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Maximum principle preserving time implicit DGSEM for linear scalar
hyperbolic conservation laws

Riccardo Milania, Florent Renaca,∗, Jean Ruela

aDAAA, ONERA, Université Paris Saclay, F-92322 Châtillon, France

Abstract

The properties of the high-order discontinuous Galerkin spectral element method (DGSEM) with implicit backward
Euler time stepping are investigated for the approximation of hyperbolic linear scalar conservation equation in multiple
space dimensions. We first prove that the DGSEM scheme in one space dimension preserves a maximum principle for
the cell-averaged solution when the time step is large enough. This property however no longer holds in multiple space
dimensions and we propose to use the flux-corrected transport (FCT) limiting [5] based on a low-order approximation
using graph viscosity to impose a maximum principle on the cell-averaged solution. These results allow us to use a
linear scaling limiter [58] in order to impose a maximum principle at nodal values within elements, while limiting the
cell average with the FCT limiter improves the accuracy of the limited solution. Then, we investigate the inversion
of the linear systems resulting from the time implicit discretization at each time step. We prove that the diagonal
blocks are invertible and provide efficient algorithms for their inversion. Numerical experiments in one and two space
dimensions are presented to illustrate the conclusions of the present analyses.

Keywords: hyperbolic scalar equations, maximum principle, discontinuous Galerkin method, summation-by-parts,
backward Euler

1. Introduction

We aim at developing an accurate and robust approximation of the following problem with a linear scalar advection
equation with constant coefficients in d ≥ 1 space dimensions:

∂tu + ∇ · (cu) = 0, in Ω × (0,∞), (1a)
u(·, 0) = u0(·), in Ω, (1b)

with Ω ⊂ Rd, appropriate boundary conditions on ∂Ω, and u0 in L∞(Rd,R). Without loss of generality, we assume c
in Rd

+, a negative component being handled by reverting the corresponding space direction.
Problem (1) has to be understood in the sense of distributions where we look for weak solutions. Introducing the

square entropy η(u) = u2

2 and associated entropy flux q(u) = c u2

2 pair, solutions to (1a) also satisfy

∂tη(u) + ∇ · q(u) ≤ 0, in Ω × (0,∞), (2)

in the sense of distributions. For compactly supported solutions, this brings uniqueness and L2 stability. Solutions to
(1) also satisfy a maximum principle:

m ≤ u0(x) ≤ M in Ω ⇒ m ≤ u(x, t) ≤ M in Ω × (0,∞), (3)

almost everywhere, which brings L∞ stability.
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We are interested in the approximation of (1) with a high-order space discretization that satisfies the above proper-
ties at the discrete level. We consider the discontinuous Galerkin spectral element method (DGSEM) based on colloca-
tion between interpolation and quadrature points [26] and tensor products of one-dimensional (1D) function bases and
quadrature rules. The collocation property of the DGSEM in addition to tensor-product evaluations drastically reduces
the number of operations in the operators implementing the discretization and makes the DGSEM computationally
efficient. Moreover, using diagonal norm summation-by-parts (SBP) operators and the entropy conservative numerical
fluxes from Tadmor [48], semi-discrete entropy conservative finite-difference and spectral collocation schemes have
been derived in [16, 7] and applied to a large variety of nonlinear conservation laws [19, 4, 13, 41, 40, 43, 54, 37, 58],
nonconservative hyperbolic systems and balance laws [32, 42, 11, 2, 53, 52], among others.

Most of the time, these schemes are analyzed in semi-discrete form for which the time derivative is not discretized,
or when coupled with explicit in time discretizations. Time explicit integration may however become prohibitive for
long time simulations or when looking for stationary solutions due to the strong CFL restriction on the time step
which gets smaller as the approximation order of the scheme increases to ensure either linear stability [17, 3, 27],
or positivity of the approximate solution [58, 59]. The DGSEM also presents attractive features for implicit time
stepping. First, the collocation property reduces the connectivity between degrees of freedom (DOFs) which makes
the DGSEM well suited due to a reduced number of entries in the Jacobian matrix of the space residuals. This property
has been used in [45] to rewrite the time implicit discretization of the compressible Navier-Stokes equations as a Schur
complement problem at the cell level that is then efficiently solved using static condensation. Then, tensor-product
bases and quadratures have motivated the derivation of tensor-product based approximations of the diagonal blocks of
the Jacobian matrix by Kronecker products [51, 50] of 1D operators using singular value decomposition of a shuffled
matrix [35], or a least squares alternatively in each space direction [14].

We here consider and analyze a DGSEM discretization in space associated with a first-order backward Euler
time integration which allows to circumvent the CFL condition for linear stability and makes it well adapted for
approximating stationary solutions or solutions containing low characteristic frequency scales. It is however of strong
importance to also evaluate to what extent other properties of the exact solution are also satisfied at the discrete level.
Preserving invariant domains of the equations at the discrete level is an essential property that may be required for
stability of the computations. Little is known about the properties of time implicit DGSEM schemes, apart from the
entropy stability which holds providing the semi-discrete scheme is entropy stable due to the dissipative character
of the backward Euler time integration. An analysis of a time implicit discontinuous Galerkin (DG) method with
Legendre basis functions for the discretization of a 1D linear scalar hyperbolic equation has been performed in [39]
and showed that a lower bound on the time step is required for the cell-averaged solution to satisfy a maximum
principle at the discrete level. A linear scaling limiter of the DG solution around its cell-average [58] is then used
to obtain a maximum principle preserving scheme. Numerical experiments with linear and also nonlinear hyperbolic
scalar equations and systems support the conclusion of this analysis. The theoretical proof of this lower bound uses
the truncated expansion of the Dirac delta function in Legendre series that is then used as a test function in the
DG scheme to prove that the Jacobian matrix of the cell-averaged discrete scheme is an M-matrix. It is however
difficult to use this trick in the DGSEM scheme that uses lower-order quadrature rules and whose form is directly
linked to the particular choice of Lagrange interpolation polynomials as test functions. Unfortunately, this discrete
preservation of the maximum principle or positivity no longer holds in general in multiple space dimensions even
on Cartesian grids and solutions with negative cell-average in some cell can be generated [30]. In the case of linear
hyperbolic equations and radiative transfer equations, Ling et al. [30] showed that it is possible to impose positivity
of the solution providing the approximation polynomial space is enriched with additional functions. The use of
reduced order quadrature rules and suitable test functions were proposed in [55] to define a conservative scheme that
preserves positivity in the case of stationary linear hyperbolic conservation laws, The work in [56] proposes limiters
that allow to ensure positivity of stationary solutions of the radiative transfer equations, while keeping a particular
local conservation property for stationary conservation laws. These modifications seem difficult to be directly applied
to the DGSEM without loosing the collocation which is essential for the efficiency of the method. A limiter for time
implicit DG schemes for nonlinear scalar equations has been proposed in [49] by reformulating the discrete problem as
a constrained optimization problem and introducing Lagrange multipliers associated to the constraints. This however
results in a nonlinear and nonsmooth algebraic system of equations that requires an adapted Newton method for its
resolution.

In the present work, we propose an analysis of the DGSEM scheme with backward Euler time stepping for linear
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hyperbolic equations on Cartesian grids. We first analyze the discrete preservation of the maximum principle property
and show that it holds for the cell-averaged solution in one space dimension for sufficiently large time steps. This
result is similar to the one obtained in [39] for a modal DG scheme with Legendre polynomials, though the conditions
on the time step are different. The proof relies on the nilpotent property of the discrete derivative matrix evaluating
the derivatives of the Lagrange interpolation polynomials at quadrature points. This property allows to easily invert
the mass and stiffness matrices and derive a scheme for the cell-averaged scheme, thus allowing to derive conditions
for the matrix of the associated linear system to be an M-matrix. The DOFs are then limited with the linear scaling
limiter from [58] to impose a maximum principle to the whole solution. Unfortunately, this property no longer holds
in multiple space dimensions similarly to the modal DG scheme [30]. We thus follow [20, 15] that propose to use
the flux-corrected transport (FCT) limiter [5, 57] combining a low-order and maximum principle preserving scheme
with the high-order DGSEM. The low-order scheme is obtained by adding graph viscosity [22, 21, 34] to the DGSEM
scheme. The FCT limiter is here designed to preserve a maximum principle for the cell-averaged solution, not for all
the DOFs. Here again, the linear scaling limiter is applied after the FCT limiter to ensure the maximum principle on
the whole solution. This two-step limiter is essential to reduce undesirable effects of the FCT limiter such as accuracy
deterioration for smooth solutions, or a frequent switching back and forth between the limited and unlimited schemes.
In particular, the numerical experiments highlight a strong improvement of the accuracy of the limited scheme as well
as of its ability to capture steady-state solutions that would be otherwise affected when limiting all the DOFs. The
former issue has been already observed in the literature [21, 23, 6], where different strategies have been proposed such
as bound relaxation [21, 23] or subcell smoothness indicator [34, 6].

We also analyze the inversion of the linear system resulting from the time implicit discretization to be solved at
each time step. The linear system is large, non symmetric, sparse with a sparsity pattern containing dense diagonal
and sparse off-diagonal blocks of size the number of DOFs per cell. Efficient inversion could be achieved through
the use of block sparse direct or iterative linear solvers. Many algorithms require the inversion of the diagonal blocks
as in block-preconditionned Krylov solvers [35, 36, 12], block relaxation schemes [46], etc. We here prove that
the diagonal blocks are invertible and propose efficient algorithms for their inversion1. We again use the nilpotency
of the discrete derivative matrix to inverse the diagonal blocks of the 1D scheme. We use the inversion of the 1D
diagonal blocks as building blocks for the inversion of diagonal blocks in multiple space dimensions thanks to the
tensor product structure of the discretization operators.

The paper is organized as follows. Section 2 introduces some properties of the DGSEM function space associated
to Gauss-Lobatto quadrature rules. The 1D DGSEM is introduced and analyzed in section 3, while section 4 focuses
on the DGSEM in two space dimensions. The results are assessed by numerical experiments in one and two space
dimensions in section 5 and concluding remarks about this work are given in section 6.

2. The DGSEM discretization in space

2.1. The DGSEM function space

The DGSEM discretization consists in defining a discrete weak formulation of problem (1). Although one of the
main advantages of the DG method is its ability to handle complex geometries with unstructured grids, we restrict
ourselves to rectangular geometries with a structured grid for the sake of simplicity. The space domain Ω is first
discretized with a Cartesian grid Ωh ⊂ Rd with elements κ labeled as κi = [xi−1/2, xi+1/2] of size ∆xi = xi+1/2 − xi−1/2 >
0, 1 ≤ i ≤ Nx, for d = 1 (see Fig. 1); κi j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] of size ∆xi∆y j = (xi+1/2 − xi−1/2)(y j+1/2 −

y j−1/2) > 0, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, for d = 2 (see Fig. 1), etc. We also set h B minκ∈Ωh |κ|
1
d .

The approximate solution to (1) is sought under the form (with some abuse in the notation for the indices and
exponents that will be clarified below)

uh(x, t) =
Np∑
k=1

ϕk
κ(x)Uk

κ (t) ∀x ∈ κ, κ ∈ Ωh, ∀t ≥ 0, (4)

1A repository of the algorithms for block inversion is available at https://github.com/rueljean/fast_DGSEM_block_inversion. Con-
sult Appendix B for a description of the repository.
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Figure 1: Meshes with positions of quadrature points for p = 3 (bullets •): (left) in element κi for d = 1; (right) in element κi j for d = 2.

where (Uk
κ )1≤k≤Np are the DOFs in the element κ. The subset (ϕk

κ)1≤k≤Np constitutes a basis ofVp
h , the space of piece-

wise discrete polynomials of degree p at most, restricted onto the element κ and Np = (p+1)d is its dimension. We use
tensor product in each space direction of Lagrange interpolation polynomials (ℓk)0≤k≤p associated to the Gauss-Lobatto
quadrature nodes over I = [−1, 1], ξ0 = −1 < ξ1 < · · · < ξp = 1:

ℓk(ξ) =
p∏

l=0,l,k

ξ − ξl

ξk − ξl
, 0 ≤ k ≤ p, (5)

which satisfy ℓk(ξl) = δkl, 0 ≤ k, l ≤ p, with δkl the Kronecker delta.
For the sake of clarity, we now replace the κ index by cell indices in the Cartesian mesh, i ∈ N in 1D, i, j ∈ N in

2D, while the exponents 0 ≤ k, l ≤ p refer to the DOFs indices (see Fig. 1). The basis functions are thus defined for
d = 1 by ϕk

i (x) = ℓk
( 2
∆xi

(x − xi− 1
2
) − 1

)
and for d = 2 by ϕkl

i j(x) = ℓk
( 2
∆xi

(x − xi− 1
2
) − 1

)
ℓl
( 2
∆y j

(y − y j− 1
2
) − 1

)
, and so on.

The DGSEM scheme considered in this work uses Gauss-Lobatto quadrature rules to approximate the integrals
over elements

∫ 1
−1 f (ξ)dξ ≃

∑p
k=0 ωk f (ξk) with ωk > 0 and

∑p
k=0 ωk =

∫ 1
−1 ds = 2, the weights and ξk the nodes over I

of the quadrature rule.

2.2. Derivatives of the Lagrange polynomials

It is convenient to introduce the discrete derivative matrix D [25] with entries Dkl defined by

Dkl = ℓ
′
l (ξk), 0 ≤ k, l ≤ p. (6)

Note that we have ker D = P0(I) and by the rank-nullity theorem D is of rank p. We will also consider D(α) the
generalization to αth-order derivatives:

D(α)
kl = ℓ

(α)
l (ξk), 0 ≤ k, l ≤ p, α ≥ 0, (7)

with the conventions D(0)
kl = ℓl(ξk) = δkl and D(1)

kl = ℓ′l (ξk) = Dkl. The matrix D maps any element of Vp
h to its

derivative in Vp−1
h ⊂ V

p
h and a direct calculation gives D(α) = Dα, and since the (ℓk)0≤k≤p are polynomials of degree

p, the matrix D is nilpotent:
D(p+1) = Dp+1 = 0,

so one can easily invert the following matrices

(I − yD)−1 =

p∑
k=0

ykD(k) ∀y ∈ R, (8)
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which corresponds to the truncated matrix series associated to the Taylor series of the function x 7→ (1 − yx)−1 =∑
k≥0(yx)k for |xy| < 1. Likewise D(p) has columns with constant coefficients since ℓ(p)

l is a constant function and its
entries are easily obtained from (5):

D(p)
kl = ℓ

(p)
l (ξk) = p!

p∏
m=0,m,l

1
ξl − ξm

∀0 ≤ k, l ≤ p. (9)

Integrating ℓ(α)
k over I leads to the generalized integration relation

p∑
l=0

ωlD
(α)
lk = D(α−1)

pk − D(α−1)
0k ∀0 ≤ k ≤ p, α ≥ 1, (10)

which is the discrete counterpart to
∫ 1
−1 ℓ

(α)
k (ξ)dξ = ℓ(α−1)

k (1) − ℓ(α−1)
k (−1) and for α = 1 we get

p∑
l=0

ωlDlk = δkp − δk0, 0 ≤ k ≤ p. (11)

Finally, as noticed in [18], the DGSEM satisfies the following important relation known as the summation-by-parts
(SBP) property [47] and corresponds to the discrete counterpart to integration by parts:

ωkDkl + ωlDlk = δkpδlp − δk0δl0, 0 ≤ k, l ≤ p. (12)

3. Time implicit discretization in one space dimension

We here consider (1) in one space dimension, d = 1 and flux cu with c > 0, over a unit domain Ω = (0, 1) and
consider periodic conditions u(0, t) = u(1, t) which makes the analysis difficult due to the existence of an upper block
in the matrix. This analysis however encompasses the case of more general boundary conditions (see remark 3.3).

3.1. Space-time discretization
The discretization in space of problem (1) is obtained by multiplying (1a) by a test function vh in Vp

h where u is
replaced by the approximate solution (4), then integrating by parts in space over elements κi and replacing the physical
fluxes at interfaces by two-point numerical fluxes:

ωk∆xi

2
∂tUk

i + Rk
i (uh) = 0, 1 ≤ i ≤ Nx, 0 ≤ k ≤ p, (13a)

with

Rk
i (uh) = −

p∑
l=0

ωlDlk f (U l
i) + δkph(U p

i ,U
0
i+1) − δk0h(U p

i−1,U
0
i ), (13b)

where we have used the conventions U p
0 = U p

Nx
and U0

Nx+1 = U0
1 to impose the periodic boundary condition. In what

follows, we consider the upwind flux. Since c > 0, this flux then reads: h(u−, u+) = cu−.
We now focus on a time implicit discretization with a backward Euler method in (13a) and the fully discrete

scheme reads

ωk

2
Uk,n+1

i + λi

(
−

p∑
l=0

ωlDlkU l,n+1
i + δkpU p,n+1

i − δk0U p,n+1
i−1

)
=
ωk

2
Uk,n

i , 1 ≤ i ≤ Nx, 0 ≤ k ≤ p, n ≥ 0, (14)

with λi = c∆t(n)

∆xi
, ∆t(n) = t(n+1) − t(n) > 0 the time step, with t(0) = 0, and using the notations u(n)

h (·) = uh(·, t(n)) and
Uk,n

i = Uk
i (t(n)). Summing (14) over 0 ≤ k ≤ p gives

⟨u(n+1)
h ⟩i + λi

(
U p,n+1

i − U p,n+1
i−1

)
= ⟨u(n)

h ⟩i ∀1 ≤ i ≤ Nx, n ≥ 0, (15)
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for the cell-averaged solution

⟨u(n)
h ⟩i B

p∑
k=0

ωk

2
Uk,n

i . (16)

It is convenient to also consider (14) in vector form as

MUn+1
i =MUn

i + λi

(
(2D⊤M − epe⊤p )Un+1

i + e0e⊤p Un+1
i−1

)
, 1 ≤ i ≤ Nx, n ≥ 0. (17)

where, by M = 1
2 diag(ω0, . . . , ωp) we denote the mass matrix multiplied by 1

2 with some abuse in the notation, while
(ek)0≤k≤p is the canonical basis of Rp+1 and Un

i = (Uk,n
i )0≤k≤p.

Finally, we derive the discrete counterpart to the inequality (2) for the square entropy. Left multiplying (17) by(
η′(U0≤k≤p,n+1

i )
)⊤
= U(n+1)

i , solutions to (14) satisfy the following inequality for the discrete square entropy 1
2 ⟨u

2
h⟩i

1
2
⟨(u(n+1)

h )2⟩i −
1
2
⟨(u(n)

h )2⟩i +
λi

2
(
(U p,n+1

i )2 − (U p,n+1
i−1 )2) ≤ 0,

which brings existence and uniqueness of solutions to (14) in L2(Ωh × ∪n≥0(t(n), t(n+1)),R).

3.2. The M-matrix framework
Before starting the analysis, we introduce the M-matrix framework that will be useful in the following. We first

define the setZn×n of all the n × n real matrices with nonpositive off-diagonal entries:

Zn×n =
{
A = (ai j) ∈ Rn×n : ai j ≤ 0, i , j

}
.

Different characterizations of M-matrices exist [38] and we use the following definition and characterizations [38]:

Definition 3.1. A matrix A ∈ Zn×n is called an M-matrix if A is inverse-positive. That is A−1 exists and each entry of
A−1 is nonnegative.

Theorem 3.1. A matrix A ∈ Zn×n is an M-matrix if and only if A is semi-positive. That is, there exists x =
(x1, . . . , xn)⊤ with xi > 0 such that (Ax)i > 0 for all 1 ≤ i ≤ n.

Theorem 3.2. A matrix A ∈ Zn×n is an M-matrix if A has all positive diagonal elements and it is strictly diagonally
dominant, aii >

∑
j,i |ai j| for all 1 ≤ i ≤ n.

M-matrices will be used as a tool to prove positivity preservation for the DGSEM scheme which is equivalent to
prove a discrete maximum principle (see lemma 3.1).

3.3. Maximum principle for the cell average
Following [39], we here prove in theorem 3.3 a weaken discrete maximum principle for the cell average, m ≤

⟨u(n+1)
h ⟩i ≤ M. We then use the linear scaling limiter from [58] to enforce all the DOFs at time t(n+1) to be in the range

[m,M] (see section 5.1). We will use the following result that shows that for the linear and conservative scheme (14),
maximum-principle preservation and positivity preservation are equivalent. Note that this result is sufficient, but not
necessary as we focus on a maximum principle on the cell averages, not all the DOFs.

Lemma 3.1. To prove a discrete maximum principle for the DGSEM scheme (14), it is enough to prove that it is
positivity preserving.

Proof. From (11) we obtain
ωk

2
=
ωk

2
+ λi

( p∑
l=0

ωlDlk − δkp + δk0

)
,

and subtracting the above equation multiplied by m defined in (3) from (14), then subtracting (14) from the above
equation multiplied by M in (3), we deduce that both (U0≤k≤p,n≥0

i∈Z − m) and (M − U0≤k≤p,n≥0
i∈Z ) satisfy (14). As a

consequence, the positivity preserving property, U0≤k≤p,n
i∈Z ≥ 0 implies U0≤k≤p,n+1

i∈Z ≥ 0, is equivalent to the discrete
maximum principle, m ≤ U0≤k≤p,n

i∈Z ≤ M implies m ≤ U0≤k≤p,n+1
i∈Z ≤ M. 2
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Using (8) with y = 2λi to invert (17), we get

ωk

2
Uk,n+1

i =

p∑
l=0

ωl

2
Di

klU
l,n
i − λi

(
Di

kpU p,n+1
i −Di

k0U p,n+1
i−1

)
,

where theDi
kl denote the entries of the matrix

Di B
(
I − 2λiD⊤

)−1 (8)
=

p∑
l=0

(2λiD⊤)l. (18)

We use (15) to get λiU
p,n+1
i−1 = λiU

p,n+1
i + ⟨u(n+1)

h ⟩i − ⟨u
(n)
h ⟩i and injecting this result into the above expression for

U p,n+1
i gives

σ
p
i U p,n+1

i = ξ
p,n
i + 2Di

p0

(
⟨u(n+1)

h ⟩i − ⟨u
(n)
h ⟩i

)
,

where

σ
p
i = ωp + 2λi(Di

pp −D
i
p0), ξ

p,n
i =

p∑
l=0

ωlD
i
plU

l,n
i . (19)

Further using the above expression to eliminate U p,n+1
i and U p,n+1

i−1 from the cell-averaged scheme (15), we finally
obtain

1 + 2λi

Di
p0

σ
p
i

 ⟨u(n+1)
h ⟩i − 2λi

Di−1
p0

σ
p
i−1

⟨u(n+1)
h ⟩i−1 =

1 + 2λi

Di
p0

σ
p
i

 ⟨u(n)
h ⟩i − 2λi

Di−1
p0

σ
p
i−1

⟨u(n)
h ⟩i−1 − λi

ξp,n
i

σ
p
i

−
ξ

p,n
i−1

σ
p
i−1


=⟨u(n)

h ⟩i − λi

ξ
p,n
i − 2Di

p0⟨u
(n)
h ⟩i

σ
p
i

+ λi

ξ
p,n
i−1 − 2Di−1

p0 ⟨u
(n)
h ⟩i−1

σ
p
i−1

=

p∑
k=0

ωk

2


1 − 2λi

(
Di

pk −D
i
p0

)
σ

p
i

 Uk,n
i +

2λi

(
Di−1

pk −D
i−1
p0

)
σ

p
i−1

 Uk,n
i−1

 ,
(20)

where we have used (16) and (19) in the last step.
Let us now derive conditions on λi for which the above relation preserves a discrete maximum principle for

the cell-averaged solution. According to lemma 3.1, it is enough to prove that the scheme preserves positivity, i.e.,
U0≤k≤p,n

1≤i≤Nx
≥ 0 imply ⟨u(n+1)

h ⟩1≤i≤Nx ≥ 0. We will thus show that, under some conditions on λi, the matrix stemming
from the linear system (20) for the ⟨u(n+1)

h ⟩1≤ j≤Nx is an M-matrix by using the characterization in theorem 3.1 and that
its RHS is a nonnegative combination of the Uk,n

i and Uk,n
i−1. Assuming the DOFs at time t(n) are in the range [m,M],

so will do the cell-averaged solutions ⟨u(n+1)
h ⟩1≤i≤Nx according to definition 3.1.

In view of (20), conditions for the RHS to be nonnegative read

σ
p
i − 2λi(Di

pk −D
i
p0) = ωp + 2λi(Di

pp −D
i
pk) ≥ 0, Di

pk −D
i
p0 ≥ 0 ∀0 ≤ k ≤ p, 1 ≤ i ≤ Nx, (21)

with σp
i > 0, while we impose the off-diagonal entries to be negative through

σ
p
i = ωp + 2λi(Di

pp −D
i
p0) > 0, Di

p0 ≥ 0. (22)

The strict inequality on theDi
p0 allows to satisfy theorem 3.1 by choosing the vector x such that xi =

∏Nx
j=1, j,i

D
j
p0

σ
p
j
>

0 for all 1 ≤ i ≤ Nx and we obtain (Ax)i = xi > 0 from (22).

Lemma 3.2. For all p ≥ 1, there exists a finite λmin = λmin(p) ≥ 0 such that conditions (21) and (22) are satisfied for
all λi > λmin, 1 ≤ i ≤ Nx.
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Table 1: Lower bounds on the non-dimensional time step λi > λmin, 1 ≤ i ≤ Nx, for (21) and (22) to hold, which make (20) maximum principle
preserving.

p 1 2 3 4 5 6
λmin 0 1

4
1+
√

5
6(5−

√
5)

0.150346 0.147568 0.109977

Proof. Let us consider the first condition in (21), similar arguments hold for all other conditions. For a fixed 0 ≤ k ≤ p,
use (18) to rewrite

Di
pp −D

i
pk =

p∑
l=0

(2λi)l
(
D(l)

pp − D(l)
kp

)
=

p−1∑
l=0

(2λi)l
(
D(l)

pp − D(l)
kp

)
,

since by (9), we have D(p)
kp = D(p)

pp . Hence for large λi, we have

Di
pp −D

i
pk ∼λi

(2λi)p−1
(
D(p−1)

pp − D(p−1)
kp

)
and we are going to show that this is a positive quantity. By using the linearity of ℓ(p−1)

p (·), we have D(p−1)
kp =

1−ξk
2 D(p−1)

0p +
1+ξk

2 D(p−1)
pp . Then, we obtain

D(p−1)
pp − D(p−1)

kp =
1 − ξk

2

(
D(p−1)

pp − D(p−1)
0p

) (10)
=

1 − ξk

2

p∑
l=0

ωlD
(p)
lp

(9)
= (1 − ξk)D(p)

pp
(9)
=

(1 − ξk)p!
p−1∏
l=0

(1 − ξl)
> 0,

which concludes the proof. 2

The following theorem immediately follows.

Theorem 3.3. Under the conditions λ1≤i≤Nx > λmin defined in lemma 3.2, the DGSEM scheme (14) is maximum
principle preserving for the cell-averaged solution:

m ≤ Uk,n
i ≤ M ∀1 ≤ i ≤ Nx, 0 ≤ k ≤ p ⇒ m ≤ ⟨u(n+1

h ⟩i ≤ M ∀1 ≤ i ≤ Nx.

Tab. 1 indicates the lower bounds on the λi as a function of the polynomial degree p evaluated from the conditions
(21) and (22). We observe that the second-order in space scheme, p = 1, is unconditionally maximum principle
preserving, while the lower bound decreases with increasing p values for p ≥ 2. These bounds are different from
those obtained in [39, Tab. 1] for the modal DG scheme with Legendre polynomials as function basis. In particular,
the modal DG scheme with p = 1 is not unconditionally maximum principle preserving and is seen to require a larger
CFL value for larger p values.

Remark 3.1 (Linear hyperbolic systems). The above results also apply to the case of linear hyperbolic systems of
size neq with constant coefficients ∂tu + A∂xu = 0 with A diagonalizable in R with eigenvalues ψk, normalized left
and right eigenvectors lk and rk such that l⊤k rl = δkl. Assuming that the right eigenvectors form a basis of Rneq

and setting u =
∑

k ukrk, each component satisfies a maximum principle: ∂tuk + ψk∂xuk = 0. Using a Roe flux,
h(u−,u+) = 1

2 A(u− + u+) + 1
2
∑

k |ψk |(u−k − u+k )rk, the time implicit DGSEM decouples into neq independent schemes
(14) for uk upon left multiplication by lk since l⊤k h(u−,u+) = ψk

2 (u−k + u+k ) + |ψk |

2 (u−k − u+k ) reduces to the upwind flux.

Remark 3.2 (Geometric source). Theorem 3.3 with the bounds from lemma 3.2 also applies to linear equations with
a geometric source term:

∂tu + c∂xu = s(x) in Ω × (0,∞),

with s(·) ≥ 0. Providing nonnegative initial and boundary data are imposed, the entropy solution remains nonnegative
for all time. The DGSEM scheme (14) for the discretization of the above equation remains the same by substituting
Uk,n

i + s(xk
i )∆t for Uk,n

i in the RHS. The conditions to obtain an M-matrix in (20) are therefore unchanged and only the
RHS is modified by the above change of variable on Uk,n

i . Adding a source term, lemma 3.1 no longer holds, but the
present DGSEM is positivity-preserving for the cell-averaged solution under the same conditions as in theorem 3.3.
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3.4. Linear system solution
Equations (14) or (17) result in a banded block linear system

A1dU(n+1) =M1dU(n) (23)

of size Nx(p + 1) with blocks of size p + 1 to be solved for U(n+1) where U1+k+(p+1)i = Uk
i and M1d is the global mass

matrix. Using the block structure of (23) is usually important for its efficient resolution with either direct or iterative
block-based solvers. We will also propose a direct algorithm below based on the inversion of the diagonal block only.
In most cases, we need to invert the diagonal blocks and we now prove that they are unconditionally invertible, while
a fast algorithm for the inversion of (23) is proposed in Appendix C.

Lemma 3.3. For all p ≥ 1, the diagonal blocks L1dM of A1d in the linear system (17), with

L1d = I − 2λL, L = D⊤ −
1
ωp

epe⊤p , (24)

are invertible for any λ > 0.

Proof. Let us prove that L1d is invertible: assume that L1du = 0 for some u = (u0, . . . , up)⊤, then by (24) we have

(I − 2λD⊤)u = −
2λ
ωp

epe⊤p u = −
2λup

ωp
ep ⇒ u = −

2λup

ωp
Dep,

with D = (I − 2λD⊤)−1 given by (18). Hence uk = −
2λup

ωp
Dkp and for k = p we get (ωp + 2λDpp)up = 0, so up = 0

since ωp + 2λDpp > 0 from (22) and we conclude that u = 0. Note that (24) is invertible for all λ > 0 since we have
Dpp = 1 +

∑p
l=1(2λ)lD(l)

pp > 0. Indeed, by differentiating (5) l-times we obtain

D(l)
pp = ℓ

(l)
p (1) =

p∑
k1=0

p∑
k2=0,k2,k1

· · ·

p∑
kl=1,kl<{k1,...,kl−1}

l∏
m=1

1
1 − ξkm

> 0 ∀1 ≤ l ≤ p.

2

Remark 3.3 (Dirichlet boundary condition). The case of an inflow boundary condition, u(0, t) = g(t) ∈ [m,M],
results in a similar linear system (23) with the only difference that U p,n+1

−1 = g(t(n+1)) in (13b). As a consequence,
A1d = A0 in (23), where A0 is a block lower triangular matrix with diagonal blocks ML1d, subdiagonal blocks
−λie0e⊤p , and the L1d defined in (24). The system (23) is therefore easily solved by block forward substitution since the
diagonal blocks are invertible. Likewise, the cell-averaged solution is maximum principle preserving under the same
conditions in lemma 3.2 as with periodic boundary conditions. Indeed, similar manipulations as for the derivation of
(20) give for the first cell i = 1

(ωp + 2λ1D
1
pp)⟨u(n+1)

h ⟩1 =

p∑
k=0

ωk

2

((
ωp + 2λ1

(
D1

pp −D
1
pk
))

Uk,n
1 +

(
ωp + 2λ1

(
D1

pp −D
1
p0
))

g(t(n+1))
)
,

and we conclude from (21) and (22).

4. Time implicit discretization in two space dimensions

We now consider a 2D linear problem with constant coefficients:

∂tu + cx∂xu + cy∂yu = 0, in Ω × (0,∞), (25a)
u(·, 0) = u0(·), in Ω, (25b)

with boundary conditions on ∂Ω and we again assume cx ≥ 0 and cy ≥ 0 without loss of generality. We also
assume Ω = R2 for the analysis, which amounts in practice to consider a rectangular domain with periodic boundary
conditions. As in the 1D case, considering inflow and outflow boundary conditions results in a block lower triangular
system to be solved and hence an easier analysis. The results in this section may be easily generalized to three space
dimensions.
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4.1. Space-time discretization

We consider a Cartesian mesh with rectangular elements of measure |κi j| = ∆xi × ∆y j for all i, j in Z. Using again
a time implicit discretization with a backward Euler method and upwind numerical fluxes, the fully discrete scheme
reads

ωkωl

4
(Ukl,n+1

i j − Ukl,n
i j )−

ωl

2
λxi

( p∑
m=0

ωmDmkUml,n+1
i j − δkpU pl,n+1

i j + δk0U pl,n+1
(i−1) j

)
−
ωk

2
λy j

( p∑
m=0

ωmDmlU
km,n+1
i j − δlpUkp,n+1

i j + δl0Ukp,n+1
i( j−1)

)
= 0,

(26)

where λxi =
cx∆t
∆xi

and λy j =
cy∆t
∆y j

. We again use the conventions U pl
0 j = U pl

Nx j and Ukp
i0 = Ukp

iNy
to take the periodic

boundary conditions into account. Using a vector storage of the DOFs as (Ui j)nkl = Ukl
i j with 1 ≤ nkl B 1+k+l(p+1) ≤

Np and Np = (p + 1)2, it will be convenient to rewrite the scheme under vector form as

(M ⊗M)(Un+1
i j − Un

i j) − λxi

(
M ⊗ (2D⊤M − epe⊤p )

)
Un+1

i j − λxi

(
M ⊗ e0e⊤p

)
Un+1

(i−1) j

− λy j

(
(2D⊤M − epe⊤p ) ⊗M

)
Un+1

i j − λy j

(
e0e⊤p ⊗M

)
Un+1

i( j−1) = 0,
(27)

where M = 1
2 diag(ω0, . . . , ωp), (ek)0≤k≤p is the canonical basis of Rp+1, and ⊗ denotes the Kronecker product [51, 50]:

(A⊗B)nklnk′ l′ = All′Bkk′ , which satisfies (A⊗B)(C⊗D) = AC⊗BD, (A⊗B)−1 = A−1 ⊗B−1, and (A⊗B)⊤ = A⊤ ⊗B⊤.
Likewise, for diagonalizable matrices A = RAΨAR−1

A and B = RBΨBR−1
B , the product A ⊗ B is also diagonalizable

with eigenvalues being the product of eigenvalues of A and B: A ⊗ B = (RA ⊗ RB)(ΨA ⊗ΨB)(RA ⊗ RB)−1.
Summing (26) over 0 ≤ k, l ≤ p gives:

⟨u(n+1)
h ⟩i j − ⟨u

(n)
h ⟩i j +

λxi

2

p∑
l=0

ωl

(
U pl,n+1

i j − U pl,n+1
(i−1) j

)
+
λy j

2

p∑
k=0

ωk

(
Ukp,n+1

i j − Ukp,n+1
i( j−1)

)
= 0, (28)

where the cell-average operator reads

⟨uh⟩i j =

p∑
k=0

p∑
l=0

ωkωl

4
Ukl

i j . (29)

Finally, left-multiplying (27) by U(n+1)
i j brings L2 stability:

1
2
⟨(u(n+1)

h )2⟩i j −
1
2
⟨(u(n)

h )2⟩i j +
λxi

2

p∑
l=0

ωl

2
(
(U pl,n+1

i j )2 − (U pl,n+1
(i−1) j )2) + λy j

2

p∑
k=0

ωk

2
(
(Ukp,n+1

i j )2 − (Ukp,n+1
i( j−1) )2) ≤ 0.

Note that the 2D discrete difference matrix reads D⊤2d = λxi I⊗D⊤ + λy j D⊤ ⊗ I, and it may be easily checked that is
is also nilpotent, D2p+1

2d = 0, so I−D2d may be inverted as in the 1D case. Unfortunately, the scheme (27) is in general
not maximum principle preserving for the cell average as may be observed in the numerical experiments of section 5.
We now propose to modify the scheme by adding graph viscosity to make it maximum principle preserving.

4.2. Maximum principle through graph viscosity

We add a graph viscosity [22] term V(n+1)
i j to the LHS of (27) which becomes

(M ⊗M)(Un+1
i j − Un

i j) − λxi

(
M ⊗ (2D⊤M − epe⊤p )

)
Un+1

i j − λxi (M ⊗ e0e⊤p )Un+1
(i−1) j

− λy j

(
(2D⊤M − epe⊤p ) ⊗M

)
Un+1

i j − λy j (e0e⊤p ⊗M)Un+1
i( j−1) + V(n+1)

i j = 0,
(30)

where
V(n+1)

i j = 2di j

(
λxi M ⊗

(
M − ω1⊤M

)
+ λy j

(
M − ω1⊤M

)
⊗M

)
U(n+1)

i j

= 2di j

(
(λxi + λy j )I ⊗ I − λxi (I ⊗ ω1⊤) − λy j (ω1⊤ ⊗ I)

)
(M ⊗M)U(n+1)

i j ,
(31)
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with di j ≥ 0, ω = 1
2 (ω0, . . . , ωp)⊤ and 1 = (1, . . . , 1)⊤ ∈ Rp+1, which reads componentwise as

Vkl,n+1
i j = di j

ωkωl

2

(
λxi

p∑
m=0

ωm

2
(
Ukl,n+1

i j − Uml,n+1
i j

)
+ λy j

p∑
m=0

ωm

2
(
Ukl,n+1

i j − Ukm,n+1
i j

))
. (32)

This term keeps conservation of the scheme:
∑

k,l Vkl,n+1
i j = 0, so the cell-averaged scheme still satisfies (28). It

also enforces the L2 stability since

Ui j · Vi j
(32)
= di j

p∑
k,l=0

ωkωl

2
Ukl

i j

λxi

p∑
m=0

ωm

2
(
Ukl

i j − Uml
i j

)
+ λy j

p∑
m=0

ωm

2
(
Ukl

i j − Ukm
i j

)
=di j

p∑
k,l=0

ωkωl

2

λxi

p∑
m=0

ωm

2

(Ukl
i j − Uml

i j )2 + (Ukl
i j )

2 − (Uml
i j )2

2
+ λy j

p∑
m=0

ωm

2

(Ukl
i j − Ukm

i j )2 + (Ukl
i j )

2 − (Ukm
i j )2

2


=di j

p∑
k,l=0

ωkωl

2

λxi

p∑
m=0

ωm

2

(Ukl
i j − Uml

i j )2

2
+ λy j

p∑
m=0

ωm

2

(Ukl
i j − Ukm

i j )2

2

 ≥ 0.

We now look for conditions on the linear system (30) to correspond to an M-matrix, thus imposing a maximum
principle for the DOFs.

Lemma 4.1. Under the condition
di j ≥ 2 max

0≤k,m≤p

(
−

Dmk

ωk

)
, (33)

the linear system (30) is maximum principle preserving.

Proof. This is a direct application of theorem 3.2 to show that the linear system (30) is defined from an M-matrix.
Positivity preservation is then enough to get maximum principle preservation. We rewrite (30) componentwise as

aklU
kl,n+1
i j +

p∑
m=0,m,k

bklmUml,n+1
i j +

p∑
m=0,m,l

cklmUkm,n+1
i j − λxi

ωl

2
δk0U pl,n+1

(i−1) j − λy j

ωk

2
δl0Ukp,n+1

i( j−1) =
ωkωl

4
Ukl,n

i j

where the diagonal coefficients read

akl =
ωkωl

4
− λxi

ωl

2
(
ωkDkk − δkp

)
− λy j

ωk

2
(
ωlDll − δlp

)
+
ωkωl

2
di j

(
λxi

p∑
m=0,m,k

ωm

2
+ λy j

p∑
m=0,m,l

ωm

2

)
and are positive since −(ωkDkk − δkp) = 1

2 (δkp + δk0) and −(ωlDll − δlp) = 1
2 (δlp + δl0) from the SBP property (12).

Likewise, bklm = −λxi
ωl
2 ωm(Dmk +

ωk
2 di j) and cklm = −λy j

ωk
2 ωm(Dml +

ωl
2 di j) are nonpositive under (33).

Finally, strict diagonal dominance reads akl > −
∑

m,k bklm −
∑

m,l cklm + λxi
ωl
2 δk0 + λy j

ωk
2 δl0 since bklm ≤ 0 and

cklm ≤ 0. This reduces to

ωkωl

4
− λxi

ωl

2
(
ωkDkk − δkp

)
− λy j

ωk

2
(
ωlDll − δlp

)
> λxi

ωl

2

p∑
m=0,m,k

ωmDmk + λy j

ωk

2

p∑
m=0,m,l

ωmDml + λxi
ωl
2 δk0 + λy j

ωk
2 δl0,

where all the coefficients from the graph viscosity cancel each other out from (32) and have been removed. This can
be rearranged into

ωkωl

4
> λxi

ωl

2

( p∑
m=0

ωmDmk − δkp + δk0

)
+ λy j

ωk

2

( p∑
m=0

ωmDml − δlp + δl0

) (11)
= 0,

which is always satisfied and concludes the proof. 2
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Table 2: Lower bounds (33) on the coefficient di j for (30) to be maximum-principle preserving.

p 1 2 3 4 5 6
2 max

0≤k,m≤p

(
−

Dmk
ωk

)
1 3 3(1 +

√
5) 24.8 53.6 102.6

The modified DGSEM scheme with graph viscosity therefore satisfies the maximum principle for large enough
di j values. Table 2 gives the minimum di j values (33) in lemma 4.1 guaranteeing a maximum principle. Likewise, the
diagonal blocks in (30) are now strictly diagonally dominant and hence invertible.

The scheme is however first order in space when di j > 0 and is not used in practice. In the following, it is combined
with the high-order scheme within the FCT limiter framework to keep high-order accuracy.

Remark 4.1 (sparse discrete derivative matrix). The accuracy of the low-order DGSEM scheme (30) with graph
viscosity may be improved by replacing the discrete derivative matrix (6) with the low-order sparse derivative matrix
D̃ from [34, Sec. 3] defined by

ωkD̃k(k+1) = −ωkD̃k(k−1) =
1
2
, ωpD̃pp = −ω0D̃00 =

1
2
. (34)

The matrix D̃ indeed still satisfies (11) and (12), so the scheme satisfies the maximum principle, but for a lower
dissipation coefficient and applied to a sparser stencil max(k − 1, 0) ≤ l ≤ min(k + 1, 0) instead of 0 ≤ l ≤ p, whence
ωkωk±1di j = 1 is enough. Though this modification reduces the dissipation necessary to achieve a maximum principle,
the scheme is still first-order accurate and the limiting strategy introduced in section 4.3 is seen to be weakly affected
by the amount of dissipation as illustrated in Appendix A (using either D or D̃ in the low-order scheme did not change
all the numerical results of section 5.3).

4.3. Flux-corrected transport limiter
Following [20], the Flux-Corrected Transport (FCT) limiter [5, 57] can be applied to guarantee a maximum prin-

ciple by combining the high-order (HO) DGSEM scheme (27) and the low-order (LO) modified DGSEM scheme (30)
with graph viscosity. We here propose to use the FCT limiter to guarantee a maximum principle on the cell-averaged
solution (29), the maximum principle on all DOFs within the elements being ensured through the use of the linear
scaling limiter (see section 5.1) as in one space dimension. This two-step limiting process has been introduced to
avoid undesirable effects on the approximate solution when the FCT limiting is applied to all DOFs, such as accuracy
deterioration for smooth solutions, or a frequent switching back and forth between the limited and unlimited schemes
(see Appendix A for a numerical illustration).

By u(n+1)
h,LO (resp., u(n+1)

h,HO) we denote the solution to the LO scheme (30) (resp., HO scheme (27)). Both are solutions
to the cell-averaged scheme (28). Subtracting the cell-averaged for the LO solution from the one for the HO solution
gives

⟨u(n+1)
h,HO⟩i j − ⟨u

(n+1)
h,LO ⟩i j

(28)
= λxi

p∑
l=0

ωl

2

(
U pl,n+1

(i−1) j,HO − U pl,n+1
i j,HO + U pl,n+1

i j,LO − U pl,n+1
(i−1) j,LO

)
+ λy j

p∑
k=0

ωk

2

(
Ukp,n+1

i( j−1),HO − Ukp,n+1
i j,HO + Ukp,n+1

i j,LO − Ukp,n+1
i( j−1),LO

)
=λxi

p∑
l=0

ωl

2

(
U pl,n+1

(i−1) j,HO − U pl,n+1
(i−1) j,LO

)
+ λxi

p∑
l=0

ωl

2

(
− U pl,n+1

i j,HO + U pl,n+1
i j,LO

)
+ λy j

p∑
k=0

ωk

2

(
Ukp,n+1

i( j−1),HO − Ukp,n+1
i( j−1),LO

)
+ λy j

p∑
k=0

ωk

2

(
− Ukp,n+1

i j,HO + Ukp,n+1
i j,LO

)
CA(i−1) j

i j + A(i+1) j
i j + Ai( j−1)

i j + Ai( j+1)
i j =

∑
(r,s)∈S(i, j)

Ars
i j
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with S(i, j) = {(i−1, j); (i+1, j); (i, j−1); (i, j+1)}. Note that we have A(i−1) j
i j = −Ai j

(i−1) j and Ai( j−1)
i j = −Ai j

i( j−1). Again
following [20, Sec. 5.3], we introduce the limiter coefficients defined by

P−i j =
∑

(r,s)∈S(i, j)

min
(
Ars

i j , 0
)
≤ 0, Q−i j = m − ⟨u(n+1)

LO ⟩i j ≤ 0, l−i j = min
(
1,

Q−i j

P−i j

)
∈ [0, 1], (35a)

P+i j =
∑

(r,s)∈S(i, j)

max
(
Ars

i j , 0
)
≥ 0, Q+i j = M − ⟨u(n+1)

LO ⟩i j ≥ 0, l+i j = min
(
1,

Q+i j

P+i j

)
∈ [0, 1], (35b)

where m and M are the lower and upper bounds in (3) we want to impose to ⟨u(n+1)
h ⟩i j. The new update of the mean

value of the solution is now defined by:

⟨u(n+1)
h ⟩i j − ⟨u

(n+1)
h,LO ⟩i j =

∑
(r,s)∈S(i, j)

lrs
i j Ars

i j , lrs
i j =

{
min(l−i j, l

+
rs) if Ars

i j < 0
min(l−rs, l

+
i j) otherwise. (36)

As a consequence, the cell-averaged solution satisfies the maximum principle (see [20, Lemma 5.4]): using (36)
we get

⟨u(n+1)
h ⟩i j − ⟨u

(n+1)
h,LO ⟩i j ≥

∑
(r,s)∈S(i, j)

lrs
i j min(Ars

i j , 0) = min(l−i j, l
+
rs)P

−
i j ≥ l−i jP

−
i j ≥ Q−i j = m − ⟨u(n+1)

LO ⟩i j,

⟨u(n+1)
h ⟩i j − ⟨u

(n+1)
h,LO ⟩i j ≤

∑
(r,s)∈S(i, j)

lrs
i j max(Ars

i j , 0) = min(l−rs, l
+
i j)P

+
i j ≤ l+i jP

+
i j ≤ Q+i j = M − ⟨u(n+1)

LO ⟩i j,

since Q−i j ≤ l−i jP
−
i j ≤ 0 and 0 ≤ l+i jP

+
i j ≤ Q+i j by definition (35).

Likewise, by (36) we have lrs
i j = li j

rs for (r, s) ∈ S(i, j), thus ensuring conservation of the method:∑
i j

⟨u(n+1)
h ⟩i j =

∑
i j

⟨u(n+1)
h,HO⟩i j =

∑
i j

⟨u(n+1)
h,LO ⟩i j =

∑
i j

⟨u(n)
h ⟩i j,

for periodic boundary conditions or compactly supported solutions.
From (36), the limiter is only applied at the interfaces and the DOFs can be evaluated explicitly from u(n+1)

h,LO and
u(n+1)

h,HO through

ωkωl

4
(
Ukl,n+1

i j − Ukl,n+1
i j,HO

)
= δkp

ωlλxi

2
(
1 − l(i+1) j

i j
)(

U pl,n+1
i j,HO − U pl,n+1

i j,LO

)
− δk0

ωlλxi

2
(
1 − l(i−1) j

i j
)(

U pl,n+1
(i−1) j,HO − U pl,n+1

(i−1) j,LO

)
+ δlp

ωkλy j

2
(
1 − li( j+1)

i j
)(

Ukp,n+1
i j,HO − Ukp,n+1

i j,LO

)
− δl0

ωkλy j

2
(
1 − li( j−1)

i j
)(

Ukp,n+1
i( j−1),HO − Ukp,n+1

i( j−1),LO

)
.

This limited scheme is conservative, satisfies the maximum principle for the cell-averaged solution, and is thus L2-
stable with the bound ∥u(n+1)

h ∥L2(Ωh) ≤
√
|Ωh|max(|m|, |M|), which provides existence of the solution, while uniqueness

follows from uniqueness of the HO and LO solutions and the above explicit reconstruction for un+1
h . An entropy

inequality seems however difficult to establish.
The FCT limiter requires to solve two linear systems for u(n+1)

h,LO and u(n+1)
h,HO at each time step. Let us stress that since

we need to compute u(n+1)
h,HO , we know easily if the limiter is required, that is if the maximum principle is violated for

the cell-averaged solution in some cell of the mesh. If it is not violated, we set u(n+1)
h ≡ u(n+1)

h,HO and do not need to
compute u(n+1)

h,LO , but only to apply the linear scaling limiter (see section 5.1). The FCT limiter may hence be viewed
as an a posteriori limiter which is applied when needed after the solution update in the same way as other a posteriori
limiters, such as in the MOOD method [9]. Preserving the maximum principle on the cell-averaged solution is a
weaker requirement than preserving it on every DOFs and should therefore be more likely to be respected. As a
consequence, the present FCT limiter is expected to less modify the solution, which is supported by the numerical
experiments of section 5.3.

In the next section, we also propose efficient algorithms to solve these linear systems to mitigate the extra cost
induced by the additional linear solution when u(n+1)

h,LO is required.
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4.4. Linear system solution
Both linear systems without, (27), and with graph viscosity, (30), result in a block linear system

A2dU(n+1) =M2dU(n) (37)

of size NxNyNp with blocks of size Np = (p + 1)2 to be solved for U(n+1) where Unkl+(i−1)Np+( j−1)NxNp = Ukl
i j with

nkl = 1 + k + l(p + 1) and M2d the global mass matrix. Considering the block structure of A2d is important for
efficiently solving (37) and usually requires the inversion of the diagonal blocks as a main step. These blocks are
dense and hence require algorithms of complexity O(N3

p) for their inversion. We propose below algorithms based on
the properties of the 1D schemes in section 3.4 for their efficient inversion. A repository of these algorithms (equations
(40), (43), (45) and algorithm 1) is available at [1] and Appendix B provides a description of the repository together
with some comparison of the performances of the different algorithms.

4.4.1. 1D diagonal blocks as building blocks of the 2D linear systems
Let us introduce the diagonalization in C of the matrix L in (24):

L = RΨR−1, (38)

where the columns of R ∈ C(p+1)×(p+1) are the right eigenvectors of L andΨ is the diagonal matrix of the corresponding
p + 1 eigenvalues. We therefore have

L1d = RΨλR−1, Ψλ = I − 2λΨ, (39)

for the 1D diagonal blocks in (24).
From (24), eigenpairs ψ and r = (r0, . . . , rp)⊤, such that Lr = ψr, satisfy

∑
l Dlkrl − δkp

rp

ωp
= ψrk and summing this

relation over 0 ≤ k ≤ p gives − 1
ωp

rp = ψ
∑

k rk and for ψ = 0 we would have rp = 0, hence D⊤r = 0 so r = 0 since D⊤

is of rank p. So we have ψ , 0 and we can invert the above relation with (18) to get r = − rp

ψωp

(∑p
l=0 ψ

−lDl)⊤ep and
the pth component with rp , 0. ψ and r are thus given by

ωpψ
p+1 +

p∑
l=0

ψp−lD(l)
pp = 0, rk = −

1
ωp

p∑
l=0

ψ−l−1D(l)
pk ∀0 ≤ k ≤ p − 1, rp = 1. (40)

4.4.2. Diagonal blocks of the HO scheme (27)
Setting λ = λxi + λy j > 0, we rewrite the scheme (27) without graph viscosity as

L2d(M ⊗M)Un+1
i j − λxi (M ⊗ e0e⊤p )Un+1

(i−1) j − λy j (e0e⊤p ⊗M)Un+1
i( j−1) = (M ⊗M)Un

i j, (41)

where the first matrix in the diagonal blocks may be written as follows from the definition of L1d in (39):

L2d B
λxi

λ
I ⊗ L1d +

λy j

λ
L1d ⊗ I = (R ⊗ R)Ψ2d(R ⊗ R)−1, Ψ2d =

λxi

λ
I ⊗Ψλ +

λy j

λ
Ψλ ⊗ I, (42)

with I the identity matrix in Rp+1 and L1d the 1D operator defined in (24). The diagonal matrix Ψ2d has 1 − 2(λxiψl +

λy jψk) , 0 as nklth component. Hence the inverse of the diagonal blocks in (27) has an explicit expression

(M ⊗M)−1L−1
2d =

(
(M−1R) ⊗ (M−1R)

)
Ψ−1

2d (R ⊗ R)−1 , (43)

Ψ−1
2d = diag

(
1

1 − 2(λxiψk + λy jψl)
: 1 ≤ nkl = 1 + k + l(p + 1) ≤ Np

)
.

Note that L in (24) depends only on the approximation order of the scheme p, not on the λxi and λy j , so the
matrices R, R−1, M−1R, Ψ, Ψ2d, etc. may be computed once from (40) at the beginning of the computation.

Remark 4.2 (Fast Diagonalization Method). The above inversion strategy is not new. [33] proposed the so-called
Fast Diagonalization Method (FDM) for solving generic PDEs discretized with tensor-product methods: (42) and (43)
happen to be the specialization of such a framework to the DGSEM method at hand.
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4.4.3. Diagonal blocks of the LO scheme (30)
Including the graph viscosity (31) into (27) modifies the diagonal blocks of the linear system and we now need to

solve
Lv

2d(M ⊗M)Un+1
i j − λxi (M ⊗ e0e⊤p )Un+1

(i−1) j − λy j (e0e⊤p ⊗M)Un+1
i( j−1) = (M ⊗M)Un

i j, (44)

with
Lv

2d = L0
2d − UvV⊤v , (45)

and

L0
2d = L2d+2di jλI⊗I = (R⊗R)

(
Ψ2d+2di jλI⊗I

)
(R⊗R)−1, Uv = 2di j

(
λxi I⊗ω, λy jω⊗I

)
, Vv =

(
I⊗1, 1⊗I

)
, (46)

where Uv and Vv are matrices in RNp×(2p+2). Although the diagonal blocks Lv
2d may be efficiently built from the

proposed method (45) (i.e., the 1D operators in L0
2d plus a low-rank product) and then inverted with a direct solver,

we propose below an alternative algorithm for their inversion that is found to be more efficient for polynomial degree
up to p ≤ 6 (see Appendix B). Indeed, the matrix L0

2d in (45) is easily inverted from (46) since Ψ2d + 2di jλI ⊗ I is
diagonal: here again, one takes advantage of the FDM. Then, we invert Lv

2d by using the Woodbury identity:

(Lv
2d)−1 (45)

=
(
I ⊗ I − (L0

2d)−1UvV⊤v
)−1

(L0
2d)−1 =

(
I ⊗ I + (L0

2d)−1Uv

(
I2p+2 − V⊤v (L0

2d)−1Uv

)−1
V⊤v

)
(L0

2d)−1,

so the diagonal blocks may be inverted with algorithm 1, where only step 3 requires the inversion of a linear system
of lower size with dense algebra tools. {Steps 1 and 2 can be solved with O(4(p + 1)3) FLOPs: indeed, [33, Section
3] shows how to rewrite similar problems as a chain of cheap, low-size matrix-matrix multiplications (in step 1, a
rewriting of b in matrix storage is needed) which is less expensive than solving the naive form. Finally, steps 3 and 4
require O(4(p + 1)N2

p) and O(2(p + 1)Np) FLOPs, respectively.

Algorithm 1 Algorithm flowchart for solving the system Lv
2d(M ⊗M)x = b with graph viscosity.

1: solve L0
2dy = b for y ∈ RNp using (46):

y = (R ⊗ R) diag
(

1
1 + 2λdi j − 2(λxiψk + λy jψl)

: nkl B 1 ≤ 1 + k + l(p + 1) ≤ Np

)
(R−1 ⊗ R−1)b;

2: solve L0
2dZ = Uv for Z ∈ RNp×(2p+2) using (46):

Z = 2di j(R ⊗ R) diag
(

1
1 + 2λdi j − 2(λxiψk + λy jψl)

: 1 ≤ nkl ≤ Np

) (
λxi R

−1 ⊗ (R−1ω), λy j (R
−1ω) ⊗ R−1);

3: solve (I2p+2 − V⊤v Z)z = V⊤v y for z ∈ R2p+2;
4: set x = (M−1 ⊗M−1)(y + Zz).

Remark 4.3 (Solution of the global system). In the case of Dirichlet boundary conditions, (37) is a block lower
triangular system that can be efficiently solved with blockwise forward substitution by using the block inversion
algorithms from the previous sections. In the case of periodic boundary conditions, it is possible to decompose the
matrix into a block lower triangular matrix and a low-rank product: A2d = A0

2d + U2dV⊤2d with

U2d =
1
2

(
λy1

(
ωkek0

i1
)0≤k≤p
1≤i≤Nx

, λx1

(
ωle0l

1 j
)0≤l≤p
1≤ j≤Ny

)
, V2d =

((
ek0

iNy

)0≤k≤p
1≤i≤Nx

,
(
e0l

Nx j
)0≤l≤p
1≤ j≤Ny

)
,

where the ekl
i j are the components of the canonical basis of RNxNyNp . It is therefore possible to apply the Woodbury

identity in a similar way as in algorithm 1.
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5. Numerical experiments

In this section we present numerical experiments on problems in one and two space dimensions (sections 5.2
and 5.3) in order to illustrate the properties of the DGSEM considered in this work. The FCT limiter (36) is applied
in the 2D experiments only. A maximum principle holds for the cell-averaged solution, m ≤ ⟨u(n+1)

h ⟩ ≤ M, in one
space dimension and in two space dimensions with the FCT limiter. We then apply the linear scaling limiter from [58]
described in section 5.1 to enforce a maximum principle on all the DOFs within the cells.

We evaluate error norms from the Gauss-Lobatto quadrature rules. Given uh ∈ V
p
h , we compute the L2 norm as

∥uh∥
2
L2(Ωh) B

Nx∑
i=1

p∑
k=0

∆x
2
ωk(Uk

i )2, ∥uh∥
2
L2(Ωh) B

Nx∑
i=1

Ny∑
j=1

p∑
k,l=0

∆x
2
∆y
2
ωkωl(Ukl

i j )
2,

in, respectively, 1D and 2D. The L∞ norm is evaluated in a similar way:

∥uh∥L∞(Ωh) B max
1≤i≤Nx

max
0≤k≤p

|Uk
i |, ∥uh∥L∞(Ωh) B max

1≤i≤Nx

max
1≤ j≤Ny

max
0≤k,l≤p

|Ukl
i j |.

5.1. Linear scaling limiter

Assuming ⟨u(n+1)⟩κ ∈ [m,M] in a cell κ (either κi in 1D, or κi j in 2D), Zhang and Shu [58] proposed to modify
U(n+1)
κ , the vector of DOFs in κ, as follows:

Ũ(n+1)
κ = θκU(n+1)

κ + (1 − θκ)⟨u
(n+1)
h ⟩κ1, θκ = min


∣∣∣∣∣∣∣ M − ⟨u(n+1)

h ⟩κ

max Uκ − ⟨u
(n+1)
h ⟩κ

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣ m − ⟨u(n+1)

h ⟩κ

min Uκ − ⟨u
(n+1)
h ⟩κ

∣∣∣∣∣∣∣ , 1
 , (47)

with 1 = (1, 1, . . . , 1)⊤ ∈ R(p+1)d
, and max Uκ (resp., min Uκ) is the maximum (resp., minimum) value of the DOFs in

the vector Uk,n+1
κ . This limiter does not affect the high-order of accuracy for smooth solutions and does not change the

cell average of the solution thus keeping the method conservative [58].

5.2. One space dimension

5.2.1. High-order accuracy in space
The high-order accuracy in space is first checked by looking for steady-state solutions of the following problem

with a geometric source term and an inflow boundary condition:

∂tu + ∂xu = 2π cos(2πx) in [0, 1] × [0,T ], u(0, ·) = 0 in [0,T ], (48)

whose exact solution reads u(x) = sin(2πx). We take λ = 1, start from u0(x) = 0, and march in time until ∥un+1
h −un

h∥2 ≤

10−14. The p + 1 accuracy of DGSEM is observed in Tab. 3. As expected [58, 60], the limiter does not affect the
accuracy of the method.

5.2.2. Maximum-principle preservation
We now compare experiments with the theoretical bounds on the time to space steps ratio λ indicated in Tab. 1

for the DGSEM scheme to be maximum-principle preserving. We use a discontinuous initial condition composed
of a Gaussian, a square pulse, a sharp triangle and a combination of semi-ellipses [31, Eq. (4.3)]. Table 4 displays
the minimum and the maximum values of the cell average solution of (14) after a short physical time for different
approximation orders and different values of λ. The results are in good agreement with the theoretical lower bounds
in Tab. 1 and for p ≥ 2 the maximum principle is seen to be violated on at least one mesh for the lowest value λ = 0.1.

In Tab. 5 we experimentally evaluate the lower bound on λ to guarantee a maximum principle on the cell-averaged
solution by using a bisection method from the same configuration as in Tab. 4. We observe that the theoretical lower
bound on λ derived in theorem 3.3 and Tab. 1 is sharp and confirmed by the experimental observations, though it
seems to slightly overestimate the experimental lower bound for p = 3 and p = 5. Let us recall that the condition
λ > λmin in Tab. 1 is a sufficient to obtain maximum principle preservation.
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Table 3: Steady-state problem (48): Lk∈{2,∞} error levels ∥uh − u∥Lk(Ωh) and associated orders of convergence Ok obtained with λ = 1 when refining
the mesh. The linear scaling limiter (47) is applied or not.

no limiter linear scaling limiter
p Nx L2 error O2 L∞ error O∞ L2 error O2 L∞ error O∞

1

20 2.092E-2 - 4.071E-2 - 1.999E-2 - 4.071E-2 -
40 5.239E-3 2.00 1.025E-2 1.99 5.120E-3 1.96 1.025E-2 1.99
80 1.310E-3 2.00 2.569E-3 2.00 1.295E-3 1.98 2.569E-3 2.00
160 3.276E-4 2.00 6.424E-4 2.00 3.258E-4 1.99 6.424E-4 2.00

2

20 4.164E-4 - 1.274E-3 - 4.309E-4 - 1.274E-3 -
40 5.210E-5 3.00 1.609E-4 2.99 5.292E-5 3.03 1.609E-4 2.99
80 6.515E-6 3.00 2.017E-5 3.00 6.564E-6 3.01 2.017E-5 3.00
160 8.144E-7 3.00 2.523E-6 3.00 8.174E-7 3.01 2.523E-6 3.00

3

20 6.978E-6 - 2.669E-5 - 7.006E-6 - 2.669E-5 -
40 4.365E-7 4.00 1.685E-6 3.99 4.367E-7 4.00 1.685E-6 3.99
80 2.729E-8 4.00 1.056E-7 4.00 2.729E-8 4.00 1.056E-7 4.00
160 1.706E-9 4.00 6.605E-9 4.00 1.706E-9 4.00 6.605E-9 4.00

4

20 1.008E-7 - 4.493E-7 - 1.008E-7 - 4.493E-7 -
40 3.153E-9 5.00 1.418E-8 4.99 3.153E-9 5.00 1.418E-8 4.99
80 9.854e-11 5.00 4.443e-10 5.00 9.854e-11 5.00 4.443e-10 5.00
160 3.080e-12 5.00 1.390e-11 5.00 3.080e-12 5.00 1.390e-11 5.00

5

20 1.253E-9 - 6.274E-9 - 1.813E-9 - 1.249E-8 -
40 1.959e-11 6.00 9.902e-11 5.99 2.446e-11 6.21 1.978e-10 5.98
80 3.062e-13 6.00 1.550e-12 6.00 3.469e-13 6.14 3.103e-12 5.99
160 4.504e-15 6.09 2.165e-14 6.16 4.757e-15 6.19 4.241e-14 6.19

Table 4: Linear scalar equation with a discontinuous initial condition: evaluation of the maximum principle for the cell-averaged solution as proved
in theorem 3.3 and Tab. 1 after a short physical time t = 0.01. The solution should remain in the interval [0, 1]. The linear scaling limiter (47) is
always applied.

Nx = 100 Nx = 101
p λ min

1≤i≤Nx
⟨uh⟩i max

1≤i≤Nx

⟨uh⟩i min
1≤i≤Nx

⟨uh⟩i max
1≤i≤Nx

⟨uh⟩i

0.1 0.0 1.0 0.0 1.0
1 0.25 9.88E-9 1.0 3.68E-10 1.0

0.5 6.14E-6 1.0 9.40E-7 1.0
0.1 -3.92E-3 1.0005 -5.43E-3 1.005

2 0.25 0.0 1.0 0.0 1.0
0.5 5.35E-7 1.0 6.29E-8 1.0
0.1 0.0 1.0 -5.52E-3 1.006

3 0.195137 0.0 1.0 0.0 1.0
0.5 6.29E-7 1.0 8.91E-8 1.0
0.1 -4.00E-4 1.0002 -3.58E-5 1.000007

4 0.151 0.0 1.0 0.0 1.0
0.5 1.32E-7 1.0 8.93E-8 1.0
0.1 0.0 1.0 -2.45E-7 1.0005

5 0.147568 0.0 1.0 0.0 1.0
0.5 9.92E-8 1.0 9.06E-8 1.0
0.10 -1.78E-05 1.000013 -1.44E-4 1.000144

6 0.109977 0.0 1.0 0.0 1.0
0.5 0.0 1.0 0.0 1.0
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Table 5: Experimental evaluation of the lower bounds of the time to space steps ratio λexp
min such that λ1≤i≤Nx = λ ≥ λ

exp
min ensures the maximum

principle preservation for the cell-averaged solution in theorem 3.3 and Tab. 1, while it doesn’t for λ ≤ λexp
min − 10−2 on meshes with Nx = 100 and

Nx = 101 elements. We report the theoretical values from Tab. 1 in the bottom line for the sake of comparison.
p 1 2 3 4 5 6
λ

exp
min 0 0.25 0.17 0.16 0.13 0.11
λmin 0 0.25 0.195137 0.150346 0.147568 0.109977

(a) 1D problem (b) 2D problem

Figure 2: Advection-reaction equation with source: (a) 1D steady-state DGSEM solution to (49) for p = 5, Nx = 10 and the linear scaling limiter
(47); (b) 2D steady-state DGSEM solution for problem (50) with p = 5, Nx = Ny = 10 and the FCT limiter. The solution is plotted at quadrature
points and T refers to the pseudo time required to converge the solution, i.e., ∥un+1

h − un
h∥2 ≤ 10−14.

5.2.3. Linear advection-reaction with source
We finally consider a linear advection-reaction problem with a geometric source term:

∂tu + cx∂xu + βu = s(x) in Ω × (0,∞), u(x, 0) = u0(x) in Ω. (49)

with β ≥ 0 and s(·) ≥ 0. Providing nonnegative initial and boundary data are imposed, the solution remains nonnega-
tive for all time.

We here adapt the problem representative of the radiative transfer equations from [56, Ex. 6.2] with c = 1,
β = 6000, s(x) = β( 1

9 cos4(2πx)+ϵ)− 4
9 cos3(2πx) sin(2πx) onΩ = [0, 3], ϵ = 10−14, and an inflow boundary condition

u(0, t) = 1
9 + ϵ. This problem has a steady-state smooth solution, but with low positive values and large oscillations:

u(x) = 1
9 cos4(2πx) + ϵ ≥ ϵ (see Fig. 2).

We again set λ = 1 and iterate up to convergence ∥un+1
h − un

h∥2 ≤ 10−14. Table 6 displays the error levels obtained
for different approximation orders and mesh refinements when applying the scaling limiter (47) or not, together with
the evaluation of the lowest value of the DGSEM solution. The limiter keeps the high-order accuracy of the DGSEM,
while it successfully preserves positivity of the solution thus confirming that the DGSEM preserves positivity of the
cell-averaged solution before the application of the limiter. We however observe a suboptimal pth order of accuracy
with or without the limiter which was also reported in preceding experiments [8] and can be attributed to the low
accuracy of the Gauss-Lobatto quadrature rules applied to the nonlinear geometric source term compared to other
quadrature rules [10] (see also [8, Remark 3.1]).

5.3. Two space dimensions
We now focus on numerical tests in two space dimensions in the unit square using a Cartesian mesh with Nx = Ny

cells in the x and y directions respectively. For all the tests, we set cx = cy = 1. We here compare results obtained
with the DGSEM scheme and without or with the FCT limiter:

no limiter: we solve (27) without graph viscosity for u(n+1)
h . We cannot apply the linear scaling limiter (47) since the

⟨u(n+1)
h ⟩i j are not guaranteed to satisfy the maximum principle;
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Table 6: Advection-reaction problem with source (49): Lk∈{2,∞} error levels ∥uh − u∥Lk(Ωh) and associated orders of convergence Ok obtained with

λ = 1 when refining the mesh. The solution should remain in the interval [0, 1
9 ]. Minimum value of DOFs uhmin = min(U0≤k≤p

1≤i≤Nx
). The linear scaling

limiter (47) is applied or not.
no limiter linear scaling limiter

p Nx uhmin L2 error O2 L∞ error O∞ uhmin L2 error O2 L∞ error O∞

1

20 -5.28E-05 1.50E-04 – 1.71E-04 – 9.99E-15 1.49E-04 – 1.71E-04 –
40 -1.04E-05 8.90E-05 0.76 1.02E-04 0.74 9.99E-15 8.42E-05 0.83 1.02E-04 0.74
80 -1.46E-06 4.63E-05 0.94 5.35E-05 0.94 1.00E-14 4.43E-05 0.93 5.35E-05 0.94
160 -3.01E-07 2.32E-05 1.00 2.70E-05 0.98 1.00E-14 2.26E-05 0.97 2.68E-05 1.00

2

20 -3.17E-05 5.52E-05 – 7.38E-05 – 1.00E-14 6.78E-05 – 1.57E-04 –
40 -7.44E-06 1.58E-05 1.80 2.24E-05 1.72 1.00E-14 1.81E-05 1.91 4.35E-05 1.86
80 -1.05E-06 4.11E-06 1.95 5.90E-06 1.93 1.00E-14 4.21E-06 2.10 6.51E-06 2.74
160 -1.31E-07 1.03E-06 1.99 1.53E-06 1.94 1.00E-14 1.04E-06 2.02 1.53E-06 2.09

3

20 -5.33E-06 1.60E-05 – 2.71E-05 – 9.99E-15 1.71E-05 – 3.66E-05 –
40 -1.46E-06 2.25E-06 2.83 3.84E-06 2.82 1.00E-14 2.71E-06 2.66 7.75E-06 2.24
80 -2.59E-07 2.86E-07 2.98 4.81E-07 3.00 1.00E-14 3.30E-07 3.04 1.07E-06 2.85
160 -3.36E-08 3.52E-08 3.02 6.22E-08 2.95 1.00E-14 3.81E-08 3.11 1.35E-07 2.99

4

20 -5.26E-06 3.72E-06 – 6.56E-06 – 1.00E-14 5.68E-06 – 2.05E-05 –
40 -2.65E-07 2.58E-07 3.85 4.55E-07 3.85 1.00E-14 3.08E-07 4.21 1.33E-06 3.94
80 -8.99E-09 1.66E-08 3.96 3.11E-08 3.87 1.00E-14 1.71E-08 4.17 4.76E-08 4.81
160 -2.73E-10 1.04E-09 3.99 2.08E-09 3.90 1.00E-14 1.04E-09 4.03 2.08E-09 4.51

5

20 -3.30E-07 7.12E-07 – 1.32E-06 – 9.99E-15 7.78E-07 – 1.32E-06 –
40 -2.62E-08 2.41E-08 4.88 4.58E-08 4.8 1.00E-14 3.05E-08 4.67 7.84E-08 4.08
80 -1.06E-09 7.54E-10 5.00 1.38E-09 5.04 1.00E-14 9.22E-10 5.05 3.10E-09 4.66
160 -3.14E-11 2.29E-11 5.04 4.63E-11 4.91 1.00E-14 2.56E-11 5.17 9.06E-11 5.10
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Table 7: Verification of the maximum principle for problem (25) after one time step on a mesh with Nx × Ny = 20 × 20 elements, λxi = λy j = λ,
and the discontinuous initial condition u0(x, y) = 1

|x− 1
4 |+|y−

1
4 |≤0.15. The solution should remain in the interval [0, 1].

no limiter FCT limiter
p λ min

1≤i, j≤20
⟨uh⟩i j max

1≤i, j≤20
⟨uh⟩i j min

1≤i, j≤20
⟨uh⟩i j max

1≤i, j≤20
⟨uh⟩i j

0.05 0.0 1.0 0.0 1.0
1 1 -9.45E-3 0.90 9.59E-08 0.90

5 -9.45E-3 0.47 1.37E-02 0.49
0.05 -6.76E-4 1.0002 0.0 1.0

2 1 -6.76E-3 0.93 1.42E-07 0.90
5 -6.60E-3 0.44 2.01E-3 0.41
0.05 -4.85E-8 1.0 0.0 1.0

3 1 -2.98E-3 0.92 5.40E-07 0.91
5 -6.24E-4 0.44 3.22E-03 0.38
0.05 -1.41E-4 1.0007 0.0 1.0

4 1 -1.33E-4 0.92 5.97E-07 0.92
5 -6.09E-5 0.44 3.25E-03 0.38
0.05 -1.31E-3 1.0 0.0 1.0

5 1 -8.80E-5 0.92 6.45E-07 0.92
5 -1.10E-4 0.44 3.33E-03 0.38

FCT limiter: we first solve (27) without graph viscosity for u(n+1)
h,HO and check if the cell-averaged solution satisfies

the maximum principle, and if so, we set u(n+1)
h ≡ u(n+1)

h,HO . If not, we solve (30) with graph viscosity for u(n+1)
h,LO and

apply the FCT limiter (36) introduced in section 4.3. Finally, we apply the linear scaling limiter (47) after the
FCT limiter to preserve a maximum principle on all the DOFs in u(n+1)

h .

Let us recall that the association of the FCT and linear scaling limiters has been introduced to avoid excessive
limiting. We refer to Appendix A for a comparison with the FCT limiter only applied to all DOFs.

5.3.1. Maximum-principle preservation
We first evaluate both DGSEM schemes on an unsteady problem with a discontinuous initial condition, u0(x, y) = 1

if |x − 1
4 | + |y −

1
4 | ≤ 0.15 and 0 else, and periodic boundary conditions. Table 7 gives the minimum and maximum

values of the cell-averaged solution after one time step with 1 ≤ p ≤ 5 and different values of λx = λy. The maximum
principle is not satisfied when using the DGSEM without limiter, except for p = 1 and the smallest time step. In
particular, the maximum principle is violated even for large λx = λy in contrast to what is observed and proved in
one space dimension. As expected, the FCT limiter successfully imposes a maximum principle on the cell-averaged
solution, thus enabling a maximum principle through the use of the linear scaling limiter.

We now consider the transport of a nonsmooth solution and solve (25) with periodic boundary conditions and the
initial condition from the solid body rotation test case which contains a smooth bump, a cone and a slotted disk (see
[57, 29, 28] for details). Fig. 3 displays fourth-order solutions obtained on a coarse mesh with and without the FCT
limiter and for two different time steps. As expected, the temporal error induced by the backward Euler integration
dominates and the solution with the low time step presents a better resolution of the different features. The FCT limiter
successfully imposes the maximum principle without destroying the resolution capabilities of the scheme.

5.3.2. Steady smooth solution
We now consider a smooth steady-state solution of the problem ∂xu + ∂yu = 0 in Ω = [0, 1]2 with inlet conditions

u(x, 0) = sin(2πx), u(0, y) = − sin(2πy) and outflow conditions at boundaries x = 1 and y = 1. The exact solution is
u(x, y) = sin(2π(x − y)). In practice, we look for a steady solution to the unsteady problem (1). We take λx = λy = 5,
start from u(0)

h ≡ 0 and march in time until ∥un+1
h − un

h∥2 ≤ 10−14 with the DGSEM scheme with FCT limiter. Error
levels are summarized in Tab. 8 together with the minimum and maximum values of the cell-averaged solution. The
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Figure 3: Nonsmooth initial condition: DGSEM solutions at time T = 1 for a nonsmooth initial condition obtained with Nx = Ny = 80, p = 3, two
different time steps, without (left), or with (right) the FCT limiter. The solution is plotted at quadrature points.

FCT limiter keeps here the p + 1 high-order accuracy in space of the DGSEM while it successfully preserves the
maximum principle on the cell-averaged solution, and hence also on the DOFs through the linear scaling limiter.

5.3.3. Steady discontinuous solution
We now consider a discontinuous steady solution and consider ∂xu + ∂yu = 0 in Ω = [0, 1]2, inlet conditions

u(x, 0) = cos(πx), u(0, y) = − cos(πy) and outflow conditions at boundaries x = 1 and y = 1. The exact solution
is u(x, y) = sgn(x − y) cos(π(x − y)), with sgn the sign function, and is therefore discontinuous at x = y. Results
are reported in Tab. 9 and Fig. 4. Here again, the FCT limiter is required to guarantee the maximum principle. In
particular, the DGSEM without limiter violates the maximum principle for the cell-averaged solution which prevents
the use of the linear scaling limiter.

5.3.4. Linear advection-reaction with source
We finally consider a linear advection-reaction problem with a geometric source term:

∂xu + ∂yu + βu = s(x, y) in Ω, u(x, 0) = u0(x) in Ω. (50)

with β ≥ 0, s(·, ·) ≥ 0, and nonnegative inflow boundary data. We adapt the problem from section 5.2.3 and [56] to two
space dimensions and set β = 6000 and a source term s(x, y) such that the solution is u(x, y) = 1

9 cos(3πx)4cos(3πy)4

(see Fig. 2). Inflow boundary conditions, u(x, 0) = 1
9 cos(3πx)4 and u(0, y) = 1

9 cos(3πy)4, are applied to x = 0 and
y = 0, while outflow conditions are imposed at x = 1 and y = 1.

Tab. 10 displays the error levels together with minimum and maximum values of the DOFs obtained without or
with the FCT limiter, different approximation orders and different mesh refinements. We again use λx = λy = 5, start
from u(0)

h ≡ 0 and march in time until ∥un+1
h −un

h∥2 ≤ 10−14. As in the 1D case in section 5.2.3, we observe a suboptimal
convergence order of p as the mesh is refined due to the insufficient accuracy of the Gauss-Lobatto quadrature rules
for integrating the highly nonlinear geometric source terms. Using the limiter or not leads to comparable error levels,
while the FCT limiter is necessary for the solution to satisfy the maximum principle.
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Table 8: Smooth steady-state problem: Lk∈{2,∞} error levels ∥uh − u∥Lk(Ωh) and associated orders of convergence Ok for problem ∂xu+ ∂yu = 0 with
data u(x, 0) = sin(2πx), u(0, y) = − sin(2πy) obtained with λx = λy = 5 when refining the mesh and using the FCT limiter. The solution should
remain in the interval [−1, 1]. Minimum and maximum values of the cell-averaged solution over the mesh: ⟨uh⟩min /max = min /max(⟨uh⟩i j : 1 ≤
i ≤ Nx, 1 ≤ j ≤ Ny).

p Nx = Ny ⟨uh⟩min ⟨uh⟩max L2 error O2 L∞ error O∞

1

5 -0.7803 0.7803 3.260E − 01 – 6.805E-01 –
10 -0.9313 0.9313 9.840E-02 1.73 2.779E-01 1.29
20 -0.9955 0.9955 2.431E-02 2.02 6.341E-02 2.13
40 -0.9991 0.9991 6.589E-03 1.88 1.789E-02 1.83

2

5 -0.8293 0.8293 3.808E-02 – 1.610E-01 –
10 -0.9200 0.9200 4.770E-03 3.00 1.348E-02 3.58
20 -0.9917 0.9917 6.038E-04 2.98 2.354E-03 2.52
40 -0.9979 0.9979 7.377E-05 3.03 2.084E-04 3.50

3

5 -0.8322 0.8322 2.511E-03 – 8.746E-03 –
10 -0.9201 0.9201 1.569E-04 4.00 7.599E-04 3.52
20 -0.9918 0.9918 1.074E-05 3.87 7.432E-05 3.35
40 -0.9979 0.9979 6.457E-07 4.06 4.724E-06 3.98

4

5 -0.8323 0.8323 1.430E-04 – 6.283E-04 –
10 -0.9201 0.9201 4.545E-06 4.98 1.880E-05 5.06
20 -0.9918 0.9918 1.431E-07 4.99 6.162E-07 4.93
40 -0.9979 0.9979 4.461E-09 5.00 1.950E-08 4.98

5

5 -0.8323 0.8323 7.131E-06 – 3.774E-05 –
10 -0.9201 0.9201 1.131E-07 5.98 7.490E-07 5.65
20 -0.9918 0.9918 4.074E-09 4.80 6.652E-08 3.49
40 -0.9979 0.9979 4.789E-11 6.41 1.058E-09 5.97

Table 9: Discontinuous steady-state problem: verification of the maximum principle for problem ∂xu + ∂yu = 0 with data u(x, 0) = cos(πx),
u(0, y) = − cos(πy) obtained with λx = λy = 5 without and with the FCT limiter, and with Nx = Ny = N. The solution should remain in the interval
[−1, 1]. Minimum and maximum values of the cell-averaged solution and DOFs over the mesh: ⟨uh⟩min /max = min /max(⟨uh⟩i j : 1 ≤ i ≤ Nx, 1 ≤
j ≤ Ny) and uhmin /max = min /max(U0≤k,l≤p

1≤i, j≤N ).

no limiter FCT limiter
N p ⟨uh⟩min ⟨uh⟩max uhmin uhmax ⟨uh⟩min ⟨uh⟩max uhmin uhmax

5

1 -0.7518 0.7518 -1.1363 1.1363 -0.7512 0.7512 -1.0000 1.0000
2 -0.7820 0.7820 -1.2634 1.2634 -0.7820 0.7820 -1.0000 1.0000
3 -0.7972 0.7972 -1.3364 1.3364 -0.7827 0.7827 -1.0000 1.0000
4 -0.7832 0.7832 -1.3633 1.3633 -0.7828 0.7828 -1.0000 1.0000
5 -0.7828 0.7828 -1.3764 1.3764 -0.7828 0.7828 -1.0000 1.0000

20

1 -1.0121 1.0121 -1.2437 1.2437 -0.9967 0.9967 -1.0000 1.0000
2 -1.0465 1.0465 -1.2843 1.2843 -0.9781 0.9781 -1.0000 1.0000
3 -1.0042 1.0042 -1.3438 1.3438 -0.9857 0.9857 -1.0000 1.0000
4 -0.9937 0.9937 -1.3667 1.3667 -0.9857 0.9857 -1.0000 1.0000
5 -0.9857 0.9857 -1.3781 1.3781 -0.9857 0.9857 -1.0000 1.0000
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Table 10: 2D advection-reaction with source: Lk∈{2,∞} error levels ∥uh − u∥Lk(Ωh) and associated orders of convergence Ok for problem (50) with
data u(x, 0) = 1

9 cos(3πx)4, u(0, y) = 1
9 cos(3πy)4 obtained with λx = λy = 5 when refining the mesh with Nx = Ny = N. The solution should

remain in the interval [0, 1
9 ]. Minimum and maximum values of the DOFs: uhmin /max = min /max(U0≤k,l≤p

1≤i, j≤N ).
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Figure 4: Discontinuous steady-state problem: DGSEM solutions for a discontinuous steady-state problem ∂xu + ∂yu = 0 with data u(x, 0) =
cos(πx), u(0, y) = − cos(πy) obtained with λx = λy = 5, Nx = Ny = 20, without and with the FCT limiter. The solution is plotted at quadrature
points and T refers to the pseudo time required to converge the solution, i.e., ∥un+1

h − un
h∥2 ≤ 10−14.

6. Concluding remarks

This work proposes an analysis of the high-order DGSEM discretization with implicit backward Euler time step-
ping for the approximation of hyperbolic linear scalar conservation equations in multiple space dimensions. Two
main aspects are considered here. We first investigate the maximum principle preservation of the scheme. For the
1D scheme, we prove that the DGSEM preserves the maximum principle of the cell-averaged solution providing that
the CFL number is larger than a lower bound. This result allows to use linear scaling limiters [58, 60] to impose all
the DOFs to satisfy the maximum principle. This property however does not hold in multiple space dimensions and
we propose to use the FCT limiter [20, 5, 57] to enforce the maximum principle on the cell-averaged solution, thus
avoiding excessive limiting. The FCT limiter combines the DGSEM scheme with a low-order maximum-principle
preserving scheme derived by adding graph viscosity to the DGSEM scheme. The linear scaling limiter is then used
to impose the maximum principle to all the DOFs. Numerical experiments in one and two space dimensions are
provided to illustrate the conclusions of the present analyses. Then, we investigate the inversion of the linear systems
resulting from the time implicit discretization at each time step. We prove that the diagonal blocks are invertible and
provide efficient algorithms for their inversion. Future work will concern the extension of this analysis to nonlin-
ear hyperbolic scalar equations [44] and systems of conservation laws on unstructured grids, and to high-order time
implicit integration. Another direction of research may consist in using the fast inversion algorithms introduced in
this work for solving preconditionning steps based on tensor product of 1D building blocks in block-preconditionned
iterative solvers.

Appendix A. FCT limiter to impose a maximum principle to all DOFs

We here present numerical results obtained with a FCT limiter (see section 4.3) designed to impose a maximum
principle to all DOFs, not only the cell average. We provide results in 1D for the sake of clarity, though this limiter is
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not required as highlighted in section 3. Likewise, we design the limiter to impose only a lower bound on the solution,
Uk,n+1

i ≥ min u0(·), without loss of generality.
The HO scheme is (14) which, by removing

∑p
l=0 ωlDlkU l,n+1

i,HO −δkpU p,n+1
i,HO +δk0U0,n+1

i,HO = 0 and usingωkDkk =
δkp−δk0

2 ,
we rewrite under the skew-symmetric form [21] as

ωk

2
Uk,n+1

i,HO + λi

(
−

p∑
l=0

ωl(Dlk − δklDkk)(U l,n+1
i,HO + Uk,n+1

i,HO ) + δkpU p,n+1
i,HO − δk0U p,n+1

i−1,HO)
)
=
ωk

2
Uk,n

i , (A.1)

We now compare two LO schemes:

LO GV: the HO scheme with graph viscosity introduced in section 4.2 where di = 2 max0≤k,m≤p(−Dmk
ωk

) from (33):

ωk

2
Uk,n+1

i,LO + λi

(
−

p∑
l=0

ωlDlkU l,n+1
i,LO + δkpU p,n+1

i,LO − δk0U p,n+1
i−1,LO + diωk

p∑
l=0

ωl(Uk,n+1
i,LO − U l,n+1

i,LO )
)
=
ωk

2
Uk,n

i , (A.2)

LO GV SD: the HO scheme with graph viscosity and the sparse discrete derivative matrix D̃, from [34] and defined
in (34) (see remark 4.1), and ωkωld̃i =

1
2 satisfying (33):

ωk

2
Uk,n+1

i,LO +λi

(
−

min(k+1,0)∑
l=max(k−1,0)

ωlD̃lkU l,n+1
i,LO +δkpU p,n+1

i,LO −δk0U p,n+1
i−1,LO+

1
2

min(k+1,0)∑
l=max(k−1,0)

(Uk,n+1
i,LO −U l,n+1

i,LO )
)
=
ωk

2
Uk,n

i , (A.3)

and after easy manipulations, we rewrite (A.3) as a subcell finite volume scheme (using U−1,n+1
i,LO = U p,n+1

i−1,LO):

ωk

2
Uk,n+1

i,LO + λi
(
Uk,n+1

i,LO − Uk−1,n+1
i,LO

)
=
ωk

2
Uk,n

i .

We rewrite the differences between the HO and LO schemes, then the limited and LO schemes as
ωk

2
(
Uk,n+1

i,HO − Uk,n+1
i,LO

)
=

∑
( j,l)∈S(i,k)

A jl
ik,

ωk

2
(
Uk,n+1

i − Uk,n+1
i,LO

)
=

∑
( j,l)∈S(i,k)

l jl
ikA jl

ik,

with A jl
ik = −Aik

jl and where the limiter coefficients l jl
ik = likjl are computed from (35) and (36), but where Pk

i =∑
( j,l) min(A jl

ik, 0) and Qk
i =

ωk
2 (m − Uk,n+1

i,LO ).
Both limiters are now compared to the limiter introduced in section 4.3 (present limiter). Recall that the present

limiter uses the same LO scheme as the LO GV limiter, but applies the limiter to impose positivity of the cell-averaged
solution, then applies the linear scaling limiter (47). For the sake of comparison, we also present results using (A.3) as
LO scheme, but imposing positivity of the cell-averaged solution, then applying the linear scaling limiter (47). This
last limiter will be referred as to LO GV SD aver. For all limiters, we check if the minimum principle is satisfied by
u(n+1)

h,HO and, if so, we set u(n+1)
h = u(n+1)

h,HO .
Figs. A.5 and A.6 compare the results for a smooth steady solution, while Fig. A.7 compares results for an unsteady

discontinuous solution. Limiting all the DOFs directly with the FCT limiter affects the accuracy of the scheme by
imposing an excessive limiting. This excessive limiting has already been reported [21, 23, 6]. It is worth noting that
the limiter coefficients l jl

ik in (35) scale with 1
λi

and are thus expected to overlimit the solution for large time steps as
observed in Fig. A.5. It is also observed that the limiter may also prevent convergence of the computation to steady-
state as observed in Fig. A.6. Limiting the cell average does not suffer from these shortcomings and the results are
less sensitive to the choice of the LO scheme.

We end this section with a comparison of the accuracy of the LO schemes introduced above on the smooth test
case. We also indicate the results obtained with a first-order finite volume scheme, that is with one DOF per cell.
All LO schemes achieve first-order accuracy as expected, but the DGSEM scheme with graph viscosity and sparse
discretization (A.3), which here reduces to a subcell finite volume scheme, provides quite lower error levels. This
result is in agreement with those obtained with an explicit time stepping in [34, Fig. 1].

The main conclusions of the present tests are: (i) Imposing positivity of all DOFs directly with the FCT limiter
successfully imposes positivity, but may affect the resolution capabilities of the scheme due to an excessive limiting.
Especially with large time steps; (ii) Limiting the solution with the FCT limiter to impose positivity of the cell average
only avoids these issues and make the results less sensitive to the choice of the LO scheme.
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(a) LO GV (b) LO GV SD (c) present limiter (d) LO GV SD aver

Figure A.5: DGSEM approximation of a steady-state problem, ∂xu = sin(2πx) and u(0) = u(1), obtained with different FCT limiters (p = 2, Nx =

40, λi = 5). The solution is plotted at quadrature points and T refers to the pseudo time required to converge the solution, i.e., ∥un+1
h −un

h∥2 ≤ 10−14.

(a) LO GV (b) LO GV SD (c) present limiter (d) LO GV SD aver

Figure A.6: DGSEM approximation of a steady-state problem, ∂xu = sin(2πx) and u(0) = u(1), obtained with different FCT limiters (p = 2,
Nx = 40, λi = 5). Residual histories ∥un+1

h − un
h∥2 as a function of time.

(a) LO GV (b) LO GV SD (c) present limiter (d) LO GV SD aver

Figure A.7: DGSEM approximation to an unsteady problem, ∂tu + ∂xu = 0, u(0, t) = u(1, t) and u0(x) = 1[0.1,0.4], obtained with different FCT
limiters (p = 2, Nx = 40, λi = 1). The solution is plotted at quadrature points after two time steps.
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(a) p = 2, L2 error (b) p = 2, L∞ error (c) p = 4, L2 error (d) p = 4, L∞ error

Figure A.8: Approximations of a steady-state problem, ∂xu = sin(2πx) and u(0) = u(1), obtained with different LO schemes: first-order finite
volume scheme (FV); DGSEM scheme with graph viscosity (A.2) (DGSEM+GV); DGSEM scheme with graph viscosity and sparse discrete
derivative matrix (A.3) (DGSEM+GV+SD). L2 and L∞ norms of the error obtained with p = 2 and p = 4.

Figure B.9: Left: performance speed-up over polynomial degree for solving (B.1) using (43) with respect to standard algebraic tools (numpy).
Right: similar to above, but for (B.2) and algorithm 1. Performance analysis has been evaluated thanks to built-in python module timeit;
statistical data has been computed over 20 runs of 1000 resolution call each.

Appendix B. Inversion of diagonal blocks

The linear systems associated to the DGSEM discretization of problem (1) with an implicit time stepping have a
sparse pattern with dense diagonal blocks of large size. Block-based iterative and exact solvers require the inversion of
the diagonal blocks and we propose efficient algorithms to speed up the inversion of the diagonal blocks with respect
to standard inversion algorithms. We implemented the proposed methods and compared them with standard ones. The
code is freely available online [1]. It is written in python by using linear algebra tools of the numpy library [24]. We
here focus on the linear system obtained when considering the 2D DGSEM problem which takes the form (see (41))

L2d(M ⊗M)x = b, (B.1)

where the involved matrices are defined in (42), and its counterpart obtained by adding the graph viscosity (see (44))

Lv
2d(M ⊗M)x = b (B.2)

see (45) and (46) for the definition of the terms involved. The main goal of repository [1] is to assess the novel
analytical way (43) (resp., algorithm 1) to solve (B.1) (resp., (B.2), by comparing it with the usage of reference
algebraic tools (mainly, numpy.linalg.inv). We give in Fig. B.9 the performance comparisons obtained on a
personal machine with 8 Intel Xeon(R) W-2223 CPUs and 16Gb RAM. One can reliably say that the novel inversion
strategies (43) and algorithm 1 show consistent and often significant performance gains with respect to their dense
counterparts. The gains are however less noticeable for high orders when solving (B.2).

Appendix C. Solution of the global 1D linear system

We here describe a fast algorithm to solve the global linear system (23). This is based on fast inversion of the
diagonal blocks (24) with the Sherman-Morisson formula which provides the inverse of the sum of an invertible
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matrix A and a rank-one matrix uv⊤: (A + uv⊤)−1 = (I − 1
1+v⊤A−1u A−1uv⊤)A−1. Using A = I − 2λD⊤ and u = v = ep,

we obtain

M−1L−1
1d =M−1

(
I − 2λ

(
D⊤ −

1
ωp

epe⊤p

))−1

=M−1
(
I −

2λ
ωp + 2λDi

pp
Depe⊤p

)
D

with D = (I − 2λD⊤)−1 given by (18). This formula is well defined since ωp + 2λDi
pp > 0 by (22). Let us propose

a method to solve the global linear system (23). From (14), we observe that A1d = A0 − λ1e0
1(ep

Nx
)⊤ in (23) with A0

a block lower triangular matrix, with diagonal blocks ML1d and subdiagonal blocks −λie0e⊤p , and a rank-one matrix
defined from (ek

i )0≤k≤p
1≤i≤Nx

the canonical basis of RNx(p+1). Using again the Sherman-Morisson formula, we easily solve
(23) from algorithm 2 where steps 1 and 2 can be solved efficiently using blockwise forward substitution.

Algorithm 2 Algorithm flowchart for solving the global system (23) by using the decomposition A1d = A0−λ1e0
1(ep

Nx
)⊤

with A0 a block lower triangular matrix and e0
1(ep

Nx
)⊤ a rank-one matrix.

1: solve A0V =M1dU(n) for V ∈ RNx(p+1);
2: solve A0W = e0

1 for W ∈ RNx(p+1);

3: set U(n+1) = V +
λ1ep

Nx
·V

1−λ1ep
Nx
·W W.

Applying algorithm 2 again requires 1 − λ1ep
Nx
·W = 1 − λ1ep

Nx
· (A−1

0 e0
1) , 0. This is indeed the case and to prove

it we temporarily consider a uniform mesh for the sake of clarity, so λi = λ. We observe that the solution to A0W = e0
1

satisfies L1dMW1 = e0 and L1dMWi = (λe0e⊤p )Wi−1 for i ≥ 2. We thus get Wi = (λM−1L−1
1d e0e⊤p )i−1M−1L−1

1d e0 and

ep
Nx
·W = λNx−1( 1

ωp
(L−1

1d )p0
)Nx with (L−1

1d )p0 =
2
ωp

(1 − 2λ
ωp+2λDi

pp
Di

pp)Di
p0 =

2λDi
p0

ωp+2λDi
pp
> 0 from (22). Note thatDi

p0 > 0
holds for λ > λmin defined in lemma 3.2. This latter condition is sufficient to apply algorithm 2, but is not necessary
to invert the linear system (23) which is possible for all positive time steps.
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