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Abstract. We show how to compute the purity and entanglement entropy for quantum fields
in a systematic perturbative expansion. To that end, we generalize the in-in formalism to non-
unitary dynamics (i.e. accounting for the presence of an environment) and to the calculation
of quantum information measures, which are not observables in the usual sense. This allows
us to reduce the problem to one involving standard correlation functions, and to organize their
computation in a diagrammatic expansion for which we construct the corresponding Feynman
rules. As an illustration, we apply the formalism to a cosmological setting inspired by the
effective field theory of inflation. We find that at late times, non-linear loop corrections share
the same time behavior as the linear contribution, and only yield a slight redressing of the purity.
In particular, when the environment is heavy compared to the Hubble scale, the phenomenon
of recoherence previously encountered is robust to the class of non-linear extensions considered.
Bridging the gap between perturbative quantum field theory and open quantum systems paves
the way to a better understanding of renormalization and resummation in open effective field
theories. It also enables a more systematic exploration of quantum information properties in
field theoretic settings.
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1 Introduction

The interplay between quantum information theory and quantum field theory has raised an
ever-increasing interest in recent years [1–5]. Being able to describe and quantify quantum
correlations for relativistic fields is of particular importance in cosmology, where all structures
are expected to arise from the gravitational amplification of vacuum quantum fluctuations
during an era of accelerated expansion called inflation. How those fluctuations acquire classical
properties remains an open issue [6–14], together with the possibility of genuine signatures
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of the quantum origin of cosmic structures [15–24]. A thorough investigation of these aspects
requires a better characterization of the entanglement acquired by quantum fields in accelerating
space-times [25–35], as well as an understanding of the role played by quantum decoherence in
cosmology [36–58].

Decoherence [59–61] is the process by which, when a system couples to an environment
that remains observationally inaccessible, the reduced state of the system transits from a pure
state to a statistical mixture where quantum coherence between the pointer states is lost. When
a quantum field is coupled to an environment, it is understood as an open system undergoing
non-unitary evolution. Describing this evolution necessitates the development of open quantum
field theory [62–66]. These tools (influence functionals, master equations and their stochastic
unravelling, etc.) have been applied to cosmological or black hole backgrounds in various works,
see e.g. Refs. [64–96]. They have been used to efficiently resum secular late-time effects in
a number of cases [97–102], which makes them particularly well-suited to the description of
inflationary fluctuations.

In practice however, these methods often rely on approximation schemes (e.g. Markovian-
ity) that substantially differ from the traditional perturbative framework employed in asymptot-
ically non-flat space-times, known as the in-in formalism. In this setup, a systematic expansion
in the system-environment coupling is performed, which allows one to rely on the whole suite of
Quantum Field Theory (QFT) perturbative tools, such as Feynman diagrams, renormalization
methods, etc.. So far the in-in formalism has been developed for unitary theories mostly [103]
(see however Ref. [95]), hence it cannot be directly employed in open QFTs. In particular,
quantum purity, which measures how much a quantum field decoheres, cannot be computed
using existing in-in results.

The goal of the present work is to bridge this gap, and show how quantum information
measures of an open quantum field can be computed in the in-in approach. This has several
advantages. First, it allows one to rely on the perturbative QFT tools mentioned above, which
greatly help in the treatment of non-linearities and the associated divergences. Second, being
expressed in the language of cosmological correlators, it makes it possible to relate quantum
information properties to summary statistics of the system. Third, in order to better understand
resummation in open QFTs (and what exactly is being resummed), perturbative evolution
should be understood as a first step.

There are two main obstacles when dealing with quantum purity or other entropy measures
in the in-in framework. First, as already mentioned, in-in methods have been developed in the
context of unitary theories, whereas the loss of purity is inherently a non-unitary phenomenon.
Second, the in-in framework is constructed to deliver correlation functions, or more generally
the expectation value of observables. However, because purity is not an observable1, extending
the formalism becomes necessary.

In practice, the reduced state of a system S is obtained by partially tracing the full density
matrix ρ̂ over the Hilbert space of the environment E ,

ρ̂red ≡ TrE (ρ̂) . (1.1)

In the cosmological context, the system is usually comprised of a set of observable degrees of
freedom, e.g. the curvature perturbation ζ on large scales, while the environment can encompass
the set of unobservable modes of ζ concealed behind the de-Sitter horizon [34, 54, 75], separate

1Purity cannot be expressed as the expectation value of a Hermitian function of the phase-space operators
and as such it would require a full state tomography to be assessed [62].

– 2 –



regions in physical space [31], or other matter fields (as we later consider in this work as
an application). The computation of correlation functions of system operators relies on the
reduced density matrix only, and since ρ̂red is Hermitian and trace normalized it can always be
decomposed as

ρ̂red =
∑

j

pj |ψj⟩⟨ψj | (1.2)

where {|ψj⟩} are pointer states and pj are non-negative coefficients that sum up to 1. If the
system is in a pure state, all pj coefficients vanish except one, and ρ̂red = ρ̂2red is a projector.
Otherwise, ρ̂red describes a statistical mixture. This arises when the system becomes entan-
gled with the environment, and one possible measure of that entanglement is the quantum
purity [104]

γ ≡ TrS
(
ρ̂2red

)
. (1.3)

If the system’s Hilbert space has finite dimension D, then 1/D ≤ γ ≤ 1. Pure states have
γ = 1, and maximal decoherence corresponds to γ → 1/D, which simply means γ → 0 in the
case of a quantum field. Let us stress that purity is not only a relevant measure of the system’s
decoherence, it also captures the importance of non-unitary effects and thus signals the need to
go beyond unitary treatments. Indeed, if ρ̂red evolves unitarily,

dρ̂red
dt

= −i
[
Ĥ, ρ̂red

]
(1.4)

where Ĥ is a self-adjoint Hamiltonian, then the purity is conserved by cyclicity of the trace
(and likewise for any other entropy tracer). Deviations of the purity from 1 can thus be seen as
a measure of departure from Eq. (1.4).

Summary of the main results: In this paragraph we provide a summary of the main results.
While not all relevant quantities and concepts are fully defined here – detailed definitions will
be provided later – the goal is to give a first flavour of the results derived in this work. A more
formal summary is presented in the concluding section.

Consider an interaction Hamiltonian of the form

gĤint(η) = g

∫
d3k

(2π)3
ÔS

k (η)⊗ ÔE
−k(η) (1.5)

made of (possibly non-linear) system and environment operators ÔS and ÔE and controlled
by a coupling constant g. The Hamiltonian is expanded in Fourier space where the k and −k
arguments merely result from the isotropy of the background, and η labels time. We perform a
systematic expansion of the purity in powers of the interaction Hamiltonian,

γ =
∞∑

n=0

gnγ(n). (1.6)

Assuming that the system is initially in a pure state, one has γ(0) = 1, and the first non-unitary
correction reads

γ(2)(η) = −2

∫ η

−∞
dη1

∫ η

−∞
dη2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
K̄(2)

S (k1,k2, η1, η2)K̄(2)
E (k1,k2, η1, η2) . (1.7)
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Figure 1. Example of a diagram appearing in the computation of γ(n). Blue and orange blobs represent
unequal-time correlators of the system and the environment respectively. To each conversion vertex #, 
is associated a power of the coupling constant g, an integral over time and over three-momenta, and the
insertion of ÔS

ki
(ηi)⊗ ÔE

−ki
(ηi).

It involves the unequal-time, centred, two-point functions

K̄(2)
S/E(k1,k2, η1, η2) ≡

〈
ÕS/E

±k1
(η1)ÕS/E

±k2
(η2)

〉
−
〈
ÕS/E

±k1
(η1)

〉〈
ÕS/E

±k2
(η2)

〉
(1.8)

that encode the system and environment statistics in the free theory.
If ÔS is linear in the phase-space fields of the system, the above reduces to

γ(2)(η) = −4

∫

k∈R3+

d3k det(2)Cov(k, η) , (1.9)

where det(2)Cov(k, η) is the determinant of the covariance matrix at second order in Ĥint.
We will show that this formula remains correct even when ÔS is quadratic in the phase-space
variables (up to an additional factor 1/2 in the right-hand side), in spite of the system being
in a non-Gaussian state in that case. This is because, as we will find, the perturbation to the
determinant of the covariance matrix can be related to that of the expectation value of the
particle number operator. The expression (1.9) is also independent of the form of ÔE , hence it
holds true even in the presence of highly non-linear environment operators.

The formula (1.7) can be generalized to arbitrary order n, where we will find n-nested time
integrals involving products of unequal-time correlators of both the system and the environment.
Their calculation can be assisted with a set of Feynman rules to compute diagrams representing
the various terms appearing in γ(n). An example of such diagrams is given in Fig. 1, the detailed
meaning of which will become clearer below.

We will then apply these techniques to a model inspired by the EFT of Inflation (EFToI)
construction [105], in which the pseudo-Goldstone mode πc interacts with a hidden scalar sector
σ through [106–110]

Sint = −
∫

dη d3x g

[
a3π′cσ − 1

Λ1
a2(∂iπc)

2σ − 1

Λ2
a2π′2c σ

]
, (1.10)
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where a is the scale factor and g, Λ1 and Λ2 are Wilson coefficients. At super-Hubble scales
(i.e. in the late-time limit) we will find that the purity of a given mode k is given by

γ
(2)
NL(k, η) = γ

(2)
lin (k, η)

(
1− 1

(2π)9
3

8

∆2
ζ

c4
S

)
(1.11)

with cS the speed of sound and ∆2
ζ ∼ 10−9 the amplitude of the primordial power spectrum.

The second term in the square brackets corresponds to non-linear contributions (i.e. loop cor-

rections), which are found to scale in time in the exact same way as the linear contribution γ
(2)
lin ,

yielding only a slight dressing of the late-time purity. In particular, if the environmental field σ
is heavy compared to the Hubble mass, we will find that the system recoheres at late time, and
that the non-linear interactions considered in this work do not jeopardize the recoherence pro-

cess. In the opposite limit where σ is light, we will find that γ
(2)
lin scales as a2, and decoherence

is very efficient.

Outline: The article is organized as follow. In Sec. 2, we develop the in-in formalism to
compute quantum information properties of cosmological fields. In Sec. 2.1, we present the per-
turbative expansion underlying the in-in treatment. In Sec. 2.2, we apply it to the computation
of the system’s purity. We introduce the concept of spectral purity in Sec. 2.3, to deal with
the case where non-linear interactions make different Fourier modes couple, and the reduced
density matrix does not factorize in Fourier space. We consider the particular case of Gaussian
systems in Sec. 2.4, where we show that the relation between the purity and the covariance
matrix also holds for quadratic interactions at leading order. After commenting on the role of
resummation in Sec. 2.5, we derive Feynman diagrammatic rules in Sec. 2.6. Lastly, in Sec. 2.7
we take a brief detour to discuss other measures of mixedness, specifically the entanglement en-
tropy. We then apply these techniques to a model of phenomenological interest in Sec. 3, which
provides a non-linear extension of the setup considered in Ref. [52]. In Sec. 3.1, we motivate
the model from an EFT perspective and discuss its regime of validity. In Sec. 3.2, we compute
the second-order perturbative purity and study different cases of interest. In particular, we find
that recoherence occurs if the environment is heavy compared to the Hubble scale, and that
this conclusion is not altered by the presence of non-linearities. We discuss various prospects
this work opens in Sec. 4 and present our main conclusions in Sec. 5, which is followed by a few
appendices to which some technical details are deferred.

2 Methods

Quantum purity is a measure of decoherence, or “mixedness”, of a given [possibly reduced, see
Eq. (1.1)] quantum state ρ̂red. It is not an observable in the sense of the definition given in
Eq. (1.3), since it is clear that it cannot be written as TrS [ρ̂redÔ] for some Hermitian operator
Ô. This is why the standard tools of the in-in formalism cannot be used directly to compute
the purity. However, they can be extended, which is the goal of this section.

2.1 In-in formalism

The in-in formalism [111–113] is a well-established technique aiming at computing perturba-
tively the expectation value of a given equal-time quantum operator ⟨Q̂(η)⟩ where

Q̂(η) ≡ Ô1(η,x1)Ô2(η,x2) · · · Ôn(η,xn) . (2.1)
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The operators Ôi(η,xi) are constructed locally out of the field operators appearing in the
Lagrangian, and the expectation value is taken with respect to the initial Bunch-Davies vacuum
state |BD⟩. Given an interaction Hamiltonian gĤint, the expectation value ⟨Q̂(η)⟩ can be written
in the interaction picture

〈
Q̂(η)

〉
= ⟨BD|

[
T eig

∫ η
−∞(1−iϵ)

dη′ H̃int(η
′)
]
Q̃(η)

[
T e−ig

∫ η
−∞(1+iϵ)

dη′ H̃int(η
′)
]
|BD⟩ (2.2)

where T and T represent time and anti-time ordering respectively and tildes denote quantities
in the interaction picture, which we introduce properly below in Eqs. (2.8) and (2.10). The iϵ
deformation is here to ensure the projection of the adiabatic vacuum of the interacting theory
onto the vacuum of the free theory in the asymptotic past, see Refs. [114–116] for in-depth
discussions. In practice, the correlation functions of the theory are computed perturbatively, at
a given order in Ĥint. Defining ⟨Q̂(η)⟩(n) the nth order of the expansion, one has

〈
Q̂(η)

〉(n)
= (ig)n

∫ η

−∞
dηn

∫ ηn

−∞
dηn−1 · · ·

∫ η2

−∞
dη1 (2.3)

⟨BD|
[
H̃int(η1),

[
H̃int(η2), · · ·

[
H̃int(ηn), Q̃(η)

]
· · ·
]]

|BD⟩

where the appropriate iϵ prescription must be used depending on which branch of Eq. (2.2)
provides the time integration. This approach has been used in a variety of problems in primordial
cosmology to compute cosmological correlators of scalar and tensor perturbations.

Derivation: Let us review the derivation of the above expressions. In a unitary setting, the
wavefunction |Ψ⟩ and the density matrix ρ̂ = |Ψ⟩ ⟨Ψ| respectively obey the Schrödinger equation
and the Liouville-von-Neumann equation,

d |Ψ(η)⟩
dη

= −iĤ(η) |Ψ(η)⟩ and
dρ̂(η)

dη
= −i

[
Ĥ(η), ρ̂(η)

]
, (2.4)

where Ĥ(η) is the Hamiltonian. These equations can be solved formally as

|Ψ(η)⟩ = Û(η,−∞) |BD⟩ and ρ̂(η) = Û(η,−∞) |BD⟩ ⟨BD| Û†(η,−∞) , (2.5)

where |BD⟩ is the initial Bunch-Davies vacuum state and we have introduced the evolution
operator

Û(η,−∞) = T exp

[
−i
∫ η

−∞
dη′ Ĥ(η′)

]
. (2.6)

This is the so-called Schrödinger picture, where the state (i.e. |Ψ⟩ and ρ̂) evolve with Û and
observables Ô evolve only through their explicit dependence on time, if any.

We the divide the Hamiltonian into a free part and an interaction part,

Ĥ(η) = Ĥ0(η) + gĤint(η) (2.7)

and introduce the free evolution operator Û0, defined as in Eq. (2.6) where Ĥ is replaced by
Ĥ0. It is often convenient to work in the so-called interaction picture to perform perturbative
expansions. In this picture, quantum states evolve with the interaction Hamiltonian gĤint and
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operators evolve with the free Hamiltonian Ĥ0. The link between the Schrödinger and the
interaction picture is given by

ρ̃(η) = Û†
0(η,−∞)ρ̂(η)Û0(η,−∞) , (2.8)

where tildes denote quantities evaluated in the interaction picture. From Eq. (2.4) it is easy to
show that the state evolves according to

dρ̃

dη
= −ig

[
H̃int(η), ρ̃(η)

]
, (2.9)

where

H̃int(η) = Û†
0(η,−∞)Ĥint(η)Û0(η,−∞) (2.10)

and we have used that the evolution operator is Hermitian, i.e. Û0Û†
0 = Û†

0 Û0 = Id, since

Ĥ0 = Ĥ†
0 . One can then introduce a perturbative scheme, where

ρ̃ =

∞∑

n=0

gnρ̃(n) (2.11)

with ρ̃(0) = |BD⟩ ⟨BD|. By inserting Eq. (2.11) into Eq. (2.9) and identifying terms of the same
order in g, one finds

dρ̃(n)

dη
= −ig

[
H̃int(η), ρ̃

(n−1)(η)
]
. (2.12)

This can be solved iteratively as

ρ̃(n)(η) = (−i)n
∫ η

−∞
dη1

∫ η1

−∞
dη2 · · ·

∫ ηn−1

−∞
dηn (2.13)

[
H̃int(η1),

[
H̃int(η2), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]
.

One can use this expression to compute ⟨Q̂(η)⟩(n) from Eq. (2.3) since expectation values are
computed in the interaction picture via

〈
Q̂(η)

〉
= Tr

[
Q̃(η)ρ̃(η)

]
. (2.14)

Inserting Eq. (2.13) into this expression and making iterative use of the relation Tr(Ã[B̃, C̃]) =
Tr([Ã, B̃]C̃) (a mere consequence of the trace cyclicity) one recovers Eq. (2.3).

2.2 Perturbative purity

Let us now partition the physical setup into two subsystems, S (system) and E (environment),
and consider the reduced density matrix ρ̂red = TrE (ρ̂), see Eq. (1.1), and its purity parameter
γ = TrS

(
ρ̂2red

)
, see Eq. (1.3). Our goal is to compute this quantity in the perturbative scheme

introduced above. We assume that the free Hamiltonian does not entangle the system and the
environment, i.e. that it is of the form2

Ĥ0 = ĤS ⊗ IdE + IdS ⊗ ĤE . (2.15)

2Note that this amounts to treating linear mixing between system and environment as an interaction, which
is indeed commonly done in the context of primordial cosmology, see e.g. Ref. [113].
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In this case the free evolution operator factorizes as Û0 = Û0,S ⊗ Û0,E , and using partial trace
cyclicity this implies that

ρ̃red(η) = Û†
0,S(η,−∞)ρ̂red(η)Û0,S(η,−∞). (2.16)

As a consequence, Eq. (1.3) leads to

γ = TrS
(
ρ̃2red

)
(2.17)

and the purity can be computed directly in the interaction picture. In general, one can expand

γ =
∞∑

n=0

gnγ(n) with γ(n) =
n∑

m=0

TrS

[
ρ̃
(m)
red ρ̃

(n−m)
red

]
(2.18)

and
ρ̃
(n)
red ≡ TrE

[
ρ̃(n)

]
. (2.19)

Leading orders

Let us compute the first few terms in this expansion. At order O(g0), one finds ρ̃
(0)
red =

TrE [|BD⟩ ⟨BD|]. Since both the system and the environment start out in their vacuum states,
there is no initial cross-correlation and the state is initially separable,

|BD⟩ ⟨BD| = |BD⟩ ⟨BD|S ⊗ |BD⟩ ⟨BD|E (2.20)

hence γ(0) = 1. At order O(g), Eq. (2.13) reduces to

ρ̃(1)(η) = −i
∫ η

−∞
dη1

[
H̃int(η1), |BD⟩ ⟨BD|

]
. (2.21)

For explicitness, assuming local interactions, we decompose the interaction Hamiltonian in the
tensorial basis of local operators

Ĥint(η) =

∫
d3x ÔS(η,x)⊗ ÔE(η,x) =

∫
d3k

(2π)3
ÔS

k (η)⊗ ÔE
−k(η) , (2.22)

where ÔS(η,x) and ÔE(η,x) act on the Hilbert space of the system and the environment
respectively. If the operators ÔS and ÔE are linear in the phase-space variables, the interaction
only couples modes of opposite wavevectors. However, if they involve non-linear combinations
of the phase-space variables, ÔS

k and ÔE
−k are given by convolution products in Fourier space

and all Fourier modes couple.
Recalling that ρ̃(0) = |BD⟩ ⟨BD|S ⊗ |BD⟩ ⟨BD|E , this gives rise to

ρ̃(1)(η) = −i
∫ η

−∞
dη1

∫
d3k

(2π)3

[
ÕS

k (η1) |BD⟩ ⟨BD|S ⊗ ÕE
−k(η1) |BD⟩ ⟨BD|E

− |BD⟩ ⟨BD|S ÕS
k (η1)⊗ |BD⟩ ⟨BD|E ÕE

−k(η1)
]
. (2.23)

As a consequence, tracing over the environment Hilbert space, we obtain

ρ̃
(1)
red(η) = −i

∫ η

−∞
dη1

∫
d3k

(2π)3

[
ÕS

k (η1), |BD⟩ ⟨BD|S
]
K(1)

E (k, η1) (2.24)
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where

K(1)
S/E(k, η1) ≡ TrS/E

[
ÕS/E

±k (η1) |BD⟩ ⟨BD|S/E
]
= ⟨BD| ÕS/E

±k (η1) |BD⟩S/E . (2.25)

In this expression, K(1)
S (k, η1), which is introduced for later convenience, is the vacuum expecta-

tion value of ÕS
k (η1), while K

(1)
E (k, η1) is the vacuum expectation value of ÕE

−k(η1). Since Ô
S(x)

is a Hermitian operator, one has ÔS
−k = (ÔS

k )
†. If the free, linear evolution is isotropic, the free

evolution operator Û0(η1,−∞) only depends on k = |k|, hence one also has ÕS
−k = (ÕS

k )
† and

K(1)
S (−k, η1) =

[
K(1)

S (k, η1)
]∗
, (2.26)

and similarly for ÕE
−k(η1). Following Eq. (2.18), this gives rise to

γ(1) =− 2i

∫ η

−∞
dη1

∫
d3k

(2π)3
TrS

{
|BD⟩ ⟨BD|S

[
ÕS

k (η1), |BD⟩ ⟨BD|S
]}

K(1)
E (k, η1) = 0 (2.27)

since the trace operator is cyclic. We conclude that decoherence does not proceed at order g, a
well-known fact indeed, see e.g. Ref. [62]. This can be understood as follows. At order g, the

modification to the quantum state of the system, ρ̃
(1)
red, only involves the one-point function of the

operators ÕS/E appearing in the interaction, see Eq. (2.25). Upon performing the replacement

ÕS/E = K(1)
S/E IdS/E + δÕS/E (2.28)

in the Hamiltonian, and expressing its interacting part Ĥint in terms of the centred δÕS/E

operators, one obtains a setup in which the free-evolution terms ĤS and ĤE are modified but

the one-point functions K(1)
S/E vanish, hence ρ̃

(1)
red = 0. Such a replacement leaves the definition

of the system unchanged, hence its quantum state remains indeed pure at order g.
Let us carry on the expansion and consider the order O(g2). Expanding the commutators

and tracing over the environment Hilbert space, Eq. (2.13) gives rise to

ρ̃
(2)
red(η) = −

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2.29)

{[
ÕS

k1
(η1)ÕS

k2
(η2) |BD⟩ ⟨BD|S − ÕS

k2
(η2) |BD⟩ ⟨BD|S ÕS

k1
(η1)

]
K(2)

E (k1,k2, η1, η2)

−
[
ÕS

k1
(η1) |BD⟩ ⟨BD|S ÕS

k2
(η2)− |BD⟩ ⟨BD|S ÕS

k2
(η2)ÕS

k1
(η1)

]
K(2)

E (k2,k1, η2, η1)

}

where, similarly to Eq. (2.25), we introduce

K(2)
S/E(k1,k2, η1, η2) ≡ TrS/E

[
ÕS/E

±k1
(η1)ÕS/E

±k2
(η2) |BD⟩ ⟨BD|S/E

]
(2.30)

= ⟨BD| ÕS/E
±k1

(η1)ÕS/E
±k2

(η2) |BD⟩S/E . (2.31)

Note that, since Ô
S/E
−k = (Ô

S/E
k )† as mentioned above, one has

K(2)
S/E(−k2,−k1, η2, η1) =

[
K(2)

S/E(k1,k2, η1, η2)
]∗
. (2.32)
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Therefore, upon changing integration variables k1 → −k1 and k2 → −k2, the third line of
Eq. (2.29) is nothing but the Hermitian conjugate of the second line, which is consistent with
the fact that the reduced density matrix is Hermitian. In order to derive the second-order
perturbative purity γ(2), from Eq. (2.18) we have to compute two terms. The first one is

TrS

[(
ρ̃
(1)
red

)2]
=

∫ η

−∞
dη1

∫ η

−∞
dη2

∫
d3k1

(2π)3

∫
d3k2

(2π)3

{
K(1)

E (k1, η1)K(1)
E (k2, η2)

[
K̄(2)

S (k1,k2, η1, η2) + K̄(2)
S (k2,k1, η2, η1)

]}
(2.33)

where we defined the centred two-point functions

K̄(2)
S/E(k1,k2, η1, η2) ≡ K(2)

S/E(k1,k2, η1, η2)−K(1)
S/E(k1, η1)K(1)

S/E(k2, η2). (2.34)

When deriving the above expressions, we have used that (|BD⟩ ⟨BD|S)2 = |BD⟩ ⟨BD|S , i.e. the
fact that the system is initially placed in a pure state, as well as

TrS

[
ÕS

k1
(η1) |BD⟩ ⟨BD|S ÕS

k2
(η2) |BD⟩ ⟨BD|S

]
= K(1)

S (k1, η1)K(1)
S (k2, η2) . (2.35)

The second term we have to compute is given by

TrS

[
ρ̃
(0)
redρ̃

(2)
red

]
= −

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2.36)

[
K̄(2)

S (k1,k2, η1, η2)K(2)
E (k1,k2, η1, η2) + K̄(2)

S (k2,k1, η2, η1)K(2)
E (k2,k1, η2, η1)

]
.

The integrand is invariant under the 1 ↔ 2 label exchange, hence it can be written as an un-
nested time integral by replacing

∫ η
−∞ dη1

∫ η1
−∞ dη2 → 1

2

∫ η
−∞ dη1

∫ η
−∞ dη2. Making further use

of Eqs. (2.26) and (2.32), the above results lead to

Second-order perturbative purity:

γ(2) = −2

∫ η

−∞
dη1

∫ η

−∞
dη2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
K̄(2)

S (k1,k2, η1, η2)K̄(2)
E (k1,k2, η1, η2) .

(2.37)

At this order, the purity involves two unequal-time correlators, one that describes the state
the system in the free theory and one that describes the environment. If these correlators feature
non-singular behavior in the coincident time limit, Eq. (2.37) implies that γ always decreases
initially. Indeed, denoting the initial time by ηin (although in practice we let ηin = −∞) one
has

dγ(2)

dη

∣∣∣∣
η=ηin

= 0 (2.38)

and

d2γ(2)

dη2

∣∣∣∣
η=ηin

= −4g2
∫

d3k1

(2π)3

∫
d3k2

(2π)3
ℜe
[
K̄(2)

S (k1,k2, ηin, ηin)K̄(2)
E (k1,k2, ηin, ηin)

]
. (2.39)
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In this expression, K̄(2)
S (k1,k2, ηin, ηin) and K̄(2)

E (k1,k2, ηin, ηin) are nothing but the initial power

spectra of the centred (and possibly composite) ÔS and ÔE operators. Once integrated over all
Fourier modes, the right-hand-side of Eq. (2.39) can be shown to be non-negative. This implies
that, close enough to the initial time, γ ≃ 1 − 1

2γ
′′(ηin)(η − ηin)

2 necessarily decreases, and is
below one. The fact that purity remains below one indicates that at order g2, perturbation
theory provides a complete-positive and trace-preserving (CPTP) dynamical map [62]. If γ < 0
is found at some later time, this simply indicates the breakdown of perturbation theory, but,
under the above assumptions, there is always a finite time interval around ηin where it is valid.
This expression also implies that Eq. (2.39) can be seen as the squared decay rate of purity
initially, hence it provides a relevant time scale for the evolution of purity, which is simply
made of the product of the power spectra of the system and environment operators involved in

the interaction. For linear interactions, the correlators K̄(2)
S and K̄(2)

E are non singular in the
time-coincident limit and the above considerations hold. However, as stressed in Ref. [102], they
do not apply in general when non-linear interactions are at play.

Let us also note that under the form (2.37), the purity is symmetric under exchanging
the system and the environment, hence it is the same for both subsystems. This holds at all
orders,3 and comes from the fact that purity is directly related to entropy measures such as
linear entropy, the entanglement entropy [104] (see Sec. 2.7), or the Rényi-2 entropy [117] as we
shall now see. Since it quantifies the amount of information shared between the system and the
environment, it must indeed be a symmetric quantity [104].

2.3 Rényi-2 entropy

In the case of linear interactions, the system remains in a Gaussian state whose Fourier modes
are uncoupled, and the reduced density matrix can be factorized into

ρ̃red =
⊗

k∈R3+

ρ̃red(k) . (2.40)

In this expression, the tensorial product is taken over R3+ to avoid double counting of the
degrees of freedom. For each Fourier mode k, one can compute Tr[ρ̃2red(k)] and assign a purity
per mode k. This is relevant in cosmology, where a particular emphasis is often given to
how much decoherence proceeds at a given scale. However, if non-linearities are present, this
factorization cannot be performed anymore, and the purity cannot be computed mode by mode.
This is why we introduce and propose the concept of “spectral purity” in this section, to quantify
decoherence at a given scale even in the presence of mode coupling.

A first remark is that purity is a multiplicative (rather than additive) quantity. Indeed,
if A and B denote two Hilbert spaces in which ρ̃A and ρ̃B lie, the purity of the whole state
ρ̃ = ρ̃A⊗ ρ̃B is given by Tr(ρ̃2) = Tr(ρ̃2A⊗ ρ̃2B) = TrA(ρ̃

2
A)TrB(ρ̃

2
B), hence one obtains the product

of the individual purities. In order to deal with additive quantities instead, it is convenient to

3This can be shown using the Schmidt decomposition of the pure state describing the whole system-
environment setup, |Ψ⟩ =

∑
i λi |i⟩S |i⟩E , where {|i⟩S} and {|i⟩E} are orthonormal sets of states for the system

and the environment respectively. This is a mere consequence of the singular value decomposition (the sum may
be discrete or continuous). From this expression one can easily compute ρ̂red = TrE(ρ̂) =

∑
i λ

2
i |i⟩S ⟨i|S , hence

the purity of the system reads γ = TrS(ρ̂
2
red) =

∑
i λ

4
i , and a similar calculation gives the same result for the

purity of the environment.
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introduce the logarithm of the purity, which is nothing but the Rényi-2 entropy [104, 117–119]4

S2 (ρ̂red) ≡ − ln(γ). (2.42)

This quantity is naturally additive. In the absence of mode coupling, when the factoriza-
tion (2.40) is valid, one can define its Fourier version as

δ(0) lnTr
[
ρ̃red(k)ρ̃red(k

′)
]
= −S2(k)δ(k − k′) . (2.43)

The presence of the volume factor δ(0) arises when taking the continuum limit in Fourier
space [54, 91]. In this expression, the Dirac distribution arises from the fact that if k ̸=
k′ then ρ̃red(k) and ρ̃red(k

′) live in different Hilbert spaces, hence Tr [ρ̃red(k)ρ̃red(k
′)] =

Tr [ρ̃red(k)]Tr[ρ̃red(k
′)] = 1. Combining the above expressions, one obtains, in the factorized

state (2.40)

S2 (ρ̃red) = − ln
∏

k∈R3+

Tr
[
ρ̃2red(k)

]
=− δ(0)

∫

k∈R3+

d3k lnTr
[
ρ̃2red(k)

]

= δ(0)

∫

k∈R3+

d3k S2(k) .

(2.44)

Even though Eq. (2.44) was derived in the factorized state (2.40), it is always the case that
S2 can be cast in the form

S2 (ρ̃red) = δ(0)

∫

k∈R3+

d3k S2(k) , (2.45)

even in the presence of mode coupling, as we will see below. Our strategy is therefore to express
the purity as an integral over Fourier space, and to identify the integrand with the one in the
above expression to read off the spectral purity S2(k). In this way, the spectral purity can
be defined for any type of interaction. In practice, it is convenient to introduce the reduced
spectral purity S2(k) = 2πk3S2(k), such that S2(ρ̃red) = δ(0)

∫
d ln k S2(k). Scale invariance of

the reduced spectral purity thus corresponds to volume-law entropy production.
At order g2 in the perturbative expansion, the purity is given by Eq. (2.37). In this

expression, since the background is homogeneous and isotropic, the system and environment

unequal-time two-point functions K̄(2)
S (k1,k2, η1, η2) and K̄(2)

E (k1,k2, η1, η2) must be of the form

K̄(2)
S/E(k1,k2, η1, η2) ≡ K̄(2)

S/E(k1, η1, η2)δ (k1 + k2) , (2.46)

which defines K̄(2)
S/E(k1, η1, η2). One can thus rewrite Eq. (2.37) as

γ(2) = −2 (2π)−3
∫ η

−∞
dη1

∫ η

−∞
dη2

∫
d3k

(2π)3
K̄(2)

S (k, η1, η2)K̄(2)
E (k, η1, η2)δ(0) . (2.47)

At order g2, one has S2(ρ̃red) = −g2γ(2), and by identification with Eq. (2.45) one obtains for
the spectral purity

S
(2)
2 (k) = 4(2π)−6

∫ η

−∞
dη1

∫ η

−∞
dη2 K̄(2)

S (k, η1, η2)K̄(2)
E (k, η1, η2). (2.48)

4This quantity is called “entropy” in the sense that it provides a measure of the correlations between two
subsystems A and B, through the Rényi-2 mutual information [13, 117–120]

I2 (A,B) = S2 (ρ̂A) + S2 (ρ̂B)− S2 (ρ̂AB) , (2.41)

which is the relative Rényi-2 entropy between the full state ρ̂AB and its lowest-order factorized form ρ̂A ⊗ ρ̂B .
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2.4 Gaussian case

As mentioned above, when interactions are linear the system remains in a Gaussian state that
factorizes according to Eq. (2.40), where each ρ̃red(k) describes a Gaussian state. Gaussian
states are fully described by their covariance matrix [104, 120, 121]

δ(0)Cov(k, η) ≡ 1

2
TrS

[{
z̃(k, η), z̃†(k, η)

}
ρ̃red(η)

]
(2.49)

where z̃(k, η) is a vector gathering all phase-space coordinates of the Fourier mode k for the
system. In particular, Tr[ρ̃2red(k)] is given by the determinant of the covariance matrix,

lnTr[ρ̃2red(k)] = ln

[
1

4 detCov(k, η)

]
, (2.50)

where for explicitness we have assumed that the system is made of a single scalar degree of
freedom, hence z̃(k, η) has two entries. By comparison with Eq. (2.43), this leads to

S2(k) = ln [4 detCov(k, η)] . (2.51)

When non-linear interactions are at play, the system is not in a Gaussian state and the above
expression does not apply. In that case, the purity is not only sensitive to the two-point
functions but to all higher-order correlation functions. However, in Appendix A, we show that
Eq. (2.51) remains valid at order g2 for interactions that are quadratic in the system’s phase-
space variables, with an additional factor 1/2. In other words, we show that, for linear and
quadratic interactions,

S
(2)
2 (k) =

4

n
det(2)Cov(k, η) , (2.52)

where n = 1 for linear interactions (the result then coincides with Eq. (2.51) when expanded at
order g2) and n = 2 for quadratic interactions. The fact that the perturbed purity is still entirely
determined by the determinant of the covariance matrix even for quadratic interactions is rather
remarkable, since as mentioned above non-linear interactions probe all correlation functions in
principle. In the context of cosmological perturbation theory, the dominant interaction terms
are cubic [122], hence they are either linear or quadratic in the system’s variables, and the above
result implies that the power spectra of the system are enough to determine its perturbed purity.

2.5 Partial resummation

For Gaussian states, Eq. (2.51) is an exact statement and it is therefore valid to all orders in
perturbation theory. This is of substantial practical use, since perturbation theory generically
breaks down at late times. Indeed, the in-in formalism expands unitary time evolution operators
(schematically) as e−i(H0+gHint)t ≃ e−iH0t(1− igHintt+ . . .), which is a good approximation for
the true dynamics only at relatively early times where gt is small compared to timescales set by
the interaction. Secular growth does not occur in computations of scattering amplitudes since
interactions are taken to be turned off in the asymptotic past and future (where momentum
eigenstates are taken to be free) – however, in virtually any other setting where the interactions
stay turned on, secular growth is a persistent issue. This is the case, for example, in the
calculation of correlators in flat-space [101, 123, 124], cosmological space-times [97–100, 125–
135], or even black-hole backgrounds [136].
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In general, at second-order in perturbation theory, one finds that detCov ∼ 1/4 + g2tm

(for some power m). The perturbative treatment is therefore a priori valid only for early times
g2tm ≪ 1. The exact relation (2.50) provides a simple yet powerful way to resum late-time
breakdowns. It leads to γ ∼ g−2t−m, which remains reliable even at late times where g2tm ≫ 1.
It is the non-perturbative nature of Eq. (2.51) that allows one to trust this approximation out to
much later times, since the dynamics have been resummed to all orders in g2tm. This type of a
resummation was used in Refs. [52, 91, 100, 102] for the calculation of γ. In Sec. 3, we illustrate
the use of such a resummation (see Fig. 14), and otherwise leave more detailed investigations
(for instance, involving master equations) of late-time resummations for future work.

2.6 Higher orders

Beyond the lowest order correction to the purity of the system, it might be of interest to derive
higher-order corrections, for instance in cosmological applications to relate the evolution of the
purity to higher-order statistics (bispectrum, trispectrum and so on). We now explain how the
above formalism can be extended to higher orders. This will lead us to diagrammatic rules
for the calculation of the purity, allowing for systematic expansions similar to those commonly
employed in (unitary) perturbative QFT.

2.6.1 Kraus representation

At order n, the integrand of Eq. (2.13) involves the interaction Hamiltonian evaluated at n

different times η1, · · · , ηn. Let us introduce the K̃
(i)

vectors, which contain all products of i
interaction Hamiltonians, where the indices of the time arguments are ordered (which corre-
sponds to anti-ordering the time arguments, since in Eq. (2.13), η1 > η2 > · · · > ηn). More
explicitly,

K̃
(0) ≡ [I] (2.53)

K̃
(1) ≡

[
H̃int(η1), H̃int(η2), · · · , H̃int(ηn)

]
(2.54)

K̃
(2) ≡

[
H̃int(η1)H̃int(η2), · · · , H̃int(ηi)H̃int(ηj), · · ·

]
with i < j (2.55)

K̃
(3) ≡

[
H̃int(η1)H̃int(η2)H̃int(η3), · · · , H̃int(ηi)H̃int(ηj)H̃int(ηk), · · ·

]
with i < j < k (2.56)

· · ·

K̃
(n) ≡

[
H̃int(η1)H̃int(η2) · · · H̃int(ηn)

]
. (2.57)

Each K̃
(i)

vector contains
(
n
i

)
= n!/[i!(n − i)!] elements, which corresponds to choosing i

instants ηj amongst the n ones. When expanding the commutator in Eq. (2.13), one finds

[
H̃int(η1),

[
H̃int(η2), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=

n∑

i=0

(−1)n−i

(ni)∑

j=1

K̃
(i)

j |BD⟩ ⟨BD|
(
K̃

(n−i)

(ni)−j+1

)†
.

(2.58)
This can be shown by induction and the detailed proof, which fixes the ordering of the elements

in each vector K̃
(i)
, is given in Appendix B. As a consequence, Eq. (2.13) can be written as
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ρ̃(n)(η) = (−i)n
∫ η

−∞
dη1

∫ η1

−∞
dη2 · · ·

∫ ηn−1

−∞
dηn

n∑

i=0

(−1)n−i

(ni)∑

j=1

K̃
(i)

j |BD⟩ ⟨BD|
(
K̃

(n−i)

(ni)−j+1

)†
.

(2.59)

Note that taking i → n − i and j →
(
n
i

)
− j + 1 gives the Hermitian conjugate of the above

expression, which is consistent with the fact that the density matrix is Hermitian at every order.
This also means that, in practice, it is enough to compute the terms for i up to ⌊n2 ⌋ (the floor
of n/2) and take the Hermitian part of the result.

We are now in a position where we can trace over the environmental degrees of freedom.
For local interactions of the type (2.22), one obtains

ρ̃
(n)
red(η) =(−i)n

∫ η

−∞
dη1

∫ η1

−∞
dη2 · · ·

∫ ηn−1

−∞
dηn

∫
d3k1

(2π)3

∫
d3k2

(2π)3
· · ·
∫

d3kn

(2π)3

n∑

i=0

(−1)n−i

(ni)∑

j=1

KE,i,jK̃
(i)

S,j |BD⟩ ⟨BD|S
(
K̃

(n−i)

S,(ni)−j+1

)†
, (2.60)

where

KE,i,j = ⟨BD|
(
K̃

(n−i)

E,(ni)−j+1

)†
K̃

(i)

E,j |BD⟩E . (2.61)

Here, K̃
(i)

S,j are defined as in Eq. (2.53)-(2.57), where each H̃int(ηℓ) is replaced with ÕS
kℓ
(ηℓ), with

ℓ = 1 · · · i. Likewise, K̃
(i)

E,j are defined as in Eqs. (2.53)-(2.57) where each H̃int(ηℓ) is replaced

with ÕE
−kℓ

(ηℓ). With n = 2, one recovers Eq. (2.29). With n = 3, one finds

ρ̃
(3)
red(η) = i

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫ η2

−∞
dη3

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3{
K(3)

E (k1,k2,k3; η1, η2, η3)
[
ÕS

k1
(η1), ÕS

k2
(η2)ÕS

k3
(η3) |BD⟩ ⟨BD|S

]
(2.62)

−K(3)
E (k2,k1,k3; η2, η1, η3)

[
ÕS

k1
(η1), ÕS

k3
(η3) |BD⟩ ⟨BD|S ÕS

k2
(η2)

]}
+ h.c.

where we have introduced

K(3)
E (k1,k2,k3; η1, η2, η3) ≡ ⟨BD| ÕE

−k1
(η1)ÕE

−k2
(η2)ÕE

−k3
(η3) |BD⟩E , (2.63)

and higher orders can be computed similarly. When n gets large, the list of terms to write down
becomes long: there are 2n correlators of the type (2.61), although using trace cyclicity and
Hermiticity under index relabelling as mentioned below Eq. (2.59) leaves 2n/4 correlators to
compute (hence 1 correlator when n = 2 and 2 correlators when n = 3, this is consistent with
Eqs. (2.29) and (2.62) respectively). The number of terms still grows rapidly, which is why we
now provide diagrammatic rules to assist the calculation. These will allow us to organize the

computation of ρ̃
(n)
red, and of the terms TrS [ρ̃

(m)
red ρ̃

(n−m)
red ] that appear in the calculation of γ(n) in

Eq. (2.18).
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2.6.2 Diagrammatic rules

From Eq. (2.60), the Feynman rules for the nth-order perturbative purity are given as follows.

Feynman rules for ρ̃
(n)
red (an example is given in Fig. 2):

1. Draw a diagram with one environment blob connected to n environment propagators
leading to n conversion vertices, themselves connected to n system propagators.
This diagram corresponds to a fixed i and j in Eq. (2.60), the vertices are labelled
by ℓ.

2. To each vertex is associated a

(−i)
∫ η

−∞
dηℓ

∫
d3kℓ

(2π)3
. (2.64)

The diagram is time-ordered such that there is an overall

Θ(ηℓ1 − ηℓ2) ∀ ℓ1 < ℓ2 . (2.65)

Amongst the n vertices, i vertices are “coloured” with #, and n− i with  which

contributes a factor (−1). To the # vertices are attached ÕS
kℓ
(ηℓ) (system propa-

gator) and ÕE
−kℓ

(ηℓ) (environment propagator), and to the  vertices are attached

[ÕS
kℓ
(ηℓ)]

† and [ÕE
−kℓ

(ηℓ)]
†.

3. The amplitude part of the diagram is controlled by

⟨BD| T̃ [ E ] T [#E ] |BD⟩E (2.66)

where T [ E ] corresponds to the time-ordering of the environment operators con-
nected to the  vertices, and T̃ [#E ] corresponds to the anti-time-ordering of the
environment operators connected to the # vertices.

4. The operator part of the diagram is controlled by

T [#S ] |BD⟩ ⟨BD|S T̃ [ S ] (2.67)

with similar notations.

5. Sum over all possibilities for the number i of # vertices and their arrangement in
the diagram (labeled by j).

The diagrams for ρ̃
(n)
red constitute the building blocks for the ones of γ(n). The latter follow

from Eq. (2.18) and are given as follows.

Feynman rules for γ(n) (an example is given in Fig. 3):

1. Draw one of the diagrams appearing in ρ̃
(m)
red (called left cluster) and one of the
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Figure 2. One of the terms appearing in the computation of ρ̃
(8)
red. The system is represented in blue

and the environment in orange. This diagram has n = 8 vertices, labeled by ℓ, with i = 4 of them being
# vertices.

diagrams appearing in ρ̃
(n−m)
red called right cluster) for m between 0 and ⌊n2 ⌋.

2. Add two system blobs between the clusters: the first one is connected to all  
vertices of the left cluster and all # vertices of the right cluster, while the second
one is connected to all # vertices of the left cluster and all  vertices of the right
cluster.

3. Each system blob contributes to

⟨BD| T̃ [ S ] T [#S ] |BD⟩S , (2.68)

which is further multiplied by the amplitude parts of the environment blobs.

4. Sum over m from 0 to ⌊n2 ⌋. There is a prefactor 2 if m ̸= n/2.

In order to get more familiar with the above diagrammatic representation, let us employ
it to compute perturbative purity up to order g4.

γ(1): At first order, there are only two diagrams, displayed in Fig. 4. Using the Feynman rules
derived above, we recover the result given in Eq. (2.27), that is

γ(1) = −2i

∫ η

−∞
dη1

∫
d3k

(2π)3

[
K(1)

S (k, η1)K(1)
E (k, η1)−K(1)

S (k, η1)K(1)
E (k, η1)

]
= 0. (2.69)

The first non-trivial contribution thus arises at second order, as already mentioned above.
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Figure 3. One of the terms appearing in the computation of γ(10) for m = 5.

 

Figure 4. The two terms appearing in the computation of γ(1).

γ(2): Second-order purity is made of two kinds of diagrams that come from m = 0 and m = 1.
To simplify the discussions, let us introduce

γ(n−m,m) ≡ 21−δn,m−nTrS

[
ρ̃
(m)
red ρ̃

(n−m)
red

]
. (2.70)

The diagrams for γ(1,1) are given in Fig. 5 and the ones for γ(2,0) in Fig. 6. Let us first consider
γ(1,1). Following the Feynman rules given above, we recover Eq. (2.33), namely

γ(1,1) = (−i)2
∫ η

−∞
dη1

∫ η

−∞
dη2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2.71)

[
−K(2)

S (k1,k2, η1, η2)K(1)
E (k1, η1)K(1)

E (k2, η2)−K(2)
S (k2,k1, η2, η1)K(1)

E (k1, η1)K(1)
E (k2, η2)

+K(1)
S (k1, η1)K(1)

S (k2, η2)K(1)
E (k1, η1)K(1)

E (k2, η2) +K(1)
S (k1, η1)K(1)

S (k2, η2)K(1)
E (k1, η1)K(1)

E (k2, η2)

]
.

Similarly for γ(2,0), one can recover from Fig. 6 the result of Eq. (2.36), that is

γ(2,0) = 2(−i)2
∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3k1

(2π)3

∫
d3k2

(2π)3[
−K(1)

S (k1, η1)K(1)
S (k2, η2)K(2)

E (k1,k2, η1, η2)−K(1)
S (k1, η1)K(1)

S (k2, η2)K(2)
E (k2,k1, η2, η1)

+K(2)
S (k1,k2, η1, η2)K(2)

E (k1,k2, η1, η2) +K(2)
S (k2,k1, η2, η1)K(2)

E (k2,k1, η2, η1)

]
. (2.72)
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Figure 5. Diagrams appearing in the computation of γ(1,1).

Figure 6. Diagrams appearing in the computation of γ(2,0).

γ(3): We have to compute diagrams for γ(3,0) and γ(2,1), which are represented in Figs. 7 and
8 respectively. From the diagrammatic representation, one has

γ(3,0) =2(−i)3
∫ η

−∞
dη1

∫ η1

−∞
dη2

∫ η2

−∞
dη3

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3[
K(3)

S (k1,k2,k3, η1, η2, η3)K(3)
E (k1,k2,k3, η1, η2, η3)

−K(3)
S (k3,k2,k1, η3, η2, η1)K(3)

E (k3,k2,k1, η3, η2, η1)

+K(1)
S (k1, η1)K(2)

S (k3,k2, η3, η2)K(3)
E (k3,k2,k1, η3, η2, η1)
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+K(1)
S (k2, η2)K(2)

S (k3,k1, η3, η1)K(3)
E (k3,k1,k2, η3, η1, η2)

+K(1)
S (k3, η3)K(2)

S (k2,k1, η2, η1)K(3)
E (k2,k1,k3, η2, η1, η3)

−K(1)
S (k1, η1)K(2)

S (k2,k3, η2, η3)K(3)
E (k1,k2,k3, η1, η2, η3)

−K(1)
S (k2, η2)K(2)

S (k1,k3, η1, η3)K(3)
E (k2,k1,k3, η2, η1, η3)

−K(1)
S (k3, η3)K(2)

S (k1,k2, η1, η2)K(3)
E (k3,k1,k2, η3, η1, η2)

]
. (2.73)

This coincides with what can be directly obtained from Eq. (2.62). Similarly, we find

γ(2,1) =2(−i)3
∫ η

−∞
dη1

∫ η1

−∞
dη2

∫ η

−∞
dη3

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3[
K(1)

S (k3, η3)K(2)
S (k1,k2, η1, η2)K(1)

E (k3, η3)K(2)
E (k1,k2, η1, η2)

−K(3)
S (k3,k1,k2, η3, η1, η2)K(1)

E (k3, η3)K(2)
E (k1,k2, η1, η2)

−K(1)
S (k1, η1)K(2)

S (k2,k3, η2, η3)K(1)
E (k3, η3)K(2)

E (k2,k1, η2, η1)

−K(1)
S (k2, η2)K(2)

S (k1,k3, η1, η3)K(1)
E (k3, η3)K(2)

E (k1,k2, η1, η2)

+K(1)
S (k1, η1)K(2)

S (k3,k2, η3, η2)K(1)
E (k3, η3)K(2)

E (k1,k2, η1, η2)

+K(1)
S (k2, η2)K(2)

S (k3,k1, η3, η1)K(1)
E (k3, η3)K(2)

E (k2,k1, η2, η1)

−K(1)
S (k3, η3)K(2)

S (k2,k1, η2, η1)K(1)
E (k3, η3)K(2)

E (k2,k1, η2, η1)

+K(3)
S (k2,k1,k3, η2, η1, η3)K(1)

E (k3, η3)K(2)
E (k2,k1, η2, η1)

]
. (2.74)

γ(4): In Figs. 9, 10 and 11, we draw the diagrams needed to compute γ(4). They correspond
to γ(4,0), γ(3,1) and γ(2,2) respectively. We do not write the corresponding expressions here, for
the sake of brevity, but they can be obtained straightforwardly following similar lines.

Ultimately, the computation boils down to the evaluation of the blobs representing the
various unequal-time correlators of the system and the environment in a model of interest. If
the theory does not contain any system and environment non-linearities (that is if ĤS and
ĤE are quadratic), the expectation values ⟨T̃ [ S ] T [#S ]⟩S and ⟨T̃ [ E ] T [#E ]⟩E can readily be
obtained by performing Wick contractions.5 Beyond this simple case, one may wish to further
connect the current representation to the standard in-in diagrammatics [113] in order to evaluate
the blobs in terms of time and momenta integrals of the system and environment propagators.
In this work we will not consider setups with system or environment self-interactions, although
we come back to this issue in Sec. 5.

5In this sense, we notice that in the in-in path integral language, the # vertices correspond to field insertions
from the + branch of the path integral and the  vertices to field insertions from the − branch of the path
integral (see Refs. [65, 137] for a more in-depth discussion of the relations between operator and path integral
formalisms).
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Figure 7. Diagrams appearing in the computation of γ(3,0).

Figure 8. Diagrams appearing in the computation of γ(2,1).
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Figure 9. Diagrams appearing in the computation of γ(4,0).

Figure 10. Diagrams appearing in the computation of γ(3,1).
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Figure 11. Diagrams appearing in the computation of γ(2,2).
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2.7 Other quantum information measures

Although the focus so far has been on computing the purity, we mention here that our formalism
can be easily extended to computing other quantum information measures. Let us first mention
the Rényi-N entropy [117]

SN ≡ 1

1−N
ln
[
TrS

(
ρ̂Nred

)]
. (2.75)

When N = 2, this reduces to the Rényi-2 entropy given in Eq. (2.42), hence to the purity. The
Rényi-N entropy turns out to lend itself well to our formalism, as one must simply take N
product of the reduced density matrix already computed in previous subsections. In particular,
using Eq. (2.19) one finds that for integers N ≥ 3

TrS
(
ρ̂Nred

)
=TrS

[
ρ̂
(0)
red

]
+ gNTrS

[
ρ̂
(0)
redρ̂

(1)
red

]

+ g2
{
NTrS

[
ρ̂
(0)
redρ̂

(2)
red

]
+NTrS

[
ρ̂
(0)
red

(
ρ̂
(1)
red

)2]
+
N(N − 3)

2
TrS

[
ρ̂
(0)
redρ̂

(1)
redρ̂

(0)
redρ̂

(1)
red

]}

+O(g3) ,
(2.76)

where cyclicity of the trace has been applied and we have used that the initial state is pure,

as in Eq. (2.20), so that (ρ̂
(0)
red)

2 = ρ̂
(0)
red. Note furthermore that TrS [ρ̃

(0)
red ρ̃

(1)
red] = 0 as found in

Eq. (2.27), which also implies TrS
[
ρ̂
(0)
redρ̂

(1)
redρ̂

(0)
redρ̂

(1)
red

]
= 0. Finally one also has TrS [ρ̂

(0)
red] = 1 and

from Eq. (2.23) one can show explicitly that TrS
[
ρ̂
(0)
red

(
ρ̂
(1)
red

)2]
= 1

2TrS
[(
ρ̂
(1)
red

)2]
, so the above

formula reduces to

TrS
(
ρ̂Nred

)
= 1 +Ng2

{
TrS

[
ρ̂
(0)
redρ̂

(2)
red

]
+

1

2
TrS

[(
ρ̂
(1)
red

)2]}
+O(g3) . (2.77)

Since the term involving N(N − 3) dropped out, this is in fact valid for all integers N ≥ 2. One
recognizes the combination giving γ(2) in Eq. (2.18), hence we have found that

SN =
N

N − 1

1− γ

2
+O(g3) , (2.78)

which is obviously consistent with Eq. (2.42) when N = 2.
Another quantity of interest is the von-Neumann entanglement entropy of the system,

defined as
SEE = −Tr (ρ̂red ln ρ̂red) . (2.79)

This is the quantum analog of the so-called Shannon entropy in classical-information theory,
and it encapsulates the information inherent to the possible outcomes of a measurement on
a quantum system. It is central to the computation of many other key quantum information
metrics. Perturbation theory of von-Neumann entropies has been considered in various contexts
before [2, 4, 138–146], and we now connect our formalism to these works. Formally, one can
show that SEE = limN→1 SN , hence the entanglement entropy can be obtained from analytic
continuation of the Rényi entropy, using what is known as the replica trick [147, 148]. In the
present framework, this cannot be done from Eq. (2.77) directly, since it is valid for N ≥ 2 only.

However once can expand the entanglement entropy around a pure state for which ρ̂2red ≃
ρ̂red and close to which the Mercator series can be employed

TrS [ρ̂red ln (ρ̂red)] = −TrS

[
ρ̂red

∞∑

n=1

(1− ρ̂red)
n

n

]
. (2.80)
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At leading order, one finds TrS [ρ̂red ln (ρ̂red)] ≃ TrS [ρ̂
2
red]− 1, hence

SEE = 1− γ +O
(
g3
)
. (2.81)

In fact, this relation is the reason why the Rényi-2 entropy is sometimes called the “linear
entropy”: it corresponds to a linearized version of the von-Neumann entropy where only the first
term in the Mercator series is kept. At higher order, the linear entropy and the von-Neumann
entropy are different, but the above framework still allows one to express the von-Neumann
entropy in terms of the diagrams involved in the linear entropy.

3 Application

In this section, we apply the techniques developed above to a model of phenomenological interest
for primordial cosmology.

3.1 EFT-inspired model

Based on the Effective Field Theory of Inflation (EFToI) [105, 149–151] and quasi-single field
inflation/the gelaton scenario [106–110, 152–157], we illustrate our method on a subset of possi-
ble interactions between the curvature perturbation ζ (the system) and a massive scalar degree
of freedom σ (the environment). We describe the model below.

Perturbing about a quasi de-Sitter background and always working to leading order in
the slow-roll parameter ϵ1 := −Ḣ/H2 ≪ 1, where H = ȧ/a is the Hubble expansion rate
and a is the scale factor, the first ingredient in the considered model is the pseudo-Goldstone
boson π which is related to the curvature perturbation ζ as ζ = −Hπ at leading order in
cosmological perturbation theory. The formalism describes inflation as a symmetry-breaking
phenomenon in which π non-linearly realizes the broken time-diffeomorphism invariance due
to the presence of the inflaton field. Being an effective field theory, the Goldstone boson π
determines the low-energy spectrum of the theory with higher-order effects parametrized by
operators compatible with the remaining spatial diffeomorphism symmetry, and systematically
organized in a derivative expansion. We work in the decoupling regime6 in which the physics of
the Goldstone boson decouples from the other metric fluctuations so that π is the only scalar
degree of freedom considered. Its action takes the form [105]

SS =

∫
d4x

√−g
[
1

2
M2

PlR+M2
PlH

2 (2ϵ1 − 3)−M2
PlH

2ϵ1 δg
00 +

M4
2

2!

(
δg00

)2
+
M4

3

3!

(
δg00

)3
+ · · ·

]
.

(3.1)
The scales M2 and M3 are in general time-dependent7, and π is related to the time-time com-
ponent of the metric fluctuation δg00 via

δg00 = −2π̇ − π̇2 +
(∂iπ)

2

a2
(3.2)

where (∂iπ)
2 = δij∂iπ∂jπ. Functions of the background in Eq. (3.1) are evaluated at time t+ π

such that, expanding in π, we observe a cancellation of the terms linear in π (tadpoles). This
cancellation takes place “on-shell”, i.e. when the Friedmann equations hold [105]. The action

6This is valid at energies larger than Emix ∼ M2
2 /MPl, see Ref. [105].

7In setups where H and Ḣ do not vary significantly over a Hubble time, it is natural to assume that M2 and
M3 do not vary much either, and treat these coefficients as constants.
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(3.1) neglects terms O
[
(δg00)4

]
and others involving the extrinsic curvature (and so neglects the

two transverse modes of the graviton), which are indeed subdominant in the decoupling regime
mentioned above. Higher-order derivatives of the fluctuations are also dropped.

The second ingredient to the model considered is an additional massive field σ, minimally-
coupled, with an action [108–110]

SE =

∫
d4x

√−g
(
−1

2
∂µσ∂

µσ − 1

2
m2σ2 + · · ·

)
. (3.3)

Here we neglect cubic self-interactions of σ (6 operators in total) and higher. The interactions
between π and σ are then fixed by the EFToI symmetries [152] – we choose to examine only a
subset of the possible interactions which are linear in σ so that

Sint =

∫
d4x

√−g
[
M̃3

1 δg
00σ + M̃3

3

(
δg00

)2
σ + . . .

]
(3.4)

and neglect the other possible interactions for simplicity (which means ignoring 9 other operators
like ∼ δg00σ2). Note that phenomenological properties of this model have been studied in
Refs. [109, 110, 156–158]. In this work, we treat π as the “system” and σ as the “environment”.

Expanding Eq. (3.1) in terms of π, the system free action (3.1) simplifies to (working in
terms of conformal time η and enforcing background evolution to cancel tadpoles)

SS =

∫
dη d3x a2

[
1

2
π′2c − 1

2
c2
S
(∂iπc)

2

]
(3.5)

where cubic self interactions of π have been neglected, and we have introduced the canonically
normalized field

πc ≡
√
2ϵ1HMPl

cS
π with c2

S
≡
(
1 +

2M4
2

M2
PlH2ϵ1

)−1

. (3.6)

In this expression, we used the speed of sound cS , forbidding superluminal propagation, c2
S
< 1,

by enforcing M4
2 > 0. The environment free action (3.3) is simply

SE =

∫
dη d3x a2

[
1

2
σ′2 − 1

2
(∂iσ)

2 − 1

2
m2a2σ2

]
(3.7)

and the interaction action, expanded to cubic order in the field operators, has the form

Sint = −
∫

dη d3x g

[
a3π′cσ − 1

Λ1
a2 (∂iπc)

2 σ − 1

Λ2
a2π′2c σ

]
, (3.8)

with the definitions

g ≡ 2cSM̃
3
1√

2ϵ1HMPl
,

1

Λ1
≡ cS

2
√
2ϵ1HMPl

and
1

Λ2
≡ cS

2
√
2ϵ1HMPl

(
4M̃3

3

M̃3
1

− 1

)
. (3.9)

One can see that Sint is controlled by an overall dimensionful coupling g and contains three
terms. On the one hand, the first two terms in Eq. (3.8) are both generated by the operator

M̃3
1 δg

00σ upon using Eq. (3.2). On the other hand, the term π′2c σ is generated by both M̃3
1 δg

00σ

and M̃3
3 (δg

00)2σ, which is why the scale Λ1 is not always fixed in the same way as Λ2. Note that
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in the case where the term M̃3
3 (δg

00)2σ in Eq. (3.4) can be neglected, the relation Λ2 = −Λ1

holds, and this will play a key role in dealing with some of the divergences we encounter below
[we return to this point below Eq. (3.62) later on].

In what follows, it will also be convenient to parametrize our results in terms of the
amplitude of the reduced power spectrum of curvature perturbations [159–161],

∆2
ζ ≡

H2

8π2ϵ1M2
PlcS

≃ 2.2× 10−9 (3.10)

since this combination will appear in various expressions. The numerical value is quoted from
measurements of the CMB temperature anisotropies [162].

3.1.1 Canonical variables and Hamiltonian

We rescale the field variables according to

vπ = aπc and vσ = aσ , (3.11)

in order for their kinetic term to be canonically normalized. By further adding the total deriva-
tive 1

2
d
dη (

a′

a v
2
π + a′

a v
2
σ) to the Lagrangian density L in S =

∫
dη d3x L (see Refs. [24, 163] for

recent discussions on this topic), the action S = SS + SE + Sint is given by

SS =

∫
dη d3x

1

2

[
(v′π)

2 +
a′′

a
v2π − c2

S
(∂ivπ)

2

]
, (3.12)

SE =

∫
dη d3x

1

2

[
(v′σ)

2 +

(
a′′

a
− a2m2

)
v2σ − (∂ivσ)

2

]
, (3.13)

Sint =− g

∫
dη d3x

[
avσ

(
v′π − a′

a
vπ

)
− vσ
aΛ1

(∂ivπ)
2 − vσ

aΛ2

(
v′π − a′

a
vπ

)2
]
. (3.14)

The canonical momenta are determined from

pπ =
∂L
∂v′π

= v′π

(
1 +

2g

aΛ2
vσ

)
− gavσ − 2ga′

a2Λ2
vπvσ, (3.15)

pσ =
∂L
∂v′σ

= v′σ , (3.16)

and the Hamiltonian is then obtained by performing a Legendre transform

H =

∫
d3x

[
pπv

′
π + pσσ

′ − L
]

(3.17)

=

∫
d3x

{
1

2

[
p2π + c2

S
(∂ivπ)

2 − a′′

a
v2π

]
+

1

2

[
p2σ + (∂ivσ)

2 +

(
a2m2 − a′′

a

)
v2σ

]

+ agvσ

(
pπ − a′

a
vπ

)
− gvσ
aΛ1

(∂ivπ)
2 − gvσ

aΛ2

(
pπ − a′

a
vπ

)2

+
g2v2σ
2a2Λ2

2

1

1 + 2g
aΛ2

vσ

(
a2Λ2 − 2pπ + 2

a′

a
vπ

)2 }
. (3.18)

In this expression, the terms in the first line are quadratic and correspond to the “free” Hamil-
tonian, i.e. they leave the π and σ sectors uncoupled. The terms in the second line belong to
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the interaction Hamiltonian – they are either quadratic or cubic, and arise at order g. When
expanding the terms in the third line at quadratic order in the fields, one finds a2g2v2σ/2, which
is non interacting. It can thus be appended to the first line, which corresponds to renormal-
izing the mass of the σ field according to m2 → m2 + g2. All other terms of the third line
are interacting terms, they are cubic or higher order in the fields, and they arise at order g2

and above. At leading order in g they can thus be neglected (the validity of this truncation is
further discussed in Sec. 3.1.3), and the Hamiltonian H = HS +HE + gHint becomes

HS =

∫
d3x

1

2

[
p2π + c2

S
(∂ivπ)

2 − a′′

a
v2π

]
, (3.19)

HE =

∫
d3x

1

2

{
p2σ + (∂ivσ)

2 +

[
a2
(
m2 + g2

)
− a′′

a

]
v2σ

}
, (3.20)

gHint =

∫
d3x g

[
avσ

(
pπ − a′

a
vπ

)
− vσ
aΛ1

(∂ivπ)
2 − vσ

aΛ2

(
pπ − a′

a
vπ

)2
]
. (3.21)

3.1.2 Mode functions

In the interaction picture, the field operators evolve in the free theory and are thus most usefully
expressed in momentum space by Fourier expanding

ṽi(η,x) =

∫
d3k

(2π)3
ṽi(k, η)e

ik·x and p̃i(η,x) =

∫
d3k

(2π)3
p̃i(k, η)e

ik·x (3.22)

for each field i = π, σ, where ṽi(k, η) and p̃i(k, η) can be further expanded in creation and
annihilation operators

ṽi(k, η) = vi(k, η)â
i
k + v∗i (k, η)â

i†
−k and p̃i(k, η) = pi(k, η)â

i
k + p∗i (k, η)â

i†
−k . (3.23)

The creation and annihilation operators âi†k and âik obey the canonical commutation relations

[
âik, â

j†
q

]
= δ(k − q)δi,j , (3.24)

which leads to the Wronskian conditions

vi(k, η)p
∗
i (k, η)− v∗i (k, η)pi(k, η) = i (3.25)

for the mode functions. Heisenberg’s equation yields the classical equations of motion for the
mode functions, i.e.

v′π = pπ , p′π =

(
c2
S
k2 − a′′

a

)
vπ , (3.26)

v′σ = pσ , p′σ =

(
k2 + a2m2 − a′′

a

)
vσ , (3.27)

where the k arguments are omitted for simplicity, since Fourier modes decouple in the free
theory. Hamilton’s equations can be combined into the so-called Mukhanov-Sasaki equations

v′′π +

(
c2
S
k2 − 2

η2

)
vπ = 0 and v′′σ +

(
k2 − ν2σ − 1

4

η2

)
vσ = 0 , (3.28)
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where at leading order in slow roll we have replaced a = −(Hη)−1, and where we have introduced

νσ =

√
9

4
− m2

H2
≡ iµσ , (3.29)

which is a pure imaginary if m2 > 9
4H

2 and real otherwise. By normalizing the mode functions
to the Bunch-Davies vacuum [164] in the asymptotic, sub-Hubble past, one obtains8

vπ(k, η) =
e−ic

S
kη

√
2cSk

(
1− i

cSkη

)
, (3.30)

vσ(k, η) =

√−πη
2

e−
π
2 µσ+i

π
4H

(1)
iµσ

(−kη) , (3.31)

where H
(1)
ν is the Hankel function of the first kind and of order ν. The mode functions of the

momentum operators read

pπ(k, η) = −i
√
cSk

2
e−ic

S
kη

(
1− i

cSkη
− 1

c2
S
k2η2

)
, (3.32)

pσ(k, η) = −1

2

√
π

−η e
−π

2 µσ+i
π
4

[(
iµσ +

1

2

)
H

(1)
iµσ

(−kη) + kηH
(1)
iµσ+1(−kη)

]
. (3.33)

One can check that Eqs. (3.30)-(3.33) obey the Wronskian condition given above.

3.1.3 Early-time breakdown of the g expansion

Above we have restricted the Hamiltonian to terms that are linear in g, and it is important to
assess the regime of validity of this truncation. Upon inspection of Eq. (3.18) it is clear that
the terms we have neglected are controlled by gvσ/(aΛ), hence our results only apply when the
condition ∣∣∣∣

gvσ
aΛ2

∣∣∣∣≪ 1 (3.34)

is satisfied. The validity of this condition can be qualitatively assessed as follows. In real
space, ⟨ṽσ(x)⟩ = 0 and ⟨ṽ2σ(x)⟩ =

∫
d ln k k3

2π2 v
2
σ(k). The contribution from a given scale k

to vσ can thus be estimated as k3/2|vσ(k)|, which is of order k on sub-Hubble scales and of
order aH on super-Hubble scales if σ is massless (if σ is massive, the super-Hubble behavior is
further suppressed, hence the following estimate is conservative). At super-Hubble scales, the
condition (3.34) thus requires that

g ≪
√
ϵ1MPl

cS
(3.35)

upon using Eq. (3.9), where we further assume M̃3 ≲ M̃1. This implies that g needs to be
parametrically suppressed compared to the Planck mass, and that the theory breaks down
when ϵ1 → 0, which is expected from the EFToI perspective. At sub-Hubble scales, the condi-
tion (3.34) reduces to

aH

k
≫ gcS√

ϵ1MPl

. (3.36)

8In the asymptotic past, k/a ≫ H,m, g, hence the fields become decoupled and their mode functions evolve on
an effectively quasi-static background. This allows one to set both sectors in the free vacuum state of Minkowski
space-times. We stress that decoupling at small scales is necessary for the Bunch-Davies prescription to be
applied [121, 165].

– 29 –



This implies that our expansion breaks down at small distances, and becomes valid only once
the scales of interest cross gcS/(

√
ϵ1MPl) times the Hubble radius. It is interesting to notice

that Eq. (3.35) requires that the scale below which the expansion breaks down lies well within
the Hubble radius. Moreover, if one works with

g ≲
√
ϵ1H

cS
, (3.37)

which is more restrictive than Eq. (3.35), then that critical scale falls below the Planck length.
In this case, the theory becomes valid at all super-Planckian distances, to which it should
be restricted anyway. The main conclusion is that the effective theory we are working with
is expected to break down at early time, hence below we employ it to investigate late-time
behavior only.

3.2 Perturbative entropies

Let us now determine the in-in evolution of the purity of the system. We use the quantum
interaction Hamiltonian (3.21) recast in momentum space as

gH̃int(η) = g

∫
d3k

(2π)3

[
ÕS

lin(k, η) + ÕS
NL(k, η)

]
⊗ ṽσ(−k, η) (3.38)

where

ÕS
lin(k, η) ≡ a(η)p̃π(k, η)− a′(η)ṽπ(k, η) (3.39)

ÕS
NL(k, η) ≡

∫
d3p1

(2π)3

∫
d3p2

(2π)3
δ(p1 + p2 − k)

{
p1.p2

a(η)Λ1
ṽπ(p1, η)ṽπ(p2, η) (3.40)

− 1

a(η)Λ2

[
p̃π(p1, η)−

a′(η)

a(η)
ṽπ(p1, η)

] [
p̃π(p2, η)−

a′(η)

a(η)
ṽπ(p2, η)

]}
.

We have written gH̃int in the form of Eq. (2.22) so that the machinery from Sec. 2 can be
employed directly. Recall that, according to Eq. (2.48), at leading order in the coupling one has
to compute

S2(k) ≃
4g2

(2π)6

∫ η

−∞
dη1

∫ η

−∞
dη2 K̄(2)

S (k, η1, η2)K̄(2)
E (k, η1, η2) +O(g3) . (3.41)

Memory kernels Using the definition (2.46) together with Eqs. (2.31) and (2.34), the two-
point function in the environment takes the simple form

K̄(2)
E (k, η1, η2) = vσ(k, η1)v

∗
σ(k, η2) , (3.42)

whose mass-dependence we take various limits of in the proceeding subsections. For the system,
the memory kernel is made of two pieces,

K̄(2)
S (k, η1, η2) = K̄(2)

S, lin(k, η1, η2) + K̄(2)
S,NL(k, η1, η2) , (3.43)

which correspond to the two-point functions of ÕS
lin and ÕS

NL respectively. The cross-term

between ÕS
lin and ÕS

NL vanishes since it involves cubic powers of field operators, the expectation
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Figure 12. Diagrams involved in the calculation of γ(1,1) (left panel) and γ(2,0) (right panel), with
quadratic and cubic vertices of the form πσ and π2σ. Contributions with a cross represent vanishing
one-point functions. One can see that γ(1,1) = 0, all contributions being proportional to the environment
one-point function. For γ(2,0), both the quadratic and cubic vertices lead to non-vanishing second-order
contributions, which induce departures from a pure state.

value of which vanishes on Gaussian states. A detailed calculation is presented in Appendix C,
where it is shown that

K̄(2)
S, lin(k, η1, η2) =

cSk

2H2η1η2
e−ic

S
k(η1−η2) (3.44)

and

K̄(2)
S,NL(k, η1, η2) =

H2η1η2
(2π)12

π

32k

∫ ∞

k
dP

∫ k

0
dQ e−ic

S
P (η1−η2)

×
{
P 2 +Q2 − 2k2

cSΛ1

[
1− 2i

cS(P +Q)η1

] [
1− 2i

cS(P −Q)η1

]
− cS(P

2 −Q2)

Λ2

}

×
{
P 2 +Q2 − 2k2

cSΛ1

[
1 +

2i

cS(P −Q)η2

] [
1 +

2i

cS(P +Q)η2

]
− cS(P

2 −Q2)

Λ2

}
.

(3.45)
In practice, after Wick contractions of the field operators, and once conservation of momentum
is imposed, the system correlator can be expressed as an integral over two momenta (these
are the two momenta flowing through the double loops in the right panel of Fig. 12) . The
expression (3.45) is what remains after the angular part these two momenta has been integrated
away [and after an additional rotation is performed – see Eq. (C.25)].

It is of course possible to perform the two remaining integrals over P and Q in Eq. (3.45)
before inserting the result in Eq. (3.41). In particular, by examining the P → ∞ limit of the
integrand, one can show that the dominant contribution in the coincident limit η1 → η2 reads

K̄(2)
S,NL(k, η1, η2) =

H2η1η2
(2π)12

π

32k

∫ ∞

k
dP

∫ k

0
dQ e−ic

S
P (η1−η2)

[(
1

cSΛ1
− cS

Λ2

)
P 4 +O(P 3)

]

≃ H2η1η2
(2π)12

π

32k

{
24i

c
S

Λ2
− 1

c
S
Λ1

c5
S
(η1 − η2)5

+O
[
(η1 − η2)

−4
]}

.

(3.46)
This singular coincident limit can be understood as contributing to the UV divergences that
later arise, which may be regulated using a short-time cutoff. A more desirable regularization
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scheme however can be used if one instead keeps the correlator represented in terms of the
momentum integrals as in Eq. (3.45), and then performs the P and Q integrals only after any
time integrals occurring in the linear entropy formula (3.41). This is a useful tactic because
the P and Q variables cleanly separate the UV and IR behavior of the integrand and therefore,
more standard methods of UV regularization from QFT (e.g. dimensional regularization) can
be straightforwardly applied (this would also apply to IR divergences if other interactions with
less derivatives were studied).

Spectral purity The total linear entropy at second-order in the coupling can be represented
by the diagrams depicted in Fig. 12. They are obtained by applying the techniques of Sec. 2.6.2
to the model considered here. With notations analogous to Eq. (3.43), the linear entropy receives
two contributions,

S2(k) ≃ Slin
2 (k) + SNL

2 (k) +O(g3) (3.47)

with

Si
2(k) ≡

4g2

(2π)6

∫ η

−∞
dη1

∫ η

−∞
dη2 K̄(2)

S,i(k, η1, η2)K̄
(2)
E (k, η1, η2) for i =lin, NL . (3.48)

Using Eqs. (3.42) and (3.44), the linear contribution reduces to [91, 102]

Slin
2 (k) =

g2cS
(2π)6H2

|Lk(η)|2 with L(η) ≡
∫ η

−∞
dη′ e−ic

S
kη′

√
πk

−2η′
e−

π
2 µσ+

iπ
4 H

(1)
iµσ

(−kη′) .

(3.49)
In this form it is obvious that the linear entropy is always non-negative, hence that purity
remains below one and that the map is CPTP, see the discussion below Eq. (2.39). Similarly,
the non-linear contribution can be expressed as

SNL
2 (k) =

g2H2

(2π)18
π

16k4

∫ ∞

k
dP

∫ k

0
dQ |Nk(P,Q, η)|2 (3.50)

with

Nk(P,Q, η) ≡
√
π

2
e−

π
2 µσ+

iπ
4

∫ η

−∞
dη′ (−kη′)

3
2H

(1)
iµ (−kη′)e−ic

S
Pη′ (3.51)

×
{
P 2 +Q2 − 2k2

cSΛ1

[
1− 2i

cS(P +Q)η′

] [
1− 2i

cS(P −Q)η′

]
− cS(P

2 −Q2)

Λ2

}
.

In the analysis that follows, we first perform the time integral in Eq. (3.51) before performing
the one over P and Q in Eq. (3.50), for the reasons mentioned above.

Finally, a quantity of physical interest below is the decoherence rate, obtained by differen-
tiating Eq. (2.48) with respect to time,

dS2(k)

dη
≃ 8g2

(2π)6

∫ η

−∞
dη′ ℜe

[
K̄(2)

S (k, η, η′)K̄(2)
E (k, η, η′)

]
+O(g3) . (3.52)

This has the advantage of involving a single integral over time, and it can be divided into a
linear and a non-linear contribution by time differentiating Eqs. (3.49) and (3.50) respectively.
The other advantage of working with the decoherence rate is that, as explained in Sec. 3.1.3,
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the EFT treatment of the model we consider is expected to break down at early time. As
a consequence, finite contributions to the linear entropy coming from early-time interactions
cannot be properly accounted for. Such contributions drop out from the late-time decoherence
rate, which may thus be argued to be the proper quantity to compute in the EFT.

In what follows, we compute the spectral purity in three cases for the environment mass:
massless (m = 0), conformal (m =

√
2H) and heavy (m≫ H).

3.2.1 Massless environment

Let us first consider the case where the environment is massless, m = 0, such that iµσ = 3/2
and Eq. (3.31) reduces to

vσ(k, η) =
e−ikη

√
2k

(
1− i

kη

)
. (3.53)

Linear contribution

The linear contribution to the entropy depends on the integral Lk(η) defined in Eq. (3.49),
which is evaluated for the massless case in Appendix D and one finds

Slin
2 (k) =

g2cS
(2π)6H2

∣∣∣∣∣
ie−i(1+c

S
)kη

−kη + cS {Ei [−i(1 + cS)kη]− iπ}
∣∣∣∣∣

2

. (3.54)

Here, Ei is the exponential integral function defined in (D.6). It is convenient to express the
above in terms of the number of e-folds N = ln(a) spent by the mode k outside the Hubble
radius. In a de-Sitter universe it is given by

Nk = − log(−kη) , (3.55)

such that Nk > 0 and Nk < 0 correspond to before and after Hubble-crossing, respectively. The
early (Nk ≪ −1) and late-time (Nk ≫ 1) behavior of the entropy can be obtained by expanding
Eq. (3.54) and one finds

Slin
2 (k) ≃





cSg
2

(2π)6H2

e2Nk

(1 + cS)
2

(sub-Hubble)

cSg
2

(2π)6H2
e2Nk (super-Hubble)

. (3.56)

The entropy is thus monotonously increasing, at a rate which is the same in both asymptotic
regimes, i.e. Slin

2 ∝ a2, with only a slight increase in the overall amplitude at around Hubble
crossing. This can be further checked in Fig. 13 where Eq. (3.54) is displayed.

Non-linear contribution

Evaluating Eq. (3.51) with Eq. (3.53), in Appendix D we show that

Nk(P,Q, η) =e
−i(k+c

S
P )η

{
−4ik(P 2 +Q2 − 2k2)

c3
S
(P 2 −Q2)Λ1

1

−kη +
cS(P

2 −Q2)(2k + cSP )

(k + cSP )
2Λ2

− (P 2 +Q2 − 2k2)

cS(k + cSP )Λ1

[
4kP

cS(P
2 −Q2)

+
2k + cSP

k + cSP

]

+
i

cS(k + cSP )

[
P 2 +Q2 − 2k2

Λ1
− c2

S
(P 2 −Q2)

Λ2

]
(−kη)

}
.

(3.57)
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Figure 13. Spectral purity S2(k) as a function of the number of e-folds Nk from Hubble-exit time, in
the case of a massless environment with g = 0.01H and c

S
= 1. Loop corrections overtake the tree-order

result at early times given by Eq. (3.65), which is displayed with the light-blue shaded region. The EFT
also breaks down at early time, see Eq. (3.66), which is displayed in dark blue. At late time, both the
linear and non-linear contributions grow like a2, the latter being suppressed with respect to the former
by ∆2

ζ/(4π
2c

S
)4.

Inserting this expression into the formula (3.50) one obtains UV divergences of the form SNL
2 ∝∫∞

k dP Pn for P → ∞ with n = −1, 0, 1, 2. These are reminiscent of the singular equal-time
limit of the environment correlator [102] as discussed below Eq. (3.46). Here they appear
as large-momentum divergences, which makes it possible to employ a variant of dimensional
regularization where we take for example9

∫ ∞

k

dP

k + cSP
→
∫ ∞

k

dP

k + cSP

(
P

µ

)ε

≃ − 1

cS

{
1

ε
− log

[
cSµ

(1 + cS)k

]}
+O(ε) . (3.58)

Here we have expanded near ε ≃ 0 and taken µ > 0 to be an arbitrary mass scale. Performing
the P - and then Q-integrals in Eq. (3.50) leads to

SNL
2 (k) =

g2H2

(2π)18
π

16

(
C1 e2Nk + C2 + C3 e−2Nk

)
, (3.59)

written in terms of the number of e-folds defined in Eq. (3.55) and with time-independent
coefficients given by

C1 = − 48

c6
S
Λ2
1

, (3.60)

C2 =
4

c3
S

(
9

c4
S
Λ2
1

− 1

Λ2
2

){
1

ε
− log

[
cSµ

(cS + 1)k

]}
+

264c6
S
+792c5

S
−1064c4

S
−3975c3

S
−1625c2

S
+1935c

S
+1185

45c7
S
(c

S
+1)3Λ2

1

9Strictly speaking, this regularization scheme is only tangentially related to dimensional regularization, which
would require the use of the mode functions in (4 + ε)-dimensional de Sitter space.
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−2(96c6
S
+288c5

S
+544c4

S
+855c3

S
+885c2

S
+585c

S
+195)

45c5
S
(c

S
+1)3Λ1Λ2

+
24c6

S
+72c5

S
+216c4

S
+405c3

S
+275c2

S
−45c

S
−75

45c3
S
(c

S
+1)3Λ2

2
(3.61)

C3 =
4

c3
S

(
1

c2
S
Λ1

− 1

Λ2

)(
c2
S
− 3

3Λ2
+

3− 5c2
S

3c2
S
Λ1

){
1

ε
− log

[
cSµ

(cS + 1)k

]}

+
88c4

S
+60c3

S
−80c2

S
−45c

S
+15

15c7
S
(c

S
+1)Λ2

1
− 2(32c4

S
+40c3

S
−60c2

S
−45c

S
+15)

15c5
S
(c

S
+1)Λ1Λ2

+
8c4

S
+20c3

S
−40c2

S
−45c

S
+15

15c3
S
(c

S
+1)Λ2

2
(3.62)

with further details of the derivation given in Appendix D.

UV logarithmic divergences: The coefficients C2 and C3 feature UV-divergent terms that
we now discuss. As argued below Eq. (3.52), a quantity that is immune to finite non-EFT
effects at small scales is the entropy production rate,

dSNL
2 (k)

dNk
=

g2H2

(2π)18
π

16

(
C1e2Nk − C3e−2Nk

)
, (3.63)

from which C2 absent. At late time indeed, the constant term C2 may receive contributions
from effects occurring before the EFT became valid, which we cannot properly account for and
that may cancel out the divergences in Eq. (3.61). By considering the decoherence rate we are
focusing on late-time effects, which are within the reach of the EFT.

For C3, the divergent term is controlled by (c2
S
− 3)/Λ2 + (3− 5c2

S
)/(c2

S
Λ1). As mentioned

below Eq. (3.9), in the case where the term controlled by M̃3 can be neglected in the interaction
Lagrangian (3.4), the relation Λ2 = −Λ1 holds. Moreover, if the term controlled by M2 in
the system’s Lagrangian (3.1) can be neglected too, then c2

S
= 1, see Eq. (3.6). Under these

conditions the divergent term in C3 thus cancels out. Both M2 and M̃3 control terms involving
(δg00)2 ⊃ π̇3, π̇(∂iπ)

2, which are expected to contribute to spectral purity (by coupling a given
Fourier mode to all other Fourier modes) but which we have neglected. It is therefore reasonable
to assume that these contributions cancel out the divergent term in C3. In other words, only
when cS = 1 and Λ2 = −Λ1 can one consistently discard terms of order (δg00)2 in the Lagrangian
and we will therefore assume that this is the case in what follows.

Under these conditions C3 is finite and given by

C3 = − 4

3Λ2
1

. (3.64)

The term it controls in Eq. (3.59) is displayed with the dotted line in Fig. 13, while the term
controlled by C1 is displayed with the dashed line. Let us further discuss the contributions of
these terms at early and late time.

Early-time perturbative breakdown: At sub-Hubble scales, the non-linear contribution
takes over the linear contribution, since

SNL
2 (k)

Slin
2 (k)

∣∣∣∣
sub-Hubble

= −
∆2

ζ

24(2π)9
e−4Nk , (3.65)

where we have used Eqs. (3.9) and (3.10). This becomes larger than unity (in absolute value)
at early time, when

aH

k
<

[
∆2

ζ

24(2π)9

]1/4
≃ 5× 10−5 , (3.66)

– 35 –



i.e. ≃ 10 e-folds before Hubble crossing. One should recall nonetheless that the EFT treatment
breaks down when

aH

k
<

g

H

√
8π2∆2

ζ , (3.67)

see Eq. (3.36). The two breaking scales coincide when g/H = 0.1. Therefore, when g is
parametrically smaller than H, the EFT becomes valid before the loop corrections we have
computed become sub-dominant. In any case, the above discussion confirms that our results
should be trusted at late time only, i.e. around and after Hubble crossing.

Late-time decoherence: At super-Hubble scales, both the linear and the non-linear contri-
butions to spectral purity grow like a2 and adding them together leads to

S2(k)|super−Hubble =
cS

(2π)6
g2

H2

[
1− 1

(2π)9
3

8

∆2
ζ

c4
S

]
e2Nk . (3.68)

At late time, the entropy thus grows as the universe’s “area” a2. The fact that it grows
confirms the CPTP nature of the non-unitary evolution, see the discussion below Eq. (2.39).
Loop contributions only provide a small correction (as long as cS > 10−4), and decoherence,
which we may define as S2(k) > 1, occurs when

aH

k
> (2π)3

H

g
√
cS
. (3.69)

The link between purity and linear entropy is given by Eq. (2.42), which allows one to
define an effective purity per Fourier mode

γk = e−S2(k) . (3.70)

This quantity is displayed in Fig. 14, which confirms that decoherence takes place soon after
Hubble crossing. One might be concerned that, since S2 has been computed to order g2 in
perturbation theory, only a linearized version of Eq. (3.70) should be used, namely γk ≃ 1 −
S2(k), for consistency. However, in Ref. [91] it is shown that Eq. (3.70) is able to efficiently
resum secular effects due to the late-time growth of the linear entropy. This was shown by
comparison with an exact, transport-equation based solution as presented in Ref. [52]. This is
why we trust Eq. (3.70) to provide a reliable assessment of decoherence even in the strongly
decohered regime.

3.2.2 Conformal environment

Let us consider the case where the environmental field σ is conformally coupled to gravity,
i.e. iµσ = 1

2 . In this case Eq. (3.31) reduces to vσ(k, η) = e−ikη/
√
2π and in Appendix D we

show that the linear contribution to the entropy is given by

Slin
2 =

g2cS
(2π)6H2

|Ei [−i(cS + 1)kη]− iπ|2 ≃





cSg
2

(2π)6H2

e2Nk

(1 + cS)
2

(sub-Hubble)

cSg
2

(2π)6H2
N2

k (super-Hubble)

. (3.71)

We have checked that the agreement between these expressions and the result of the transport-
equation method (exact numerical treatment) presented in Refs. [52, 91] is excellent. It is
interesting to notice that, at sub-Hubble scale, we get the exact same behavior as in the massless
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case, see Eq. (3.56). However, at super-Hubble scales, entropy production is much slower, since
it proceeds as S2 ∝ ln2(a) instead of S2 ∝ a2.

The non-linear contribution can be computed following similar steps as in the massless
case. At early time, before the Fourier mode crosses the Compton length, i.e. when k/a > m,
the same result as in the massless-environment case are recovered. At late time, Eq. (3.51)
is evaluated by first integrating over η′, then expanding the result in −kη ≪ 1, and finally
integrate over P and Q. This leads to

S2(k)|super-Hubble ≃
cS

(2π)6
g2

H2

[
1− 1

(2π)9
3

8

∆2
ζ

c4
S

]
N2

k . (3.72)

As before, the non-linear contribution increases with time at the same rate as the linear one,
and is suppressed by ∆2

ζ/c
4
S
. The case of a conformal environment is displayed in Fig. 14 with

orange curves.

3.2.3 Heavy environment

Let us finally consider the case where the environment is heavy (m≫ H), where for simplicity we
additionally assume that cS = 1 and focus on the entropy production rate. Inserting Eq. (3.31)
into Eq. (3.49) leads to [52, 91]

dSlin
2 (k)

dη

∣∣∣∣
c
S
=1

= − kg2

32π5H2
ℜe
[
e−πµH

(1)
iµ (−kη)e−ikηFµ(−kη)

]
(3.73)

for the linear contribution, where

Fµ(z) ≡ γ∗µF (z)gµF (z) + δ∗µF (z)g−µF (z) (3.74)

and we have introduced the notations

γµF (z) ≡
1 + cothπµF
Γ(1 + iµF )

(z
2

)iµF
, δµF (z) ≡

−1

sinhπµF

1

Γ(1− iµF )

(z
2

)−iµF
(3.75)

and

gµF (z) =
1

1− 2iµF
2F2

1
2
−iµF , 1

2
−iµF

3
2
−iµF ,1−2iµF

(−2iz) , (3.76)

with 2F2 being the (2, 2)-generalized hypergeometric function. We have checked that the agree-
ment of these expressions with the transport-equation method is again excellent. The above
expressions can be expanded at early and late time and one finds

dSlin
2 (k)

dNk

∣∣∣∣
c
S
=1

=





g2

2(2π)6H2
e2Nk (sub-Hubble)

− g2

(2π)6H2

4

µ(1 + 4µ2)
e−Nk (super-Hubble)

. (3.77)

At sub-Hubble scales, one recovers again the same result as in the massless and the conformal
case, see Eqs. (3.56) and (3.71) respectively. At super-Hubble scales however, the situation is
quite different since the entropy production rate becomes negative, which signals the presence
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Figure 14. Per-mode purity γk, see Eq. (3.70), as a function of the number of e-folds Nk spent by a
given scale outside the Hubble radius, for g = 0.05H, c

S
= 1 and ∆2

ζ/(4π
2c

S
)4 = 1. The value of ∆2

ζ is
unrealistically large, but this is to amplify non-linear corrections that would otherwise not be visible by
eye. The solid line stand for the linear contributions, and the dotted lines correspond to the sum of the
linear and non-linear contributions. If the environment is massless (blue curves) or conformally coupled
(orange curves) decoherence takes place at late time, while recoherence occurs after a transient phase of
slight decoherence if the environment is heavy (green curves). The right panel zooms in on the region
γk ≃ 1.

of recoherence [52]. In the heavy mass limit m≫ H, µ ≃ m/H, see Eq. (3.29), and at late time
one obtains

γk|super-Hubble = γ∞ − g2

16π6H2

H3

m3
e−Nk , (3.78)

where γ∞ has been computed in Ref. [91] and is given by

γ∞ ≃ 1− g2

8π4H2
e−2πm

H . (3.79)

For the non-linear contribution, closed-forms expressions cannot be reached, but the rel-
evant integrals can be expanded in the sub- and super-Hubble regimes. At early time, before
the Compton length is crossed out, the same results as in the massless and conformal cases are
recovered. At late time, we find

dS2(k)

dNk

∣∣∣∣
super-Hubble

≃ g2

(2π)6H2

4

µ(1 + 4µ2)

[
1− 1

(2π)9
3

8

∆2
ζ

c4
S

]
e−Nk , (3.80)

where we have reinstated cS . Again, the non-linear contribution has the same time dependence
as the linear one, and is suppressed by the exact same amount, see Eqs. (3.68) and (3.72). It
is thus interesting to notice that the recoherence mechanism identified in Ref. [52] seem robust
to loop corrections. Since non-linear interactions mix all Fourier modes, hence substantially
enlarge the size of the effective environment compared to linear interactions that only mix
Fourier modes of the same wavevector, this may not be obvious a priori and constitutes an
important verification. The heavy-environment case is displayed in green in Fig. 14.

4 Outlook

We have shown how quantum purity (also known as linear entropy), although not an observable,
can be computed perturbatively using in-in methods. We have applied our formalism to a model
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of cosmological interest and found that under conditions that we identified, the perturbative
calculation is indeed under control, and provides a relevant framework to investigate quantum
decoherence of cosmological fluctuations. Let us now mention a few prospects our work opens,
both conceptual and phenomenological, before presenting concluding remarks.

4.1 Scaling dimensions

Beyond the specific model we have considered, a generic question of interest consists in iden-
tifying the interactions leading to late-time decoherence of the curvature perturbation. Let us
consider Eq. (3.52) again, which we reproduce here in the case where the interaction strength
can depend on time explicitly

dS2(k)

dη
≃ 8

(2π)6
g(η)

∫ η

−∞
dη′ g(η′)ℜe

[
K̄(2)

S (k, η, η′)K̄(2)
E (k, η, η′)

]
. (4.1)

Let us assume that g evolves in time as g ∝ a∆g , where ∆g is the scaling dimension of the
coupling. Our goal is to determine the scaling dimension of the decoherence rate, i.e. the
quantity ∆s such that

dS2
dη

∝ a∆s at late time. (4.2)

If ∆s < 0, the purity asymptotes a constant at late time, while if ∆s ≥ 0, the linear entropy
keeps increasing at late time and decoherence takes place.

We parametrize the late-time (or “near-boundary” in the language of Refs. [166, 167])
scaling behavior of the operators appearing in the interaction Hamiltonian H̃int(η) with

ÕS/E
k (η) → a∆

S/E
+ ÕS/E

+ (4.3)

where ÕS/E
+ are time-independent up to O(a−1) corrections. Assuming that the late-time be-

havior of the entropy production is controlled by the late-time scaling of the two-point functions
of the system and the environment,

K̄(2)
S (k1,k2, η1, η2) → [a(η1)a(η2)]

∆S
+ , (4.4)

K̄(2)
E (k1,k2, η1, η2) → [a(η1)a(η2)]

∆E
+ , (4.5)

we obtain

Scaling dimension of entropy production:

∆s = 2∆S
+ + 2∆E

+ + 2∆g − 1. (4.6)

Let us consider a few example of interests. For the model discussed in Sec. 3, the system is
described by a massless field, and by expanding Eq. (3.30) at late time one finds π ∝ constant+
η2, hence ∆π = 0 and ∆π′

= −1. The environment consists of a test field with mass mσ, for
which by expanding Eq. (3.31) at late time one finds [166, 167]

∆E
+ = ℜe

(√
9

4
− m2

H2

)
− 3

2
. (4.7)

– 39 –



There are three interaction terms in Eq. (3.8), which come with coupling scaling-dimensions

∆π′σ
g = 3, ∆

(∂iπ)
2σ

g = 2 and ∆π′2σ
g = 2 respectively. With Eq. (4.6) one thus finds

∆π′σ
s =∆(∂iπ)

2σ
s ≡ ∆s = 3 + 2∆E

+ ,

∆π′2σ
s =− 1 + 2∆E

+ .
(4.8)

Several comments are in order. First, the π′2σ interaction becomes negligible at late time since
its scaling dimension is systematically smaller than for the other interaction terms. This is
consistent with the results of Sec. 3 where C1 depends on Λ1 but not on Λ2, see Eq. (3.60).
Second, the scaling dimension of the non-linear contributions coincide with the one of the linear
term, which is again consistent with the results of Sec. 3, see Eqs. (3.68), (3.72) and (3.80).
Third, for m = 0 one obtains ∆s = 3 which is compatible with Eq. (3.68), for m =

√
2H

(conformal environment) one obtains ∆s = 1 which is compatible with Eq. (3.72), and for
m > 3H/2 one finds ∆s = 0, which is again compatible with Eq. (3.80), recalling that ∂η = a∂N .

More than a mere consistency check of the Sec. 3, this shows that the rate at which deco-
herence or recoherence proceeds at late time can be readily anticipated from scaling arguments,
which proves particularly convenient.10 Another example of the scaling argument is the case
where, instead of letting the curvature perturbation interact with a scalar hidden sector, one
considers environments made of higher-spin particles, like for instance the tensor modes γij of
General Relativity [54]. Applying the above procedure to Maldacena’s seminal cubic action
derived in Ref. [122], we observe that among the tensor-scalar-scalar interaction terms, only
γij(∂iζ)(∂jζ) leads to late-time decoherence of the curvature perturbations with ∆s = 3. Simi-
larly, in the scalar-tensor-tensor sector, the only late-time decohering operator is ζ(∂ℓγij)(∂ℓγij)
with ∆s = 3. Both of these contributions are ϵ21 suppressed and lead to decoherence as found
in Ref. [54].11 Importantly, we note that interactions generating late-time decoherence are not
so common.12 One could also apply similar techniques to spin 1/2 (see e.g. Ref. [168]) and spin
1 (see e.g. Refs. [169–172]) environments, which we leave for future work.

Finally, let us stress that the scaling dimension may not only allow one to determine
whether decoherence takes place at late time or not, it may also determine whether quantum
features get erased or not. Indeed, in Refs. [13, 120], it was found that due to the competition
between decoherence and quantum squeezing at large scales, quantum discord still grows at late
time if decoherence proceeds slow enough, i.e. γk ∝ a−p with p < 4. This corresponds to a
scaling dimension ∆s < 5. Three cases can therefore be encountered:

Scaling dimension and quantum-to-classical transition.

• ∆s < 0: purity asymptotes a constant (possibly with recoherence) and decoherence
does not take place.

• 0 ≤ ∆s < 5: decoherence takes place but quantum signatures remain (quantum

10Note that there are cases where the late-time behavior of the purity is not only controlled by the late-time
scaling (4.3) and the scaling argument fails. For instance, in Ref. [102], only light environments satisfy the scaling
argument but heavy environments do not.

11Resumming secular effects can sometimes change the scaling and this is why Ref. [54] rather finds ∆s = 4 at
late times using a Markovian master equation.

12If instead of considering a bipartition in terms of quantum numbers (mass, spin), one considers a bipar-
tition in terms of a momentum cutoff kUV [54, 75], one could also investigate EFToI self-interactions π′3 and
(∂iπ)

2π′, which would naively lead to scaling dimensions ∆s = −6 and ∆s = −2 respectively, hence no late-time
decoherence of the long-wavelength modes.
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discord still increases).

• ∆s ≥ 5: decoherence takes place and quantum signatures are erased.

4.2 Kraus measurement

We have seen in Sec. 2.6 that the nth-order correction to the total density matrix ρ̃(n) can
be written under the form (2.59). This brings our perturbative framework to a language that
is close to the one of quantum operations or dynamical maps [62], where the evolution of the
system is written as

ρ̃(n)(η) =
∑

m∈M
Φm (|BD⟩ ⟨BD|) . (4.9)

Here, M is the set of possible outcomes or a generalized measurement. The maps Φm are
completely positive and trace preserving if and only if there exists a countable set of operators
Ωmk fulfilling

∑

k

Ω†
mkΩmk ≤ 1 , (4.10)

such that the maps act on the initial vacuum state according to [173]

Φm (|BD⟩ ⟨BD|) =
∑

k

Ωmk |BD⟩ ⟨BD|Ω†
mk . (4.11)

From Eq. (2.59), it should be possible to relate the Ωmk operators to the ones appearing
in the Kraus representation of Sec. 2.6.1, i.e. to the system and environment unequal-time
correlators. In this way, the CPTP constraint (4.10) should give rise to a set of conditions on
these correlators. Those might be interpretable in terms of statistical inequalities that would
guarantee the existence of underlying well-defined distributions, hence the CPTP nature of
the dynamical map, along the lines of Refs. [174, 175]. This would be similar in spirit to the
cosmological bootstrap program (see Ref. [176] for a recent review) where unitarity is used to
constrain the structure of the correlators [116, 177–179]. In the absence of unitarity, other
symmetries can be used to constrain the effective theory, see Refs. [95, 180], and this picture
would certainly benefit from CPTP constraints, the exploration of which is left for future work.

5 Conclusions

The extent to which cosmological fluctuations decohere in the early universe is key to char-
acterizing the strength of possible signatures of their quantum origin, as well as investigating
the imprint of environmental degrees of freedom in general. However, the use of standard in-in
techniques to compute decoherence measures, such as quantum purity, is not straightforward for
two reasons. First, in-in methods are typically developed for unitary theories, whereas cosmo-
logical fluctuations evolve non-unitarily when coupled to an environment and should therefore
be treated as an open quantum system. Second, purity and entanglement entropy cannot be
simply expressed as the expectation value of observable operators. Consequently, standard per-
turbative in-in techniques must be adapted to compute these quantum information measures.

The goal of this work is to develop such a framework. We have shown how, at leading
order in a perturbative expansion in the interaction strength, purity can be expressed in terms
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of the convolution of unequal time correlators of the system and the environment. For linear
interactions, the Fourier modes of the system decouple and they remain in a Gaussian state. The
amount by which each Fourier sector decoheres is decided by the determinant of its covariance
matrix, hence the two-point functions of the system entirely determine its quantum state, as
expected.

In the presence of non-linear interactions, the Fourier modes cannot be treated separately
but we have introduced the concept of spectral purity, in order to quantify the contribution of
each scale to the overall entropy of the field. We have also found that, when the interaction is
quadratic in the system’s field variables, the spectral purity is still given by the determinant
of the covariance matrix (with an additional factor of 1/2). Technically, this is because the
perturbations of the covariance matrix determinant and the particle number expectation value
are related to one another. In practice, this means that even when the system is in a non-
Gaussian state, its purity is still determined by its Gaussian moments at leading order, provided
the interaction is quadratic in its field variables. In the case where both linear and quadratic
interactions are present, non-linearities appear through loop corrections to the power spectra
at higher order in perturbation theory.

We have cast our perturbative framework in terms of a diagrammatic expansion presented
in Sec. 2.6.2, which involves unequal time correlators represented by blobs. One has to combine
this diagrammatic approach to the usual in-in techniques [113] to compute the blobs. The benefit
of this formulation is however to single out the contributions that are effectively contributing
to a change in the purity. If one had used an in-in approach from the get-go, a much larger
number of diagrams would have had to be considered. This highlights how our formalism can
be used in synergy with the usual in-in techniques.

We then applied our formalism to a model of cosmological interest, where adiabatic per-
turbations couple to entropic degrees of freedom during inflation. By considering a subset of
interactions within the Effective Field Theory of Inflation (EFToI), we were able to explore a
non-linear extension of the results presented in Ref. [52].

We have found that the perturbative expansion breaks down at early time, but this is
also where the EFT is expected to become invalid. At late times however, our framework can
be trusted and it indicates that loop corrections, i.e. the effects of the considered non-linear
interaction terms, are suppressed by ∆2

ζ/c
4
S
, where ∆2

ζ is the amplitude of the curvature power
spectrum at the scale of interest, and cS is the effective speed of sound. When the environment
is massless, we show that linear entropy grows as a2, leading to rapid decoherence after Hubble
crossing. For an environment that is conformally coupled, linear entropy grows as ln2 a, resulting
in slower decoherence. Finally when the environment is heavy compared to the Hubble scale,
the system experiences a transient phase of limited decoherence before recohering. In this case,
the purity asymptotes to a constant at late times, remaining exponentially close to unity.

Note that this phenomenon of recoherence was observed in Ref. [52], but doubts arose
in the community whether this was merely a result of considering a bilinear mixing π′σ
between system and environment, raising concerns about the persistence of recoherence in
the presence of non-linear interactions. The heuristic reason is the following. Recoherence is
a clear symptom of non-Markovianity, while Markovian behavior is usually expected when
the environment is “large enough”. In the case of linear interactions, the system (i.e. a given
Fourier mode of the curvature perturbation) couples to a single degree of freedom (i.e. the same
Fourier mode of the isocurvature field), and this is why observing non-Markovian signatures
is maybe not so surprising. However, in the presence of non-linear interactions, the system
couples to all Fourier modes of the environment, which might lead one to expect primarily
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Markovian evolution. Nevertheless, we have demonstrated that recoherence persists for the
class of non-linear operators considered in this work. This indicates a robustness to loop effects,
and our discussion of scaling dimensions reveals that far from being an academic curiosity,
recoherence is in fact expected in a large number of cases.

The line of research presented in this work could be extended in various directions. First,
the formalism we developed is generic and one may want to apply it to other cosmological
and non-cosmological setups (see e.g. Refs. [49, 50, 58] in the context of black holes and
Ref. [96] for holography). When doing so, one might encounter situations in which non-linear
self-interactions of the system and/or the environment are at play. In this case, three pertur-
bative expansions should be implemented simultaneously: one in the self-interaction strength
of the system gS , one in the self-interaction strength of the environment gE , and one in the
system-environment coupling g. If gS , gE ≪ g (in the right units), the gS and gE expansions
should be performed first, and the framework presented in this work can still be employed,
where the self-interaction terms only give rise to corrections in the system and environment
unequal-time correlators. In the opposite regime however, a different expansion scheme might
be required.

It may also happen that the relevant system and environment bipartition is not defined
in terms of fields but rather in terms of different regions in physical space or different mode
intervals of a given field. In that case, although the perturbative expansion should follow a
similar structure as the one developed in this work, it might need to be generalised if the
interaction Hamiltonian is not of the local form (2.22).

Second, one could consider alternative measures of decoherence and quantum entangle-
ment, such as entanglement entropy or logarithmic negativity. At perturbative order, these
measures can be simply interconnected, as discussed in Sec. 2.7, but they may deliver different
outcomes upon resummation.

Third, as divergences often appear in perturbative computations [181, 182], the renor-
malization of open quantum systems in the field theoretic context might also requires further
investigations (see e.g. Refs. [183, 184]). In particular, we have found that a divergent contri-
bution to the entropy arises from early-time interactions in the model we considered [this is the
term proportional to C2 in Eq. (3.59)]. When considering the entropy production rate this term
drops out, hence at late time where the EFT become valid it plays no role, but the entropy
rate still involves an integral over time, see Eq. (3.52). How early-time interactions decouple
from late-time dynamics is therefore not obvious in general. A better understanding of diver-
gences and renormalization in open quantum systems – potentially informed by recent studies
of finite-dimensional or harmonic oscillator open systems, such as those in Refs. [185–187] – may
be necessary to determine more clearly whether and how a theory decouples at small scales.

Fourth, one might speculate that just as two-point functions characterize purity even for
non-linear quadratic interactions at leading order, higher-order statistics like the bispectrum
or trispectrum could potentially characterize purity at higher orders in the coupling or in the
presence of higher-order interactions.

Fifth and finally, now that the problem is framed in terms of (equal or unequal-time)
correlators, further investigation into the role of symmetries, UV unitarity, and locality in the
evolution of the system’s quantum information properties would be valuable. We leave this
exploration for future work.
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A Perturbative Gaussianity

In the case of linear interactions, the system remains in a Gaussian state, hence it is fully
characterized by its covariance matrix

δ(0) Covij(k, η) =
1

2

〈
z̃i(k, η)z̃

†
j (k, η) + z̃j(k, η)z̃

†
i (k, η)

〉
, (A.1)

see Eq. (2.49). Here, z̃(k, η) is a phase-space vector gathering the phase-space variables de-
scribing the k Fourier mode of the system. For explicitness, we will consider the case where the
system is made of a single scalar degree of freedom denoted π, hence z̃ = [ṽπ(k, η), p̃π(k, η)]

T

contains a position operator, ṽπ(k, η), and its conjugate momentum, p̃π(k, η). The quantum
state for the system factorizes between different Fourier modes, ρ̃red =

⊗
k∈R3+ ρ̃red(k), see

Sec. 2.3, and the purity for each Fourier mode is fully determined by the determinant of the
covariance matrix,

S2(k) = ln [4 detCov(k, η)] , (A.2)

see Sec. 2.4. At order g2, this gives rise to

S
(2)
2 (k) = 4det(2)Cov(k, η) . (A.3)

When interactions are non linear, these considerations do not apply, and the purity receives
contribution from all n-point correlation functions. In this appendix, our goal is to show that
at order g2, for interactions that are quadratic in the system’s phase-space variables, only the
two-point functions contribute, hence Eq. (A.3) remains valid (with an additional factor 2)
even though the system is not in a Gaussian state anymore.

Without loss of generality, we consider the case where the operators appearing in the
interaction Hamiltonian are centred, see the discussion below Eq. (2.27), hence the system is
not modified at order g and the first environmental effects appear at order g2. At this order,
one has

det(2)Cov = Cov
(2)
11 Cov

(0)
22 +Cov

(2)
22 Cov

(0)
11 − 2Cov

(2)
12 Cov

(0)
12 . (A.4)

In the free theory, the phase-space operators can be expanded onto creation and annihilation
operators by means of the free, Bunch-Davies normalized mode functions z(k, η), according to

z̃(k, η) = z(k, η)ĉk + z∗(k, η)ĉ†−k, (A.5)

where ĉk and ĉ†k are the annihilation and creation operators and z(k, η) = [vπ(k, η), pπ(k, η)]
T

gathers the mode functions. This implies that Cov(0)(k, η) contains the free power spectra and
can be expressed in terms of the mode functions as

Cov
(0)
ij (k, η) =

1

2

[
zi(k, η)z

∗
j (k, η) + z∗

i (k, η)zj(k, η)
]
. (A.6)
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The entries of Cov(2) correspond to expectation values computed against ρ̃
(2)
red. For a generic

quantum operator Q̂, one has

〈
Q̂(η)

〉(2)
≡ Tr

[
Q̃(η)ρ̃

(2)
red(η)

]
(A.7)

where ρ̃
(2)
red(η) is given in Eq. (2.29) that we reproduce here for clarity

ρ̃
(2)
red(η) = −

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3p

(2π)3

∫
d3q

(2π)3
(A.8)

{[
ÕS

p (η1)ÕS
q (η2) |BD⟩ ⟨BD|S − ÕS

q (η2) |BD⟩ ⟨BD|S ÕS
p (η1)

]
K(2)

E (p, q, η1, η2)

−
[
ÕS

p (η1) |BD⟩ ⟨BD|S ÕS
q (η2)− |BD⟩ ⟨BD|S ÕS

q (η2)ÕS
p (η1)

]
K(2)

E (q,p, η2, η1)

}
.

It leads to

〈
Q̂(η)

〉(2)
= −

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3p

(2π)3

∫
d3q

(2π)3{
K(2)

E (p, q, η1, η2)
〈[
Q̃(η), ÕS

p (η1)
]
ÕS

q (η2)
〉

(A.9)

−K(2)
E (q,p, η2, η1)

〈
ÕS

q (η2)
[
Q̃(η), ÕS

p (η1)
]〉}

where brackets represent vacuum expectation values in the initial vacuum state.
In practice, the determinant in Eq. (A.4) can be obtained from Eq. (A.9) by replacing

Q̃(η) = Cov
(0)
22 (k, η)ṽπ(k, η)ṽπ(−k, η) +Cov

(0)
11 (k, η)p̃π(k, η)p̃π(−k, η)

−Cov
(0)
12 (k, η) [ṽπ(k, η)p̃π(−k, η) + p̃π(k, η)ṽπ(−k, η)] . (A.10)

Making use of the canonical commutation relations,

[ṽπ(k, η), ṽ
†
π(k

′, η)] =[p̃π(k, η), p̃
†
π(k

′, η)] = 0 , (A.11)

[ṽπ(k, η), p̃
†
π(k

′, η)] =iδ(k − k′) , (A.12)

and recalling that ṽπ(−k, η) = ṽ†π(k, η) and p̃π(−k, η) = p̃†π(k, η), the above can be rewritten as

Q̃(η) = Cov
(0)
22 (k, η)ṽ

†
π(k, η)ṽπ(k, η) +Cov

(0)
11 (k, η)p̃

†
π(k, η)p̃π(k, η)

−Cov
(0)
12 (k, η)

[
p̃†π(k, η)ṽπ(k, η) + ṽ†π(k, η)p̃π(k, η)

]
. (A.13)

Let us cast this relationship in matricial form. First, one has

Q̃(η) =
1

4
z̃†(k, η)

[
Cov(0)(k, η)

]−1
z̃(k, η) , (A.14)

where we have used that the inverse of the free covariance matrix can be written as

[
Cov(0)(k, η)

]−1
=

1

detCov(0)

(
Cov

(0)
22 (k, η) −Cov

(0)
12 (k, η)

−Cov
(0)
12 (k, η) Cov

(0)
11 (k, η)

)
(A.15)
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where detCov(0) = 1/4 since in the free theory the system is placed in a pure Gaussian state.
Then, we rewrite Eq. (A.5) as

z̃(k, η) = M(k, η) · ĉk where M(k, η) =

(
vπ(k, η) v

∗
π(k, η)

pπ(k, η) p
∗
π(k, η)

)
and ĉk =

(
ĉk
ĉ†−k

)
. (A.16)

The creation and annihilation operators obey the commutation relations

[ĉk, ĉ
†
k′ ] = δ(k − k′) and [ĉk, ĉ

′
k] = [ĉ†k, ĉ

†
k′ ] = 0 (A.17)

hence for Eqs. (A.11) and (A.12) to be satisfied the free mode functions must be such that

vπ(k, η)p
∗
π(k, η)− v∗π(k, η)pπ(k, η) = i . (A.18)

Using this relation repeatedly, one can readily show that

MT∗(k, η) ·
[
Cov(0)(k, η)

]−1
·M(k, η) = 2 Id2 , (A.19)

where Id2 is the 2× 2 identity matrix. As a consequence,

Q̃(η) =
1

2
ĉ†kĉk =

1

2

(
ĉ†kĉk + ĉ−kĉ

†
−k

)
, (A.20)

hence Q̃(η) is in fact independent of η and is directly related to the particle-number operator.
Inserting Eq. (A.20) into Eq. (A.9), one thus obtains

det(2)Cov =− 1

2

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3p

(2π)3

∫
d3q

(2π)3{
K(2)

E (p, q, η1, η2)
〈[
ĉ†kĉk + ĉ−kĉ

†
−k, ÕS

p (η1)
]
ÕS

q (η2)
〉

(A.21)

−K(2)
E (q,p, η2, η1)

〈
ÕS

q (η2)
[
ĉ†kĉk + ĉ−kĉ

†
−k, ÕS

p (η1)
]〉}

.

Recalling that K(2)
S/E(−k2,−k1, η2, η1) = [K(2)

S/E(k1,k2, η1, η2)]
∗, and using the fact that the

ÕS(x) operators are Hermitian, hence ÕS
−k = (ÕS

k )
†, the two terms appearing in the above

expression are complex conjugate of each other, hence one can write

det(2)Cov =−
∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3p

(2π)3

∫
d3q

(2π)3

ℜe
{
K(2)

E (p, q, η1, η2)
〈[
ĉ†kĉk + ĉ−kĉ

†
−k, ÕS

p (η1)
]
ÕS

q (η2)
〉}

. (A.22)

Upon introducing the particle number operator

N̂ =

∫
d3k

(2π)3
ĉkĉ

†
k , (A.23)

the above leads to
∫

d3k

(2π)3
det(2)Cov =− 2

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3p

(2π)3

∫
d3q

(2π)3
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ℜe
{
K(2)

E (p, q, η1, η2)
〈[
N̂ , ÕS

p (η1)
]
ÕS

q (η2)
〉}

. (A.24)

Since N̂ vanishes when acted on the vacuum, this finally gives
∫

d3k

(2π)3
det(2)Cov =2

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3p

(2π)3

∫
d3q

(2π)3

ℜe
{
K(2)

E (p, q, η1, η2)
〈
ÕS

p (η1)N̂ÕS
q (η2)

〉}
. (A.25)

Our next task is to compute the correlator appearing in the above expression. For explic-
itness, let us assume that ÕS is of order n in the phase-space operators,

ÕS(x, η) = Cα1···αn(η)z̃α1(x, η) · · · z̃αn(x, η), (A.26)

where αi ∈ {1, 2} and Cα1···αn are free coefficients, so when Fourier expanding the above expres-
sion ÕS

p is of the form

ÕS
p (η1) = (2π)3

∫
d3p1

(2π)3
· · ·
∫

d3pn

(2π)3
Cα1···αn (η1) z̃α1(p1, η1) · · · z̃αn(pn, η1)δ (p1 + · · ·+ pn − p) .

(A.27)

As mentioned above, we consider the case where ⟨ÕS
k (η)⟩ = 0. This implies that, when n is

even, the mean value is implicitly subtracted from the above expression. Let us now investigate
the first values of nn to gain more intuition on the above results.

• n = 1

When n = 1, one has

〈
ÕS

p (η1)N̂ÕS
q (η2)

〉
=

∫
d3k

(2π)3
Cα1(η1)Cα2(η2)

〈[
zα1(p, η1)ĉp + z∗α1

(p, η1)ĉ
†
−p

]
N̂k

[
zα2(q, η2)ĉq + z∗α2

(q, η2)ĉ
†
−q

]〉
,

(A.28)

where N̂k = ĉkc
†
k. The only non-vanishing contribution arises from creating a particle with ĉ†−q

and destroying it with ĉp, so one finds

〈
ÕS

p (η1)N̂ÕS
q (η2)

〉
=

∫
d3k

(2π)3
Cα1(η1)Cα2(η2)zα1(p, η1)z

∗
α2
(q, η2)

〈
ĉpN̂kĉ

†
−q

〉

=

∫
d3k

(2π)3
Cα1(η1)Cα2(η2)zα1(p, η1)z

∗
α2
(q, η2)

〈
ĉpĉ

†
−q

〉
δ (k + q)

=

∫
d3k

(2π)3
Cα1(η1)Cα2(η2)zα1(p, η1)z

∗
α2
(q, η2)δ (p+ q) δ (k + q)

=Cα1(η1)Cα2(η2)zα1(p, η1)z
∗
α2
(q, η2)

δ (p+ q)

(2π)3
. (A.29)

One can readily see that a similar calculation gives the same result for
〈
ÕS

p (η1)ÕS
q (η2)

〉
, up to

the factor (2π)−3, hence
〈
ÕS

p (η1)N̂ÕS
q (η2)

〉
= (2π)−3

〈
ÕS

p (η1)ÕS
q (η2)

〉
= (2π)−3K̄

(2)
S (p, η1, η2)δ (p+ q) , (A.30)
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see Eqs. (2.31) and (2.46). Inserting this formula into Eq. (A.25), one has

∫
d3k det(2)Cov =2(2π)−6

∫ η

−∞
dη1

∫ η1

−∞
dη2

∫
d3pℜe

[
K̄

(2)
E (p, η1, η2)K̄

(2)
S (p, η1, η2)

]
,

(A.31)
where we have used Eq. (2.46) again. By comparison with Eq. (2.48), this can be written as

∫
d3k det(2)Cov =

1

4

∫
d3k S

(2)
2 (k) , (A.32)

hence

S
(2)
2 (k) = 4det(2)Cov , (A.33)

which is the result announced, see Eq. (A.3). When n = 1, as explained in Sec. 2.4 the system
remains in a Gaussian state and this result is already known, it also holds at all orders in g.
The above derivation is however a consistency check of the validity of the present formalism.

• n = 2

When n = 2, one has to compute

〈
ÕS

p (η1)N̂ÕS
q (η2)

〉
=

∫
d3k

(2π)3

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3q1
(2π)3

∫
d3q2
(2π)3

δ(p1 + p2 − p)δ(q1 + q2 − q)Cα1α2(η1)Cβ2β2(η2)〈[
zα1(p1, η1)ĉp1 + z∗α1

(p1, η1)ĉ
†
−p1

] [
zα2(p2, η1)ĉp2 + z∗α2

(p2, η1)ĉ
†
−p2

]
N̂k

[
zβ1(q1, η1)ĉq1 + z∗β1

(q1, η2)ĉ
†
−q1

] [
zβ2(q2, η1)ĉq2 + z∗β2

(q2, η2)ĉ
†
−q2

]〉
.

(A.34)

Amongst the several terms arising from developing the square brackets, the only one that is not
annihilated by the particle-number operator is the one involving ĉp1 ĉp2N̂kĉ

†
−q1 ĉ

†
−q2 . Making use

of the commutation relations (A.17), one has

[
N̂k, ĉ

†
−q1 ĉ

†
−q2

]
= ĉ†−q1 ĉ

†
−q2 [δ (k + q1) + δ (k + q2)] . (A.35)

Upon integrating over k, one thus finds

〈
ÕS

p (η1)N̂ÕS
q (η2)

〉
=2(2π)−3

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3q1
(2π)3

∫
d3q2
(2π)3

δ(p1 + p2 − p)δ(q1 + q2 − q)Cα1α2(η1)Cβ2β2(η2)

zα1(p1, η1)zα2(p2, η1)z
∗
β1
(q1, η2)z

∗
β2
(q2, η2)

〈
ĉp1 ĉp2 ĉ

†
−q1 ĉ

†
−q2

〉
. (A.36)

This coincides with the expression one obtains for ⟨ÕS
p (η1)ÕS

q (η2)⟩, up to two differences.
First, Eq. (A.36) contains an additional factor 2, which is coming from the two terms ap-
pearing in the right-hand side of Eq. (A.35). In other words, since two particles are cre-
ated and annihilated, the presence of the particle-number operator yields a factor 2. Second,
in ⟨ÕS

p (η1)ÕS
q (η2)⟩ there are additional terms, for instance the one involving ĉp1 ĉ

†
−p2

ĉq1 ĉ
†
−q2 ,

which do not appear in Eq. (A.36) since they are annihilated by the particle-number oper-
ator. However, these terms contribute to ⟨ÕS

p (η1)⟩⟨ÕS
q (η2)⟩, which is subtracted from the
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final result, see the remark below Eq. (A.27). From these considerations one concludes that〈
ÕS

p (η1)N̂ÕS
q (η2)

〉
= 2(2π)−3

〈
ÕS

p (η1)ÕS
q (η2)

〉
. The rest of the calculation is identical to the

case n = 1, the factor 2 being the only difference, and one thus finds

2S
(2)
2 (k) = 4det(2)Cov , (A.37)

where the factor 2 has been singled out in the left-hand side. Compared to Eq. (A.33), spectral
purity is thus half of what it would be if the state was Gaussian, with the same covariance.

• n ≥ 3

When n = 3, one has to compute

〈
ÕS

p (η1)N̂ÕS
q (η2)

〉
=

∫
d3k

(2π)3

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3p3

(2π)3

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

δ(p1 + p2 + p3 − p)δ(q1 + q2 + q3 − q)Cα1α2α3(η1)Cβ2β2β3(η2)〈[
zα1(p1, η1)ĉp1 + z∗α1

(p1, η1)ĉ
†
−p1

] [
zα2(p2, η1)ĉp2 + z∗α2

(p2, η1)ĉ
†
−p2

]

[
zα3(p3, η1)ĉp3 + z∗α3

(p3, η1)ĉ
†
−p3

]
N̂k

[
zβ1(q1, η1)ĉq1 + z∗β1

(q1, η2)ĉ
†
−q1

]

[
zβ2(q2, η1)ĉq2 + z∗β2

(q2, η2)ĉ
†
−q2

] [
zβ3(q3, η1)ĉq3 + z∗β3

(q3, η2)ĉ
†
−q3

]〉
.

(A.38)

Several terms need to be distinguished. A first term arises from selecting creation operators
only in the right-hand side of the particle-number operator. Making use of the commutation
relations (A.17), one has

[
N̂k, ĉ

†
−q1 ĉ

†
−q2 ĉ

†
−q3

]
= ĉ†−q1 ĉ

†
−q2 ĉ

†
−q3 [δ (k + q1) + δ (k + q2) + δ (k + q3)] . (A.39)

When integrated over k, this thus leaves out a factor 3. This is because ĉ†−q1 ĉ
†
−q2 ĉ

†
−q3 creates a

net number of particles equal to 3. A second category of terms arises from selecting two creation
operators and one annihilation operator in the right-hand side of the particle-number operator.
There are three such terms: ĉq1 ĉ

†
−q2 ĉ

†
−q3 , ĉ

†
−q1 ĉq2 ĉ

†
−q3 and ĉ†−q1 ĉ

†
−q2 ĉq3 (the latter vanishes when

acted on the vacuum). For the first term for instance, using the commutation relations (A.17),
one finds

[
N̂k, ĉq1 ĉ

†
−q2 ĉ

†
−q3

]
= ĉq1 ĉ

†
−q2 ĉ

†
−q3 [δ (k + q2) + δ (k + q3)− δ (k + q1)] . (A.40)

When integrated over k, this leaves out a factor 1, in agreement again with the fact that
ĉq1 ĉ

†
−q2 ĉ

†
−q3 creates a net number of particles equal to 1. Therefore, these terms come with

multiplicities that differ from their counterpart in the correlator ⟨ÕS
p (η1)ÕS

q (η2)⟩, hence there

is no simple relationship between ⟨ÕS
p (η1)N̂ÕS

q (η2)⟩ and ⟨ÕS
p (η1)ÕS

q (η2)⟩. As a consequence,

for n ≥ 3 the leading-order purity is not only given by det(2)Cov.
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B Unnesting commutators by induction

In this Appendix, we demonstrate how the commutators appearing in Eq. (2.13) can be un-
nested as in Eq. (2.58), which we reproduce here for convenience

[
H̃int(η1),

[
H̃int(η2), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=

n∑

i=0

(−1)n−i

(ni)∑

j=1

K̃
(i)

j |BD⟩ ⟨BD|
(
K̃

(n−i)

(ni)−j+1

)†
.

(B.1)
This identity can be shown by induction as follows. At orders n = 0 and n = 1, it is trivially
satisfied. Let us now assume that it holds at order n. The commutator between H̃int(η0) and
Eq. (B.1) can be written as

[
H̃int(η0),

[
H̃int(η1), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=
n∑

i=0

(−1)n−i

(ni)∑

j=1[
H̃int(η0)

(n)K̃
(i)

j |BD⟩ ⟨BD|
(
(n)K̃

(n−i)

(ni)−j+1

)†
− (n)K̃

(i)

j |BD⟩ ⟨BD|
(
(n)K̃

(n−i)

(ni)−j+1

)†
H̃int(η0)

]
.

(B.2)

In this expression, we have added an upper left index n to stress that the K̃
(i)

j vectors are

constructed out of H̃int(η1), · · · , H̃int(ηn). If
(n+1)K̃

(i)

j denote the K̃
(i)

j vectors constructed out

of H̃int(η0), · · · H̃int(ηn), from Eqs. (2.53)-(2.57), the
(

n
i−1

)
first elements of the (n+1)K̃

(i)
vector

contain H̃int(η0) as the first term, and they can thus be obtained by multiplying H̃int(η0) with

the
(

n
i−1

)
elements of the (n)K̃

(i−1)
vector. In other words,

(n+1)K̃
(i)

j = H̃int(η0)
(n)K̃

(i−1)

j for j ≤
(

n

i− 1

)
. (B.3)

The subsequent elements of the (n+1)K̃
(i)

vector do not contain H̃int(η0), and they coincide with

the
(
n
i

)
elements of the (n)K̃

(i)
vector, hence

(n+1)K̃
(i)

( n
i−1)+j =

(n)K̃
(i)

j for j ≤
(
n

i

)
. (B.4)

Since
(

n
i−1

)
+
(
n
i

)
=
(
n+1
i

)
, this indeed determines all elements of the (n+1)K̃

(i)
vector, and the

two above relations fix the element ordering in Eqs. (2.53)-(2.57). Inserting them into Eq. (B.2)
leads to

[
H̃int(η0),

[
H̃int(η1), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=

n∑

i=0

(−1)n−i

(ni)∑

j=1[
(n+1)K̃

(i+1)

j |BD⟩ ⟨BD|
(
(n+1)K̃

(n−i)

( n
n−i−1)+(

n
i)−j+1

)†
− (n+1)K̃

(i)

( n
i−1)+j |BD⟩ ⟨BD|

(
(n+1)K̃

(n−i+1)

(ni)−j+1

)†]
,

(B.5)
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and noticing that
(

n
n−i−1

)
+
(
n
i

)
=
(
n+1
i+1

)
, one finds

[
H̃int(η0),

[
H̃int(η1), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=

n∑

i=0

(−1)n−i

(ni)∑

j=1[
(n+1)K̃

(i+1)

j |BD⟩ ⟨BD|
(
(n+1)K̃

(n−i)

(n+1
i+1)−j+1

)†
− (n+1)K̃

(i)

( n
i−1)+j |BD⟩ ⟨BD|

(
(n+1)K̃

(n−i+1)

(ni)−j+1

)†]
.

(B.6)

In the first term, let us relabel i+ 1 → i, and in the second term, let us relabel
(

n
i−1

)
+ j → j.

This gives
[
H̃int(η0),

[
H̃int(η1), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=

n+1∑

i=1

(−1)n+1−i

( n
i−1)∑

j=1

(n+1)K̃
(i)

j |BD⟩ ⟨BD|
(
(n+1)K̃

(n+1−i)

(n+1
i )−j+1

)†

+
n∑

i=0

(−1)n+1−i

( n
i−1)+(

n
i)∑

j=( n
i−1)+1

(n+1)K̃
(i)

j |BD⟩ ⟨BD|
(
(n+1)K̃

(n−i+1)

(ni)+(
n

i−1)−j+1

)†
. (B.7)

Using again that
(

n
i−1

)
+
(
n
i

)
=
(
n+1
i

)
, this reduces to

[
H̃int(η0),

[
H̃int(η1), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=

n+1∑

i=1

(−1)n+1−i

( n
i−1)∑

j=1

(n+1)K̃
(i)

j |BD⟩ ⟨BD|
(
(n+1)K̃

(n+1−i)

(n+1
i )−j+1

)†

+
n∑

i=0

(−1)n+1−i

(n+1
i )∑

j=( n
i−1)+1

(n+1)K̃
(i)

j |BD⟩ ⟨BD|
(
(n+1)K̃

(n−i+1)

(n+1
i )−j+1

)†
. (B.8)

The first sum does not have a term with i = 0, but its argument vanishes when evaluated at
i = 0, hence the sum can be extended to i = 0 · · ·n+ 1. Likewise, the argument of the second
sum vanishes when evaluated at i = n+ 1, so the two sums can be extended to i = 0 · · ·n+ 1,
and one finds

[
H̃int(η0),

[
H̃int(η1), · · ·

[
H̃int(ηn), |BD⟩ ⟨BD|

]
· · ·
]]

=

n+1∑

i=0

(−1)n+1−i

(n+1
i )∑

j=1

(n+1)K̃
(i)

j |BD⟩ ⟨BD|
(
(n+1)K̃

(n+1−i)

(n+1
i )−j+1

)†
, (B.9)

which concludes the proof of Eq. (B.1) by induction.

C System memory kernel

This appendix aims at computing the memory kernel of the system corresponding to the inter-
action Hamiltonian (3.38), and derive the expressions (3.44) and (3.45).
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Using the definition (2.34) together with Eqs. (2.25) and (2.31), one finds

K̄(2)
S (k1,k2, η1, η2) = ⟨BD| ÕS

lin(k1, η1)Õ
S
lin(k2, η2) |BD⟩E + ⟨BD| ÕS

lin(k1, η1)Õ
S
NL(k2, η2) |BD⟩E

+ ⟨BD| ÕS
NL(k1, η1)Õ

S
lin(k2, η2) |BD⟩E + ⟨BD| ÕS

NL(k1, η1)Õ
S
NL(k2, η2) |BD⟩E

− ⟨BD| ÕS
lin(k1, η1) |BD⟩E ⟨BD| ÕS

lin(k2, η2) |BD⟩E
− ⟨BD| ÕS

lin(k1, η1) |BD⟩E ⟨BD| ÕS
NL(k2, η2) |BD⟩E

− ⟨BD| ÕS
NL(k1, η1) |BD⟩E ⟨BD| ÕS

lin(k2, η2) |BD⟩E
− ⟨BD| ÕS

NL(k1, η1) |BD⟩E ⟨BD| ÕS
NL(k2, η2) |BD⟩E .

(C.1)
The operators ÕS

lin and ÕS
NL were introduced in Eqs. (3.39) and (3.40), which we repeat here

for convenience

ÕS
lin(k, η) = a(η)Π̃π(k, η) (C.2)

ÕS
NL(k, η) ≡

∫
d3p1

(2π)3

∫
d3p2

(2π)3
δ(p1 + p2 − k)

a(η)

[
p1.p2 ṽπ(p1, η)ṽπ(p2, η)

Λ1
− Π̃π(p1, η)Π̃π(p2, η)

Λ2

]
.

(C.3)

Here we use the shorthand notation

Π̃π(k, η) ≡ p̃π(k, η)−
a′(η)

a(η)
ṽπ(k, η) , (C.4)

whose mode functions are given by

Ππ(k, η) ≡ pπ(k, η)−
a′(η)

a(η)
ṽπ(k, η) = −i

√
cSk

2
e−ic

S
kη , (C.5)

which follow from Eqs. (3.30) and (3.32). Since ÕS
lin is linear and ÕS

NL is quadratic in the field
variables, all vacuum expectation values involving an odd power of fields in Eq. (C.1) vanish,
leaving

K̄(2)
S (k1,k2, η1, η2) = K̄(2)

S, lin(k1,k2, η1, η2) + K̄(2)
S,NL(k1,k2, η1, η2) (C.6)

where
K̄(2)

S, lin(k1,k2, η1, η2) = ⟨BD| ÕS
lin(k1, η1)Õ

S
lin(k2, η2) |BD⟩E (C.7)

and
K̄(2)

S,NL(k1,k2, η1, η2) = ⟨BD| ÕS
NL(k1, η1)Õ

S
NL(k2, η2) |BD⟩E

− ⟨BD| ÕS
NL(k1, η1) |BD⟩E ⟨BD| ÕS

NL(k2, η2) |BD⟩E .
(C.8)

This also means that all cross-terms between the operators ÕS
lin and ÕS

NL in the system two-point
functions vanish, as claimed in the main text.

Linear contribution Upon introducing Eqs. (C.2) and (C.5) into Eq. (C.7), one finds that

K̄(2)
S, lin(k1,k2, η1, η2) =a(η1)a(η2) ⟨BD| Π̃π(k1, η1)Π̃π(k2, η2) |BD⟩E

=a(η1)a(η2)Ππ(k1, η1)Π
∗
π(k2, η2)δ(k1 + k2)

=
cSk1

2H2η1η2
e−ic

S
k1(η1−η2)δ(k1 + k2) .

(C.9)

When combined with Eq. (2.46), this results in Eq. (3.44) in the main text.
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Non-linear contribution The computation of K̄(2)
S,NL is more involved due to the larger

number of field operators contained within the expectation values. Inserting Eq. (C.3) into
Eq. (C.8) ones finds

K̄(2)
S,NL(k1,k2, η1, η2) =

2∏

i,j=1

∫
d3pi

(2π)3

∫
d3qj
(2π)3

δ(p1 + p2 − k1)δ(q1 + q2 − k2)

a(η1)a(η2)
(C.10)

×
{

(p1.p2)(q1.q2)

Λ2
1

[⟨ṽπ(p1, η1)ṽπ(p2, η1)ṽπ(q1, η2)ṽπ(q2, η2)⟩ − ⟨ṽπ(p1, η)ṽπ(p2, η)⟩ ⟨ṽπ(q1, η′)ṽπ(q2, η′)⟩]

−q1.q2
Λ1Λ2

[〈
Π̃π(p1, η1)Π̃π(p2, η1)ṽπ(q1, η2)ṽπ(q2, η2)

〉
−
〈
Π̃π(p1, η1)Π̃π(p2, η1)

〉
⟨ṽπ(q1, η2)ṽπ(q2, η2)⟩

]

−p1.p2

Λ1Λ2

[〈
ṽπ(p1, η1)ṽπ(p2, η1)Π̃π(q1, η2)Π̃π(q2, η2)

〉
− ⟨ṽπ(p1, η1)ṽπ(p2, η1)⟩

〈
Π̃π(q1, η2)Π̃π(q2, η2)

〉]

+
1

Λ2
2

[〈
Π̃π(p1, η1)Π̃π(p2, η1)Π̃π(q1, η2)Π̃π(q2, η2)

〉
−
〈
Π̃π(p1, η1)Π̃π(p2, η1)

〉〈
Π̃π(q1, η2)Π̃π(q2, η2)

〉]}
,

where we have used the shorthand ⟨Õ⟩ = ⟨BD|Õ|BD⟩E . Performing the Wick contractions, and
extracting a factor of δ(k1 + k2) via Eq. (2.46), leaves

K̄(2)
S,NL(k, η1, η2) =

2

(2π)6

∫
d3p

(2π)3

∫
d3q

(2π)3
δ(p+ q − k) (C.11)

×
[
(p.q)2

vπ(p, η1)vπ(q, η1)v
∗
π(p, η2)v

∗
π(q, η2)

a(η1)a(η2)Λ2
1

+
Ππ(p, η1)Ππ(q, η1)Π

∗
π(p, η2)Π

∗
π(q, η2)

a(η1)a(η2)Λ2
2

− p.q
Ππ(p, η1)Ππ(q, η1)v

∗
π(p, η2)v

∗
π(q, η2) + vπ(p, η1)vπ(q, η1)Π

∗
π(p, η2)Π

∗
π(q, η2)

a(η1)a(η2)Λ1Λ2

]
.

To proceed we note that the above double-momentum integral consists of terms of the form

In[f ] :=
2

(2π)6

∫
d3p

(2π)3

∫
d3q

(2π)3
δ(p+ q − k) (p · q)n f(p, q) (C.12)

for three choices of functions f = f(p, q) depending on p and q (and not the angles). Using this
compact notation, the correlator can be written in terms of the above integrals for n = 0, 1, 2
such that

K̄(2)
S,NL(k, η1, η2) =I2

[
vπ(p,η1)vπ(q,η1)v∗π(p,η2)v

∗
π(q,η2)

a(η1)a(η2)Λ2
1

]
+ I0

[
Ππ(p,η1)Ππ(q,η1)Π∗

π(p,η2)Π
∗
π(q,η2)

a(η1)a(η2)Λ2
2

]

− I1
[
Ππ(p,η1)Ππ(q,η1)v∗π(p,η2)v

∗
π(q,η2)+vπ(p,η1)vπ(q,η1)Π∗

π(p,η2)Π
∗
π(q,η2)

a(η1)a(η2)Λ1Λ2

]
.

(C.13)
The next step is to integrate the angles away in Eq. (C.12), which is why we now convert to
spherical coordinates q = (q, θq, φq) and p = (p, θp, φp). With the aim of integrating away q in
the δ-function we note that

δ(q − ℓ) =
δ(q − ℓ)δ(θq − θℓ)δ(φq − φℓ)

q2| sin θq|
(C.14)

for arbitrary ℓ. Expressing the vector ℓ ≡ k − p in spherical coordinates,

ℓ =
√
p2 + k2 − 2kp cos θp , θℓ = cos−1

(
k − p cos θp√

p2 + k2 − 2kp cos θp

)
, φℓ = φp + π , (C.15)
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turns Eq. (C.12) into

In[f ] =
2

(2π)12

∫ ∞

0
dq q2

∫ π

0
dθq sin θq

∫ 2π

0
dφq

∫ ∞

0
dp p2

∫ π

0
dθp sin θp

∫ 2π

0
dφp

× 1

q2 sin θq
δ

(
q −

√
p2 + k2 − 2kp cos θp

)
δ

[
θq − cos−1

(
k − p cos θp√

p2 + k2 − 2kp cos θp

)]

× δ [φq − (φp + π)]
{
qp [sin θq sin θp cos(φq − φp) + cos θq cos θp]

}n
f(p, q) . (C.16)

The integration over φq simply leads to the replacement of φq by φp + π and the integration
over φp just yields a factor 2π, which leads to

In[f ] =
2

(2π)11

∫ ∞

0
dq

∫ π

0
dθq

∫ ∞

0
dp p2

∫ π

0
dθp sin θp δ

(
q −

√
p2 + k2 − 2kp cos θp

)

× δ

[
θq − cos−1

(
k − p cos θp√

p2 + k2 − 2kp cos θp

)]
[qp (− sin θq sin θp + cos θq cos θp)]

n f(p, q) .

(C.17)
The next step consists in integrating over θq. Using the identities

cos

[
cos−1

(
k − p cos θp√

p2 + k2 − 2kp cos θp

)]
=

k − p cos θp√
p2 + k2 − 2kp cos θp

, (C.18)

sin

[
cos−1

(
k − p cos θp√

p2 + k2 − 2kp cos θp

)]
=

p sin θp√
p2 + k2 − 2kp cos θp

, (C.19)

leads to

In[f ] =
2

(2π)11

∫ ∞

0
dq

∫ ∞

0
dp p2

∫ π

0
dθp sin θp δ

(
q −

√
p2 + k2 − 2kp cos θp

)

×
{
qp

[
(k − p cos θp) cos θp − p sin2 θp

]
√
p2 + k2 − 2kp cos θp

}n

f(p, q) . (C.20)

We then switch to µ = cos θp and use the fact that

δ
(
q −

√
p2 + k2 − 2pkµ

)
=

q

kp
δ

(
µ− p2 + k2 − q2

2pk

)
(C.21)

to rewrite

In[f ] =
2

(2π)11k

∫ ∞

0
dq

∫ ∞

0
dp

∫ 1

−1
dµ δ

(
µ− p2 + k2 − q2

2pk

)
(qp)n+1(kµ− p)n

(p2 + k2 − 2kpµ)n/2
f(p, q) .

(C.22)

After integrating over µ, the remaining δ-function restricts the integration region to

U =
{
|p− k| < q < p+ k

}
(C.23)

which gives

In[f ] =
2

(2π)11k

∫

U
dp dq pq

(
k2 − p2 − q2

2

)n

f(p, q) . (C.24)
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The region U is inconvenient to integrate over in these variables, which is why we now intro-
duce [54]

P = p+ q and Q = p− q . (C.25)

This turns Eq. (C.24) into

In[f ] =
1

4(2π)11k

∫ ∞

k
dP

∫ k

0
dQ (P 2 −Q2)

(
2k2 − P 2 −Q2

4

)n

f(p, q) . (C.26)

Using this identity allows one to rewrite Eq. (C.13) as

K̄(2)
S,NL(k, η1, η2) =

1

(2π)11
1

64k

∫ ∞

k
dP

∫ k

0
dQ (P 2 −Q2)



(P 2 +Q2 − 2k2)vπ

(
P+Q
2 , η1

)
vπ

(
P−Q
2 , η1

)

a(η1)Λ1
+

4Ππ

(
P+Q
2 , η1

)
Ππ

(
P−Q
2 , η1

)

a(η1)Λ2






(P 2 +Q2 − 2k2)v∗π

(
P+Q
2 , η2

)
v∗π

(
P−Q
2 , η2

)

a(η2)Λ1
+

4Π∗
π

(
P+Q
2 , η2

)
Π∗

π

(
P−Q
2 , η2

)

a(η2)Λ2


 .

(C.27)
With the mode functions (3.30) and (C.5) this reads

K̄(2)
S,NL(k, η1, η2) =

H2η1η2
(2π)12

π

32k

∫ ∞

k
dP

∫ k

0
dQ e−ic

S
P (η1−η2)

×
{
P 2 +Q2 − 2k2

cSΛ1

[
1− 2i

cS(P +Q)η1

] [
1− 2i

cS(P −Q)η1

]
− cS(P

2 −Q2)

Λ2

}

×
{
P 2 +Q2 − 2k2

cSΛ1

[
1 +

2i

cS(P −Q)η2

] [
1 +

2i

cS(P +Q)η2

]
− cS(P

2 −Q2)

Λ2

}
.

(C.28)
which coincides with Eq. (3.45) stated the main text.

D Integrals Lk and Nk

In this appendix we flesh out the mathematical details of the integrals computed in Sec. 3.2,
using similar methods to those employed in Ref. [188].

Linear contribution

In Eq. (3.49), Slin
2 is expressed in terms of a single time integral, and switching to the dimen-

sionless integration variable
z′ = −kη , (D.1)

this integral takes the form

Lk(η) =

√
π

2
e−

π
2 µσ+

iπ
4

∫ ∞

−kη
dz′

eicSz
′
H

(1)
iµσ

(z′)
√
z′

. (D.2)

For the case of a massless environment with iµσ = 3
2 the integrand simplifies and one finds:

Lk(η)
∣∣
massless

=

∫ ∞

−kη
dz′ ei(1+c

S
)z′
(
i

z′2
+

1

z′

)
(D.3)
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=
ie−i(1+c

S
)kη

−kη + cS {Ei[−i(1 + cS)kη]− iπ} (D.4)

≃
{

i
−kη + . . . , −kη ≪ 1

e−i(1+c
S
)kη
[

i
(1+c

S
)(−kη) + . . .

]
, −kη ≫ 1

, (D.5)

where Ei(z) is the exponential integral function defined for z ∈ C \ (−∞, 0] (i.e. with a branch
cut along the negative real axis) as

Ei(z) ≡ −
∫ ∞

−z
dt

e−t

t
, (D.6)

where the principal value of the integral is taken. In the case of a conformal environment with
iµσ = 1

2 we have:

Lk(η)
∣∣
conformal

=

∫ ∞

−kη
dz′

ei(1+c
S
)z′

z′
(D.7)

= − Ei
[
− i(cS + 1)kη

]
+ iπ (D.8)

≃
{

− log [−eγE(cS + 1)kη] + iπ
2 + . . . , −kη ≪ 1

e−i(1+c
S
)kη
[

i
(1+c

S
)(−kη) + . . .

]
, −kη ≫ 1

. (D.9)

Non-linear contribution

In order to determine the non-linear contribution to the entropy, we must first compute the
integral Nk(P,Q, η) defined in Eq. (3.51), and then integrate over P and Q using Eq. (3.50) to
find SNL

2 .
We focus on the case of a massless environment, since the calculations for conformal and

heavy environments proceed along similar lines. In this case, we use iµσ = 3
2 and switch the

integration variable to z′ = −kη as above for simplicity, so that Eq. (3.51) becomes

Nk(P,Q, η) =
1

k

∫ ∞

−kη
dz′ ei(k+c

S
P )

z′

k (i+ z′)

×
{
P 2 +Q2 − 2k2

cSΛ1

[
1 +

2ik

cS(P +Q)z′

] [
1− 2i

cS(P −Q)z′

]
− cS(P

2 −Q2)

Λ2

}
.

(D.10)
The terms proportional to (z′)−1 and (z′)−2 converge, meanwhile those proportional to (z′)0

and z′ formally diverge. Understood as a distribution however, such that [54]

∫ ∞

−kη
dz′ ei(k+c

S
P )

z′

k = e−i(k+c
S
P )η ik

k + cSP
, (D.11)

∫ ∞

−kη
dz′ z′ ei(k+c

S
P )

z′

k = e−i(k+c
S
P )η

[
− k2

(k + cSP )
2
+

ik

k + cSP
(−kη)

]
, (D.12)

we find that Nk evaluates to Eq. (3.57) in the main text. At this stage we use Eq. (3.50) to
evaluate the entropy, however we make the change to dimensionless variables

a = Q/k and b = P/k (D.13)
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so that when used in tandem with (3.57) we find that

SNL
2 (k) =

g2H2

(2π)18
π

16

[ C1
(−kη)2 + C2 + C3(−kη)2

]
. (D.14)

This is organised in powers of −kη, with time-independent coefficients given by

C1 =

∫ ∞

1
db

∫ 1

0
da

16(a2 + b2 − 2)2

(b2 − a2)2c6
S
Λ2
1

(D.15)

C2 =

∫ ∞

1
db

∫ 1

0
da

{
(a2 + b2 − 2)2

(a2 − b2)2 (bcS + 1)4c4
S
Λ2
1

[
bc3

S
(b2 − a2)2(bcS + 4) + 8bcS(a

2 + 3b2)

+8(a2 + b2) + 4c2
S
(a4 − 2a2b2 + 5b4)

]
(D.16)

+
2(a2 + b2 − 2)

[
4(bcS + 1)− c2

S
(b2 − a2)(bcS + 2)2

]

(bcS + 1)4c2
S
Λ1Λ2

+
c2
S
(b2 − a2)2(bcS + 2)2

(bcS + 1)4Λ2
2

}

C3 =

∫ ∞

1
db

∫ 1

0
da

[ (
a2 + b2 − 2

)2

(bcS + 1)2c2
S
Λ2
1

− 2
(
b2 − a2

) (
a2 + b2 − 2

)

(bcS + 1)2Λ1Λ2
+
c2
S

(
b2 − a2

)2

(bcS + 1)2Λ2
2

]
. (D.17)

We first perform the b integrals in the above, which contain the UV divergences described in
the main text. For example, for C1, taking a partial fraction expansion in b gives

C1 =
16

c6
S
Λ2
1

∫ ∞

1
db

∫ 1

0
da

{
1 +

a4 − 1

a3

(
1

b− a
− 1

b+ a

)
+

(a2 − 1)2

a2

[
1

(b+ a)2
+

1

(b− a)2

]}
.

(D.18)
The integrand in the above behaves as 1+4(a2− 1)b−2+O(b−3) for b≫ 1 and so only the first
term must be regulated. This is done in a way that is analogous to Eq. (3.58), taking

∫ ∞

1
db→

∫ ∞

1
db

(
bk

µ

)ε

≃ −1 +O(ε) . (D.19)

Notice that the result is independent of the dimensional regulator ε here, as is always the case
when an integral is power-law divergent in a momentum UV cutoff. The rest of the terms
converge giving

C1 =
16

c6
S
Λ2
1

∫ 1

0
da

[
− 3 +

2

a2
+

2

a3
(
a4 − 1

)
tanh−1(a)

]
= − 48

c6
S
Λ2
1

(D.20)

as quoted in Eq. (3.60) of the main text. The computations for Eqs. (3.61) and (3.62) are more
cumbersome but follow through similarly, using the regularizations

∫ ∞

1
db bn →

∫ ∞

1
db bn

(
bk

µ

)ε

≃ − 1

n+ 1
+O(ε) for n = 1, 2 (D.21)

and

∫ ∞

1

db

b± a
→
∫ ∞

1

db

b± a

(
bk

µ

)ε

≃ −1

ε
+ log

[
µ

(1± a)k

]
+O(ε) (D.22)

in addition to Eqs. (3.58) and (D.19).
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