics of

{
δ̃x − δ0, δ̃y − δ0

}
.

The figure shows that the IM noise level has a limited impact.
Indeed, for mKL, max ≥ 50, the bias and the standard deviation of
the estimator lie within the chosen target of 1/8 = 12.5 % of
a subaperture for all the tested noise levels. The number of fit-
ted modes appears as the key parameter of the method in order
to limit the noise propagation and increase the achievable accu-
racy. This is expected since (1) increasing the number of modes
allow us to average a larger number of noisy measurements, thus
improving the S/N; (2) higher order modes show more high res-
olution features and thus gives access to a higher sensitivity. As
a side remark, this figure also also supports the fact that any bias
induced by the zero-padding strategy for the oversampling of the
α-map is marginal (a few percent) in regard to the initial resolu-
tion (the subaperture pitch ∆).
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Fig. A.1. Lateral error bias of the 2D correlation method in function of
the noise σslope on the slopes of the IM and the number of fitted modes.
The coloured areas emphasise the ±σ regions.

Appendix B: Cross-talk with other mis-registrations

In this appendix, we introduce the impact of rotation and stretch
misalignments on the performances of the proposed estimators.
These two types of first order mis-registration are the most com-
mon ones with anamorphosis. This latter behaves as a stretch in
our context and is consequently not presented.

Appendix B.1: Perturbative 2D modal estimator

The robustness of the 2D modal estimator in presence of other
mis-registrations was assessed by simulating the convergence of
a corrective loop on the lateral error. The initial lateral error was
fixed to δ =

(
δx, δy

)
= (4.18, 3.73)∆. We kept the parameters

of Sect. 2.2: σslope = 0.25 pixel, mKL, max = 50, mup = 8. The
corrective loop Eq. (42) is closed with a gain of ธ = 1.

Figures B.1 and B.2 present the evolution of |δ| with the
iterations of the corrective loop for different mis-registration
magnifications and angles respectively. The estimator is robust
to extreme stretches, with a convergence within the resolution
of the estimator 1/mup achieved in two iterations. Similar results
are obtained on the angle up to a mis-registration of 10◦. Perfor-
mances then quickly degrade above this threshold.
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Fig. B.1. Convergence of the lateral error after a few iterations of the
corrective loop with the 2D modal estimator in function of the mis-
registration magnification ρ (square root scale).
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Fig. B.2. Convergence of the lateral error after a few iterations of the
corrective loop with the 2D modal estimator in function of the mis-
registration angle θ (square root scale).

Appendix B.2: Non-perturbative closed loop estimator

For the closed loop estimator, the context is different than with
the 2D modal estimator: any mis-registration must be small
enough to permit the AO loop closure. Otherwise, the loop di-
verges and this estimator does not apply since such a situation
generally triggers the loop opening by the system. In this con-
text, any small mis-registration on the angle, δθ, or the stretch,
δρ, is associated with the following transformation matrices: 1 +δθ

−δθ 1

 and
1 + δρ 0

0 1 + δρ

 . (B.1)

Equation (B.1) shows that a lateral error in a given direc-
tion will slightly leak (1) towards its perpendicular counterpart
in presence of a rotation error and (2) towards its neighbouring
spatial frequency in the same direction in presence of a mag-
nification error. This leakage should be negligible, most of the
correlation signal staying within its own spatial frequency.
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Similar as for the 2D modal estimator, the robustness of the
closed loop estimator was assessed by simulating the conver-
gence of a corrective loop on the lateral error. The initial lateral
error was fixed to δ =

(
δx, δy

)
= (25, 0) %∆. As in Sect. 3.2.3,

batches of 500 closed loop iterations controlling 500 modes are
gathered to feed the estimator and the corrective loop Eq. (42) is
closed with a gain of ธ = 0.5.

Figures B.3 and B.4 present the evolution of δx with the
iterations of the corrective loop for different mis-registration
magnifications and angles respectively. In all cases, the cor-
rective loop successfully converges towards a null lateral error.
When the loop is stable, for |θ| ≤ 1.5◦ and |ρ| ≤ 2 %, the accu-
racy is below ±1 %∆. Above these thresholds, the closed loop
is unstable. Its divergence is prevented by the clipping of the
DM commands. In this situation, the accuracy nevertheless stays
under control, within ±5 %∆.

0 10 20 30 40

Lateral error update iteration

-5
-1

0
1

5
1
0

1
5

2
5

L
at

er
al

er
ro

r
(%
"

)

; = !2:5 %
; = !2:0 %
; = !1:5 %
; = !1:0 %

; = 1:0 %
; = 1:5 %
; = 2:0 %
; = 2:5 %

Fig. B.3. Convergence of the lateral error after a few iterations of the
corrective loop with the closed loop estimator in function of the mis-
registration magnification ρ (square root scale).
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Fig. B.4. Convergence of the lateral error after a few iterations of the
corrective loop with the closed loop estimator in function of the mis-
registration angle θ (square root scale).

Appendix C: Closed loop transfer functions

In this appendix, we derive the transfer functions introduced in
Sect. 3.1.2. To ease the reading, we use the notation ‘h( f ) = h

¯
’8

to highlight the dependency in terms of f . As already discussed,

8 In other words, h
¯

is the temporal Fourier transform of h(t) evaluated
at the frequency f .

we work under the assumptions of Eq. (14) that the transfer func-
tions are identical for the two spatial modes. It is also implied
that all this appendix is written for a given spatial frequency, k.

In doing so, the diagram of Fig. 5 is expressed as:
w
¯ 1 = − cos θ

(
A
¯
C
¯
(
S
¯
w
¯ 1 + n

¯1
))
+ p

¯ 1

− sin θ
(
A
¯
C
¯
(
S
¯
w
¯ 2 + n

¯2
))
,

w
¯ 2 = − cos θ

(
A
¯
C
¯
(
S
¯
w
¯ 2 + n

¯2
))
+ p

¯ 2

+ sin θ
(
A
¯
C
¯
(
S
¯
w
¯ 1 + n

¯1
))
.

(C.1)

Introducing:{
µ
¯
≜ A

¯
C
¯

S
¯
,

∆
¯
(θ) ≜ 1 + 2µ

¯
cos θ + µ

¯
2 ,

(C.2)

Eq. (C.1) can be rewritten in a matrix shape:

M(θ)
w¯ 1

w
¯ 2

 = −A
¯
C
¯

R(θ)
n¯1

n
¯2

 + p¯ 1
p
¯ 2

 , (C.3)

with:
M
¯

(θ) ≜
[
1 + µ

¯
cos θ +µ

¯
sin θ

−µ
¯

sin θ 1 + µ
¯

cos θ

]
,

R(θ) ≜
[
+ cos θ + sin θ
− sin θ + cos θ

]
.

(C.4)

Noticing that:
M
¯
−1(θ) = ∆

¯
(θ)−1 M

¯
(−θ) ,

M
¯

(−θ)R(θ) =
[
µ
¯
+ cos θ + sin θ
− sin θ µ

¯
+ cos θ

]
,

(C.5)

it comes:w¯ 1

w
¯ 2

 = − A
¯
C
¯

∆
¯
(θ)

µ¯ + cos θ + sin θ
− sin θ µ

¯
+ cos θ

 n¯1

n
¯2


+ ∆

¯
(θ)−1 M

¯
(−θ)

p¯ 1
p
¯ 2

 , (C.6)

and from m
¯ i = S

¯
w
¯ i + n

¯ i for i ∈ {1, 2}, we finally get:m¯ 1

m
¯ 2

 = n¯1

n
¯2

 − µ
¯
∆
¯
(θ)

µ¯ + cos θ + sin θ
− sin θ µ

¯
+ cos θ

 n¯1

n
¯2
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+

S
¯
∆
¯
(θ)

1 + µ¯ cos θ −µ
¯

sin θ
+µ

¯
sin θ 1 + µ

¯
cos θ

 p¯ 1
p
¯ 2

 . (C.7)

As the perturbations p
¯ i

and noises n
¯ j are independent, the

crossproduct of two different terms is null:〈
p
¯ i

n
¯ j

〉
=
〈
p
¯ i

〉〈
n
¯ j

〉
= 0 . (C.8)

Similarly, the noise in the two parts of the diagram of Fig. 5 are
independent and:〈
n
¯1n

¯2
〉
= 0 . (C.9)

As discussed below, only
〈
p
¯ 1

p
¯ 2

〉
may be different from zero.

Finally, one can assume that the pairs of noise terms
(
n
¯1, n¯2

)
and
(
p
¯ 1
, p

¯ 2

)
have identical properties, leading to:

〈
n
¯1n

¯1
〉
=
〈
n
¯2n

¯2
〉
= Vn

¯
,〈

p
¯ 1

p
¯ 1

〉
=
〈
p
¯ 2

p
¯ 2

〉
= Vp

¯
.

(C.10)

It is now possible to compute the expected covariances
〈
m
¯ im¯ j

〉
for different regimes.
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Appendix C.1: Noise propagation

In the noise-limited regime, the turbulence perturbation terms p
¯ i

are assumed to be negligible. It comes from Eqs. (C.7) and
(C.10) that:
〈
m
¯ im¯ i
〉
=

(∣∣∣∣ 1+µ¯ cos θ
∆
¯
(θ)

∣∣∣∣2 + ∣∣∣∣ µ¯∆
¯
(θ) sin θ

∣∣∣∣2)Vn
¯
,〈

m
¯ 1m

¯ 2
〉
= 2iI

[
1+µ

¯
cos θ

|∆
¯
(θ)|2

µ
¯

sin θ
]
Vn

¯
.

(C.11)

Then, using Eqs. (14) and (23), the correlation between c
¯1 and c

¯2
is written as:

Cc
¯1,c¯2

(θ) = Cm
¯ 1,m¯ 2

(θ) (C.12)

= 2i sin θ
I
[(

1 + µ
¯

cos θ
)
µ
¯

]
∣∣∣1 + µ

¯
cos θ
∣∣∣2 + ∣∣∣µ

¯
sin θ
∣∣∣2 . (C.13)

And finally, for a mis-registration parameter tending towards
zero:

Cc
¯1,c¯2

(θ)/θ ∼
θ→0

2iI
 µ

¯
1 + µ

¯

 = iC0( f ) . (C.14)

Appendix C.2: Turbulence propagation

In the situation where the system noise is dominated by the tur-
bulence disturbance, n

¯ i are assumed to be negligible. It comes
from Eqs. (C.7) and (C.10):
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(C.15)

In the situation where the turbulence perturbations are inde-
pendent,

〈
p
¯ 1

p
¯ 2

〉
= 0, Eq. (C.15) leads to the same results than

for the noise limited regime of the previous section:
Cc

¯1,c¯2
(θ) = Cm

¯ 1,m¯ 2
(θ) = 2i sin θ

I
[
(1+µ

¯
cos θ)µ

¯

]
|1+µ

¯
cos θ|

2
+|µ

¯
sin θ|

2 ,

Cc
¯1,c¯2

(θ)/θ ∼
θ→0

2iI
[

µ
¯1+µ

¯

]
= iC0( f ) .

(C.16)

This result was expected since in these two situations, n
¯ i and

p
¯ i

play a similar role of pure independent noises injected in the
system with just a normalisation by S

¯
. This normalisation factor

is cancelled out when estimating the correlation via Eq. (23).
Nonetheless, p

¯ 1
and p

¯ 2
are not always independent. This is

the case for a pure frozen flow, the typical worst case offender of
mis-registration estimators (Heritier et al. 2019; Heritier 2019,
Sect. 4.3). Indeed, in such a situation, the wavefront is expressed
as:

w = w0 cos
(
2πkT

· (x − vt) − φ0

)
(C.17)

= w0 cos
(
2π f ∥t + φ0

)
w1 + w0 sin

(
2π f ∥t + φ0

)
w2 , (C.18)
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Fig. C.1. Impact on the temporal correlation curves C̃
t

(left panel)
and the map of the best fit correlation coefficients C̃

2D
(right panel) of

a frozen flow perturbation of wind speed v0 = 15 m s−1 aligned with a
lateral error of δx = −20 %∆ in a noise limited regime nph = 10 and con-
trolling nmod = 800. Coloured curves: best temporal correlation fit C̃

t

for different sets of controlled modes (mean filter with a sliding window
of ±3 data points). Black curves: theoretical correlation curve C0. The
coloured dashed lines emphasise the temporal frequencies f ∥ = k0v0 as-
sociated with the spatial frequencies k0 highlighted on the right panel.

with φ0 a constant phase delay and with f ∥ the temporal fre-
quency of the wind projected parallel to the spatial frequency, k:

f ∥ = kT
· v . (C.19)

Thus,p1(t) = w0 cos
(
2π f ∥t + φ0

)
,

p2(t) = w0 sin
(
2π f ∥t + φ0

)
,

(C.20)

which, after a Fourier transform, gives in the frequency space:p1( f ) = w0
2

(
eiφ0 ⊥ f ∥ ( f ) + e−iφ0 ⊥− f ∥ ( f )

)
,

p2( f ) = w0
2i

(
eiφ0 ⊥ f ∥ ( f ) − e−iφ0 ⊥− f ∥ ( f )

)
,

(C.21)

where ⊥x is the Dirac function centered in x. Thus, we finally
have:
∀| f | , f ∥,

〈
p1 p2
〉
( f ) = 0 ,

f = f ∥, Cc1,c2

(
f ∥
)
∼
θ→0

i ,

f = − f ∥, Cc1,c2

(
− f ∥
)
∼
θ→0
−i .

(C.22)

This means that a frozen flow turbulence has a minimal impact
on the empirical correlation of Eq. (30). Only frequencies close
to f ≃ kT

· v should be impacted. In addition, these frequencies
depend on the considered spatial mode k and consequently the
impact on the estimator of Eq. (33) should be diluted among the
controlled frequencies k ∈ K ctrl.

These different features are illustrated in Fig. C.1 for a noise
limited regime nph = 10 and controlling nmod = 800. The frozen
turbulence flows at a speed of v0 = 15 m s−1 in the same direction
than a lateral error of δx = −20 %∆. It seems that the wind has
no qualitative impact on the best fit correlation map C̃

2D
(right

panel of the figure). The purple temporal correlation curve C̃
t
is

given by Eq. (39), while the other temporal correlation curves
are obtained by replacing k ∈ K ctrl in the equation by:{
k s.t. k ∈ K ctrl and kx = k0

}
. (C.23)

Different values of k0 are displayed: 5D−1 (red), 10D−1 (green),
15D−1 (blue). As expected, the frozen turbulence has only a
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limited impact on the empirical correlation which is centered
around f ∥ = k0v0. The rest of the curve still matches the the-
oretical asymptote of C0 well. The same conclusion applies to
the global fit, in purple. Overall, only the low temporal frequen-
cies are impacted.

Finally, the estimated lateral error is δ̃ = (−11.5, 0) %∆. This
is in the same order of magnitude than the results of Fig. 7. This
confirms that a wind blowing parallel to the lateral error should
have a limited impact on the proposed closed loop estimator.

Appendix D: Applying photon noise onto the
SH-WFS slopes

In this appendix, we describe our method to add the photon noise
directly onto the slopes of the geometrical model of the SH-
WFS. For a given number of photon nph, the expected standard
deviation of the wavefront phase on a subaperture is (Rousset
1999):

σwf =
π
√

2nph

Θspot

Θdif

(
phase radian

)
, (D.1)

where Θspot and Θdif are the full widths at half maximum of the
spot and the diffraction limited patterns of a subaperture. Not-
ing dsub the diameter of a subaperture, it becomes:Θspot ≃ λwfs

r0(λwfs) ,

Θdif ≃ λwfs

dsub ,
(D.2)

where r0

(
λwfs
)

is the Fried parameter scaled to the WFS wave-
length. This leads to an optical path difference of:

σOPD =
λwfs

2
dsub

r0
(
λwfs) 1

√
2nph

, (D.3)

and thus an angle across the subaperture diameter of:

σph =
λwfs

2r0
(
λwfs) 1

√
2nph

(
angle radian

)
. (D.4)

The different equivalent photon noises induced on the slopes by
the number of photons are given in Table D.1.

Table D.1. Photon noise on the slopes for the different simulated num-
bers of photons.

nph σph(mas)
10 88.6

100 28.0
1000 8.86

Appendix E: Impact of the telemetry batch size on
the closed loop estimator

The influence of the telemetry batch size on the closed loop es-
timator was assessed in simulation by introducing a fixed lateral
error of δ =

(
δx, δy

)
= (10, 0) %∆. For each tested batch size,

100 batches in a pure noise regime were gathered, controlling
500 modes.

Their statistics are shown in Table E.1. First, the sensitiv-
ity of gcl ≃ 0.7 of the estimator can be seen with

(
δ̃x, δ̃y

)
≃

Table E.1. Statistics of the estimated lateral error in function of the
telemetry batch size.

Batch size δ̃x (%∆) δ̃y (%∆)
50 frames 6.49 ± 0.89 −0.06 ± 0.83

100 frames 6.68 ± 0.55 +0.01 ± 0.56
200 frames 6.79 ± 0.37 −0.03 ± 0.39
500 frames 6.90 ± 0.25 −0.02 ± 0.23
1000 frames 6.88 ± 0.18 −0.02 ± 0.16
2000 frames 6.91 ± 0.13 −0.01 ± 0.13
5000 frames 6.91 ± 0.09 −0.00 ± 0.08

Truth δx = 10 δy = 0

100 frames 500 frames 2000 frames

0 100 200 300 400 500

-1

0

1

2

3
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500 frames
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Theory

Frequency f (Hz)
Fig. E.1. Impact of the telemetry batch size on the map of the best
fit correlation coefficients C̃

2D
(top panels) and the temporal correlation

curves C̃
t
(bottom panel). The coloured circles emphasise the controlled

frequency space.

(6.9, 0.0) %∆, in agreement with Fig. 7. Then, as expected, the
noise on the estimated value decrease with the number of frames
in the batch and is consistent on the x and y-axes. The size of
500 frames, used in this work, gives a standard deviation of
±0.25 %∆. This was considered to be a good compromise be-
tween speed and accuracy, allowing for the corrective loop on
the lateral error to be estimated and updated once every second.

For information, Fig. E.1 presents an example of the corre-
lation patterns obtained when varying the size of the telemetry
batch. The increase of the signal over noise ratio and the fre-
quency resolution with the number of frames can clearly be seen
in the correlation maps C̃

2D
(top panels) and temporal correla-

tion curves C̃
t
(bottom panel).
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Appendix F: Estimating the lateral bias induced by
the wind

In this appendix, we detail how the convergence values of the
bias induced by the frozen flow wind are obtained from the it-
erative updates of the lateral errors with time. For nph = 10 and
100, nit = 40 updates (spanning over 20 s) of δ were performed.
For nph = 1000, the convergence is slower and nit = 60 updates
(spanning over 30 s) of δ were performed.

Figure F.1 shows the evolution of δwith the update iterations
for different level of photon noise. Convergence is achieved de-
spite being noisy. To robustly estimate the convergence value,
an exponential law (dotted curves in the figure) is fitted in the
data points of each direction parallel ∥ and perpendicular ⊥ to
the wind’s direction:

δi
∥,⊥ ≃ ง∥,⊥

(
1 − e−ร∥,⊥

(
i−i0
∥,⊥

))
. (F.1)

The fit of
(
ง,ร, i0

)
is performed by minimising the root mean

square difference between the model and the simulation with
the simplex search method of Lagarias et al. (1998), enforcing

that 1/ร < 25. ง gives the convergence value and the bias in-
duced by the wind on the closed loop estimator.
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Fig. F.1. Convergence of the lateral error δ in percent of subaperture
pitch ∆ in function of the update iteration for v0 = 20 m s−1, θ0 = 30◦,
and for different photon noise levels nph (colours). Plain (resp. dashed)
curves: lateral error δ∥ parallel (resp. δ⊥ perpendicular) to the wind
direction. Dotted curves: fitted exponential law.
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