
1

Technical Report Associated with the Paper
”Directional Critical Load Index: a

Distance-to-Instability Metric for Continuum
Robots”

Federico Zaccaria1,2, Edoardo Idà1, and Sébastien Briot3

I. INTRODUCTION

In the present technical report, associated with the paper [1], we provide the expressions of the derivatives of matrices H,G
with the respect to (w.r.t.) the variables f . Sec. II recalls the energy-based discretized modelling employed in [1]. This recall
is necessary in order to have a self-contained report. Section III provides the geometrico-static model equations expressions
when a finite-differences discretized modelling approach is used [2],[3]. Then, Sec. IV derives the expressions of matrices
H,G while Sec. V computes the derivatives of matrices H,G necesary for the distance-to-instability metric computation.

II. MODELLING

This section describes the energy-based modelling approach of this paper. Sec. II-A presents the CRs relevant variables.
Then, Sec. II-B,II-C derive the deformation energy and external load energy, respectively. The total CR energy and constraints
are discussed in Sec. II-D. Finally, the discretization process is introduced to derive the CR geometrico-static model in Sec. II-E.

A. Description of the Continuum Robot
In this report, a CR is considered to be made by n flexible beams, and the CR is actuated by m motors. The variables

associated with the motor actions are grouped into the vector qa ∈ Rm. Then, a frame Fp is rigidly attached to a specific
CR location, assumed to be the EE reference point. The EE pose is described by qp = [pp;αp] ∈ Rnc , where nc = 3 for the
planar case, nc ≥ 6 for the spatial case, pp describes the EE position, and αp is a set of orientation parameters that define the
rotation matrix Rp. Assuming the same number of controlled and actuated variables, the vector qc ∈ Rm stacks the controlled
variables. Typically, qc is a subset of qp, and the vector qu collects the remaining variables of qp not included in qc.

B. Deformation Energy
Let us consider a flexible beam as represented in Fig. 1: the beam is assumed to be one of the n flexible components of

the CR, and the index i = 1, · · · , n denotes the i-th beam. Being Li the length of the i-th beam, the coordinate si ∈ [0, Li]
parameterizes the beam’s centerline. A frame Fi(si) is attached at each beam’s cross-section and the pose of the cross-section
is defined by Ti(si) ∈ SE(3):

Ti(si) =

[
Ri(si) pi(si)

0 1

]
(1)

where Ri(si) ∈ SO(3),pi(si) ∈ R3 represent the rotation matrix and the position of Fi(si) with respect to (w.r.t.) a fixed
frame F0. To get the deformation energy of the beam, let us first evaluate the strain vector ξi ∈ R6 at si:

pξi(si) = T−1
i (si)T

′
i(si) (2)

with (.)′ = d
ds , ξi = [ui,vi] and pξi ∈ se(3) is defined as:

pξi(si) =

[
pui(si) vi(si)
0 0

]
(3)

where pui ∈ so(3) is the skew-symmetric matrix obtained by ui. Moreover, ui ∈ R3 represents bending and torsion of the
beam, and vi ∈ R3 describes shear and extensibility. Assuming linear isotropic elasticity, the deformation energy of the beam
is given by [4]:

Vei =
1

2

∫ Li

0

(ξi(si)− ξ∗i (si))
T
Ki (ξi(si)− ξ∗i (si)) ds (4)

1DIN, University of Bologna, Bologna, Italy, {federico.zaccaria3,edoardo.ida2}@unibo.it
2École Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes (LS2N), Nantes, France
3CNRS, Laboratoire des Sciences du Numérique de Nantes (LS2N), Nantes, France, Sebastien.Briot@ls2n.fr



2

Fig. 1: Continuous parametrization of a flexible beam.

where (.)∗ denotes the undeformed strain configuration, and Ki ∈ R6×6 is the material stiffness matrix. Frequently, Ki =
diag(EIx, EIy, GIz, GA,GA,EA) where E is the Young’s modulus, G is the shear modulus, Ix, Iy, Iz are the principal inertia
moments of the cross-section, and A is the cross-section area.

C. External Loads Energy
Let us compute the potential energy due to external conservative loads. First, the potential energy due to a distributed force

fdi applied at the i-th beam is given by:

Vdi = −
∫ Li

0

fdi(si)
Tpi(si)ds (5)

Then, concentrated loads1 are considered. The contribution of a concentrated force f applied at papp is:

Vf = −fTpapp (6)

where papp is the application point of f . For instance, when the force is applied to the EE, papp = pp while, if f is applied
at the coordinate sapp of the i-th beam, papp = pi(sapp).

For the following derivation, it is convenient to introduce f and df : f represents the magnitude of f while df represents
the orientation of segment and its direction in terms of start and end point. Thus, Eq. (6) becomes:

Vf = −fTpapp = −fdT
f papp = −fh (7)

with h = dT
f papp.

D. Continuum Robot Energy and Constraints
The CR total potential energy is obtained as the sum of the deformation energy and external load contributions, that is:

Vtot =

n∑
i=1

(Vbi + Vdi) + Vf (8)

Geometric constraints frequently have to be considered in CRs. For instance, the closure-loop geometric constraints of CPRs
involve leg and rigid-platform variables [3]. In serial CRs, when a set of independent variables qp is used to represent the EE
position, geometric constraints are introduced as well. Additionally, when using quaternions to represent orientations, unitary
constraints must be enforced. Without loss of generality, the constraints are represented by

Φ = 0 (9)

where a vector Φ ∈ RnΦ is introduced to stack all the constraints in homogeneous form. CRs passive joints, (such as connections
between the rigid platform to the passive beams in continuum parallel robots), can be modelled. For instance, revolute joints ,
spherical joints, cylindrical joints, and fixed joints can be modelled. Without loss of generality, the constraint of the i-th beam
Φi ∈ Rnϕi can be represented by:

Φi = Ci

[(
RT

p Ri(Li)−RT
i (Li)Rp

)
q

pi(Li)− (pp +Rppfi)

]
(10)

where pp,Rp are the position and the orientation matrix of Fp w.r.t. F0, pfi ∈ R3 is a vector pointing from the i-th joint
position to Fp (thus constant w.r.t. Fp), , respectively. The vector pi(Li) is the position of the i-th beams at the coordinates
Li and Ri(Li) is the orientation matrix at Li of the same beam. The superscript |(.) indicates the extraction of the three
independent components of its argument, assumed to be a skew-symmetric matrix. Matrix Ci ∈ Rnϕi

×6 is named joint matrix,
and Table I summarizes how Ci is structured for different kinds of passive platform joints.

1Three-dimensional pure moments, which are non-conservative, are assumed not to appear.



3

Name Fixed Spherical Revolute Local z Cylindrical Local z
n◦ DoF 0 3 1 2

C I6
[
03×3 I3

] [
I2 02×4

03×3 I3

] [
02 02×1 I2×2 02×1

I2 02×1 02 02×1

]
TABLE I: Values of C for different platform constraints. The number of DoF is indicated with n◦ DoF, Ik is the identify
matrix of dimension k, and 0k×h denotes a matrix of dimension k×h full of zeros. Revolute and Cylindrical pairs are assumed
to be aligned with the z local axis.

E. Discretization and Geometrico-Static Modelling

CRs equilibrium configurations are associated with critical points of Vtot, which depends on qa,qp, and a set of continuous
strain-functions ξi. Discretization of the potential energy equations through a finite number of variables brings simple but
effective CRs analysis, in particular when dealing with equilibrium stability assessment. When employing a discretization
technique, Vtot (defined in Eq. (8)) is discretized with a finite set of variables qei ∈ RNfi , with Nfi being the number of
discretization variables. Then, being Ne =

∑n
i=1 Nfi, the vector qe = [qe1, · · · ,qen] ∈ RNe stacks all the discretization

variables. For later convenience, the vectors qd = [qu,qe], and x = [qd,qc] are introduced. The CRs configuration is thus
defined by qa,x: the total potential energy and the constraints become a discrete function of qa,x, that is:

Vtot = Vtot(qa,x); Φ = Φ(qa,x) (11)

In the static case and for a fixed value of qa, feasible CRs configurations are determined by the minimum of the total
potential energy Vtot [3]. However, constraints Φ should be enforced, and first-order Lagrange conditions determine critical
points of Vtot [5]. Assuming ∇xΦ full rank, x is associated with a critical point of Vtot if there exist a set of Lagrange
multipliers λ ∈ RnΦ such as [5]: {

∇xL = 0

∇λL = 0
(12)

where L is the Lagrangian function defined as:
L = Vtot +ΦTλ (13)

Equations (12) form the geometrico-static model of a CR, and it is an undermined set of nc+Ne+nΦ equations in m+nc+
Ne + nΦ unknowns.

III. GEOMETRICO STATIC-MODEL EQUATIONS

This section derives the expressions of Eq.(12) when a finite-differences modelling approach is used. Let us first expand
Eq.(12) as follows: {

∇xL = 0

∇λL = 0
→


∇qe

Vtot +∇qe

(
λTΦ

)
= 0

∇qp
Vtot +∇qp

(
λTΦ

)
= 0

Φ = 0

(14)

To derive the expression of these equations, let us consider the deformation energy of the i-th beam of Eq. (4) in the case
shear and extensibility are neglected, here reported for clarity:

Vei =
1

2

∫ Li

0

(ui(s)− u∗
i (s))

T
K (ui(s)− u∗

i (s)) ds (15)

When a finite-differences approach is employed, it is convenient to parametrize the orientation of each cross-section by using
unit quaternions hi ∈ R4, hi = hi1 + hi2e1 + hi3e2 + hi4e3, e1 = [1, 0, 0], e2 = [0, 1, 0], e3 = [0, 0, 1]. In this case, the i-th
beams curvature ui(s) ∈ R3 is computed as follows:

uik(s) = 2hT
i B

T
k h

′
i; k = 1, 2, 3 (16)

with the matrices Bk structured as follows:

B1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,B2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,B3 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 (17)

Thus, inserting Eq. (16) into Eq. (15), and by assuming u∗
i = 0 for simplicity, the following expression of Vei is obtained:

Vei =
1

2

∫ Li

0

(
3∑

k=1

Kk

(
2hT

i Bkh
′
i

)2)
ds (18)



4

The finite-difference approximation is introduced by first discretizing the rod into Nelt elements of equal length Lei = L/Nelt,
with the orientation of the j-th element of the i-th beam being defined by hij . The vector qei collects the Nelt quaternions
hij of the i-th beam. The expression of Vei becomes:

Vei =

Nelt∑
i=1

Veij ; Veij =
1

2

∫ Lei

0

(
3∑

k=1

Kk

(
2hT

ijBkh
′
ij

)2)
ds (19)

The expression of h′
ij is then approximated by the use of a first-order backward finite difference approximation:

h′
ij ≃

hij − hij−1

Lei
(20)

Inserting Eq. (20) into Eq. (19) and integrating in s results in the following expression of Veij :

Veij =

3∑
k=1

Kk

Le

(
2hT

ijBk
hij − hij−1

Le

)2

(21)

Once the term Vei is obtained, to compute L, it is necessary to evaluate the influence of distributed loads Vdi (Eq. (5)). First,
the position of each beam’s element pij is recovered by the use of the following formula:

pi(s) = pij + xRije3; x = s− jLei (22)

with Rij the orientation matrix of the j-th element, recovered by the knowledge of hij . p0,h0, that are the base position and
orientation of the beam, are usually computed from qai, depending on the employed actuator. To compute Vdi, let us recall its
expression of Eq. (5) for clarity:

Vdi = −
∫ L

0

fTd pids (23)

By discretizing the beam into Nelt equal elements, inserting Eq. (22) into Eq. (23), and integrating in s, the following expression
is obtained:

Vdi =

Nelt∑
j=1

Vdij Vdij = −fTd (pij + LeRije3) (24)

At this stage, the derivation of the geometrico-static model equations starts. Being Φi the constrain vector of the i-th beam,
we assume that only fixed constraints appears. This case is selected as it is the most general, and others kind of joints may be
considered as subcases of the fixed-joint case. Being pij ,Rij the values of the position and orientation of the last element of
the i-th beam computed from Eq. (22), the expression of Φi is computed as follows:

Φi = Ci

[(
RT

p Rij −RijRp

)
q

pij − (pp +Rppfi)

]
j = Nelt (25)

Let us derive ∇qei
L, by considering separately the contribution of the deformation energy, distributed loads energy, and

geometrical constraints:
∇qei

L = ∇qei
Vei +∇qei

Vdi +∇qei

(
ΦT

i λi

)
(26)

For each term, the expression of ∇hij
(.), that is the j-th component of ∇qei

(.), is derived. Let us expand the expression of
Vei as follows to illustrate where hij appears in Vei:

Vei =

Nelt∑
j=1

3∑
k=1

Kk

Lei

(
· · ·+

(
2hT

ijBk
hij − hij−1

Le

)2

+

(
2hT

ij+1Bk
hij+1 − hij

Le

)2

+ · · ·

)
(27)

The term hij , as a cause of the finite-difference approximation, appears in the term j and j + 1. Thus, ∇hijVei is structured
as the sum of two terms:

∇hij
Vei = aij + bi (28)

and the terms aij ,bik, Aijk can be computed as follows:

aij = +2

3∑
k=1

Kk

Lei
BkhijAijk, aij ∈ R4 (29)

bij = −2

3∑
k=1

Kk

Lei
Bkhi(j+1)Aijk, bij ∈ R4 (30)

Aijk = −2hT
i(j+1)B

T
k hij , Aijk ∈ R (31)



5

Then, the term ∇hij
Vdi is calculated by differentiating Eq.(24) w.r.t. hij :

∇hij
Vdi =

Nelt∑
r=1

fTd
(
∇hij

pir + Lei∇hij
(Rire3)

)
(32)

with the terms ∇hij
pir and ∇hij

(Rire3) compute as follows:

∇hij
pir = LeiD3ij ; j ≤ r; ∇hij

pir = 0; j > r (33)
∇hij

(Rire3) = D3ij ; j = r; ∇hij
(Rire3) = 0; j ̸= r (34)

The matrix D3ij (and the matrices D1ij ,D2ij that introduced for later convenience), are structured as follows:

D1ij = 2

+h1ij +h2ij −h3ij −h4ij

+h4ij +h3ij +h2ij +h1ij

−h3ij +h4ij −h1ij +h2ij

 (35)

D2ij = 2

−h4ij +h3ij +h2ij −h1ij

+h1ij −h2ij +h3ij −h4ij

+h2ij +h1ij +h4ij +h3ij

 (36)

D3ij = 2

+h3ij +h4ij +h1ij +h2ij

−h2ij −h1ij +h4ij +h3ij

+h1ij −h2ij −h3ij +h4ij

 (37)

Finally, to compute ∇qei

(
ΦT

i λi

)
, the j-th component ∇hij

(
ΦT

i λi

)
is calculated. For the following derivation, it is

convenient to simplify the expression of the orientation contraints. Being dp1,dp2,dp3 the columns of the platform rotation
matrix such as Rp = [dp1,dp2,dp3], and di1,di2,di3 the columns of the i-th beam rotation matrix at s = L (Rij =
[di1,di2,di3], j = Nelt), the following equivalent expression of the orientation constraint is obtained:

(
RT

p Ri(Li)−RT
i (Li)Rp

)
q=


dT
p1d2 − dT

p2d1

dT
p1d3 − dT

p3d1

dT
p2d3 − dT

p3d2

(38)

Thus, λT
i Φi is explicitly computed as follows:

λT
i Φi = [λ4i, λ5i, λ6i] (pi(Li)− (pp +Rppfi)) + λ1i

(
dT
p1d2 − dT

p2d1

)
+ λ2i

(
dT
p1d3 − dT

p3d1

)
+ λ3i

(
dT
p2d3 − dT

p3d2

)
(39)

Deriving Eq. (39) w.r.t. hij results in two terms:

∇hij
(λT

i Φi) = cij + dij (40)

where cij ∈ R4:
cij = Lei[λ4i, λ5i, λ6i]D3ij (41)

Instead, the term dij ∈ R4 is non-null only for j = Nelt, and it is structured as follows:

dij = λ1i

(
dT
p1D2ij − dT

p2D1ij

)
+ λ2i

(
dT
p1D3ij − dT

p3D1ij

)
+ λ3i

(
dT
p2D3ij − dT

p3D2ij

)
, j = Nelt (42)

Finally, the last required term for the geometrico-static model derivation is ∇qpL, that can be computed as:

∇qpL = ∇qpVtot +∇qp(λ
T
i Φi) (43)

where ∇qpV = −[03×1; I3] and, being qp = [pp,α] ∈ Rnc with pp ∈ R3 the platform position and α ∈ Rnc−3 the platform
orientation parameters, the term ∇qp

(λT
i Φi) is structured as follows:

∇qp
(λT

i Φi) = −[λ4i, λ5i, λ6i]
[
I3 mp1

]
+
[
03×1 mp2

]
(44)

the vector mp1 ∈ Rnc−3 is:

mp1 =
∂

∂α
(Rppfi) = pfi1

∂dp1

∂α
+ pfi2

∂dp2

∂α
+ pfi3

∂dp3

∂α
(45)

with ∂dpk/∂α to be computed in relation to the selected platform orientation parametrization. The expression of mp2 ∈ Rnc−3

depends on the platform orientation parametrization as well, and it is structured as:

mp2 = λ1i

(
∂dT

p1

∂α
d2ij −

∂dT
p2

∂α
d1ij

)
+ λ2i

(
∂dT

p1

∂α
d3ij −

∂dT
p3

∂α
d1ij

)
+ + λ3i

(
∂dT

p1

∂α
d3ij −

∂dT
p3

∂α
d2ij

)
, j = Nelt (46)

with ∂dT
pk/∂α to be computed in relation to the selected platform orientation parametrization.



6

IV. MATRICES COMPUTATION

This Section derives the expression of the matrices required for the distance-to-instability metric computation. In particular,
matrices H and G are necessary, and their expression is the following:

H =

[
∇qe (∇qeL) ∇qe

(
∇qpL

)
∇qp (∇qeL) ∇qp

(
∇qpL

)] ; G =

[
∇λ (∇qe

L)
∇λ

(
∇qpL

)] (47)

The next sections derives each required term separately .

A. Computation of ∇qe (∇qeL)
Let us start by computing the derivatives of ∇qeL w.r.t. qei: this term is obtained by considering Vei, Vdi and λT

i Φi

separately. The derivative of ∇qeiVei w.r.t. qei is computed according to Eq. (28) as a diagonal block matrix:

∇qei
(∇qei

Vei) =


Ei1 FT

i2 · · · 0 0
Fi2 Ei2 · · · 0 0

...
...

. . .
...

...
0 0 · · · EiNelt−1 FT

iNelt

0 0 · · · FiNelt
EiNelt

 (48)

in which:

Eij = Mij +Nij+1 (49)

Fij = −4

3∑
k=1

Kk

Lei
((Bkhij)(Bkhij+1)

T −BkAijk/2) (50)

Mij = −4

3∑
k=1

Kk

Lei
(Bkhij)(B

T
k hij)

T (51)

Nij = −4

3∑
k=1

Kk

Lei
(Bkhij+1)(Bkhij+1)

T (52)

Let us consider now ∇qeiVdi. To compute derivative of ∇hijVdi w.r.t. hij , it is first convenient to insert fd = [fdx, fdy, fdz]
inside Eq. (32), and to obtain the following expression:

∇hijVdi =

Nelt∑
r=1

∇hij

(
fTd pir

)
+ Lei∇hij

(
fTd Rire3

)
(53)

Then, it is convenient to define the following operator that transforms the generic vector z = [z1, z2, z3] ∈ R3 into a 4 × 4
matrix structured as follows:

z̃ =


+z3 −z2 +z1 0
−z2 −z3 0 +z1
+z1 0 −z3 +z2
0 +z1 +z2 +z3

 (54)

The derivative of ∇hij
Vdi w.r.t. hij is expressed as follows:

∇hij

(
∇hij

(
fTd pir

))
= 4f̃d (55)

Then, let us consider ∇qei
λT
i Φi of Eq.(40). First, let us compute the derivative of Eq.(40) w.r.t. hij , that is:

∇hij

(
∇hij

(λT
i Φi)

)
= ∇hi

ci +∇hi
di (56)

Considering Eq.(41), and by introducing λ4:6i = [λ4i, λ5i, λ6i], the expression ∇hi
ci is obtained as:

∇hicij = 2Leiλ̃4:6i (57)

The term ∇hij
dij is non-null only for j = Nelt, and it is structured as follows:

∇hij
dij = λ1i

(
d̃p1 − d̃p2

)
+ λ2i

(
d̃p1 − d̃p3

)
+ λ3i

(
d̃p2 − d̃p3

)
, j = Nelt (58)



7

B. Computation of ∇qe

(
∇qp

L
)

By inspecting the terms of ∇qpL, the only term involving qe is
(
λT
i Φi

)
. The derivative of ∇qpλ

T
i Φi w.r.t. hij is non-null

only for j = Nelt, and it computed as follows:

∇hij

(
∇qp

λT
i Φi

)
=

[
03×4

∇hij
mp2

]
(59)

in which:

∇hij
mp2 = λ1i

(
∂dT

p1

∂α
D2ij −

∂dT
p2

∂α
D1ij

)
+ λ2i

(
∂dT

p1

∂α
D3ij −

∂dT
p3

∂α
D1ij

)
+

+ λ3i

(
∂dT

p1

∂α
D3ij −

∂dT
p3

∂α
D2ij

)
, j = Nelt (60)

Since derivatives w.r.t. qp,qe are commutative, ∇qe

(
∇qp

L
)
= ∇qp

(∇qe
L)T .

C. Computation of ∇qp

(
∇qp

L
)

To compute ∇qp

(
∇qp

L
)
, let us consider Vtot and λT

i Φi separately. Since ∇qp
Vtot is constant, its derivative w.r.t. qp is

null. Instead, the derivative of ∇qp
(λT

i Φi) w.r.t. qp is structured as follows:

∇qp

(
∇qp

(λT
i Φi)

)
=

[
03×3 03×3

03×3 mp3

]
(61)

where the matrix mp3 ∈ R3×3 is defined as:

mp3 =

mp31

mp32

mp33

 (62)

and the vectors mp3i are obtained by differentiating Eq. (44) w.r.t. αi. In particular, mp3i is structured as follows:

mp3i = −[λ4i, λ5i, λ6i]
∂mp1

∂αi
+

∂mp2

∂αi
(63)

where:
∂mp1

∂αi
= pfi1

∂2dp1

∂α∂αi
+ pfi2

∂2dp2

∂α∂αi
+ pfi3

∂2dp3

∂α∂αi
(64)

∂mp2

∂αi
= λ1i

(
∂2dT

p1

∂ααi
d2ij −

∂2dT
p2

∂ααi
d1ij

)
+λ2i

(
∂2dT

p1

∂ααi
d3ij −

∂2dT
p3

∂ααi
d1ij

)
+ +λ3i

(
∂2dT

p1

∂ααi
d3ij −

∂2dT
p3

∂ααi
d2ij

)
, j = Nelt

(65)
with the derivatives of the platform rotation matrix columns to be computed in relation to the selected platform orientation
parametrization.

D. Computation of ∇λ (∇qeL)

Let us calculate ∇λi
(∇qei

λT
i Φi). Derivating cij w.r.t. λi results in:

∇λi
cij = Lei

[
03×4

D3ij

]
(66)

while, by differentiating dij w.r.t. λi, the following expression is obtained:

∇λi
dij =


dT
p1D2ij − dT

P2D1ij

dT
p1D3ij − dT

P3D1ij

dT
p2D3ij − dT

P3D2ij

03×4

 , j = Nelt (67)



8

E. Computation of ∇λ

(
∇qp

L
)

Let us compute the derivatives of ∇qp
L. In particular, ∇qp

Vtot is constant, and its first derivative w.r.t. λi vanishes. Instead,
let us consider ∇qp

(
λT
i Φi

)
of Eq.(44), where a differentiation w.r.t. λ results in:

∇λi

(
∇qp

(
λT
i Φi

))
=

[
03×3 −I3×3

∇λ4:6imp2 03×3

]
(68)

where ∇λ4:6imp2 ∈ R3×3 is structured as follows:

∇λ4:6i
mp2 =

[
∂dT

p1

∂α
d2ij −

∂dT
p2

∂α
d1ij ,

∂dT
p1

∂α
d3ij −

∂dT
p3

∂α
d1ij ,

∂dT
p1

∂α
d3ij −

∂dT
p3

∂α
d2ij

]
(69)

with the derivatives of the platform rotation matrix columns to be computed in relation to the selected orientation parametriza-
tion.

V. COMPUTATION OF MATRICES DERIVATIVES

The goal of this Section is to compute the derivatives of H,G. In particular, we seek to compute:
ny∑
i=1

∂H

∂yi

∂yi
∂f

(70)

ny∑
i=1

∂G

∂yi

∂yi
∂f

(71)

where y = [qa,qe,qp,λ] and ny is the dimension of y. Since H,G are structured as illustrated in Eq.(47), the derivates of
each term in H,G are computed separately in the following. The values of the terms ∂yi/∂f are assumed to be known.

H =

[
∇qe (∇qeL) ∇qe

(
∇qpL

)
∇qp (∇qeL) ∇qp

(
∇qpL

)] ; G =

[
∇λ (∇qe

L)
∇λ

(
∇qpL

)] (72)

A. Computation of ∂ (∇qe
(∇qe

L)) /∂f
Let us first consider ∇qei (∇qeiL) which is structured as:

∇qei (∇qeiL) = ∇qei (∇qeiVei) + (∇qei (∇qeiVdi)) +
(
∇qei

(
∇qei

(
λT
i Φ
)))

(73)

The derivative of ∇qei
(∇qei

Vei) w.r.t. f is obtained by derivating Eq. (48):

∂

∂f
(∇qei (∇qeiVei)) =



∂
∂f (Ei1)

∂
∂f

(
FT

i2

)
· · · 0 0

∂
∂f (Fi2)

∂
∂f (Ei2) · · · 0 0

...
...

. . .
...

...
0 0 · · · ∂

∂f (EiNelt−1)
∂
∂f

(
FT

iNelt

)
0 0 · · · ∂

∂f (FiNelt
) ∂

∂f (EiNelt
)

 (74)

in which:
∂Eij

∂f
=

∂Mij

∂f
+

∂Nij+1

∂f
(75)

∂Fij

∂f
= −4

3∑
k=1

Kk

Lei

(
(Bk

∂hij

∂f
)(Bkhij+1)

T + (Bkhij)(Bk
∂hij+

∂f
))T −Bk

1

2

∂Aijk

∂f

)
(76)

∂Mij

∂f
= −4

3∑
k=1

Kk

Lei

(
(Bkhij)(B

T
k

∂hij

∂f
)T + (Bkhij)(B

T
k

∂hij

∂f
)T
)

(77)

∂Nij

∂f
= −4

3∑
k=1

Kk

Lei

(
(Bk

∂hij+1

∂f
)(Bkhij+1)

T + (Bkhij+1)(Bk
∂hij+1

∂f
)T
)

(78)

∂Aijk

∂f
= −2

(
∂hi(j+1)

∂f

T

BT
k hij + hT

i(j+1)B
T
k

∂hij

∂f

)
(79)



9

Let us consider the j-th term of ∇qei
(∇qei

Vdi). Since ∇hij

(
∇hij

Vdi

)
of Eq.(55) is constant, if derivative w.r.t. f is null:

∂

∂f
∇hij

(
∇hij

Vdi

)
= 0 (80)

To compute the j-th term of ∇qei

(
∇qei

(
λT
i Φ
))

, let us calculate the derivative w.r.t. f of Eq.(56):

∂

∂f
∇hij

(
∇hij

(λT
i Φi)

)
=

∂

∂f
(∇hi

cij) +
∂

∂f
(∇hi

dij) (81)

in which:
∂

∂f
(∇hi

cij) = 2Lei

˜(∂λ4:6i

∂f

)
(82)

and:

∂

∂f

(
∇hij

dij

)
=

∂λ1i

∂f

(
d̃p1 − d̃p2

)
+

∂λ2i

∂f

(
d̃p1 − d̃p3

)
+

∂λ3i

∂f

(
d̃p2 − d̃p3

)
+

+ λ1i

(
∂̃dp1

∂f
− ∂̃dp2

∂f

)
+ λ2i

(
∂̃dp1

∂f
− ∂̃dp3

∂f

)
+ λ3i

(
∂̃dp2

∂f
− ∂̃dp3

∂f

)
, j = Nelt (83)

In particular, the derivatives of the rotation matrix columns dpi are computed by first calculating ∂Rp/∂f and then extracting
the columns:

∂Rp

∂f
=

nc−3∑
i=1

∂Rp

∂αi

∂αi

∂f
(84)

where αi i = 1, · · · , nc − 3 is the i-th parameter of the platform orientation.

B. Computation of ∂
(
∇qp (∇qeL)

)
∂f

The derivative of ∇qp (∇qeL) w.r.t. f is computed by differentiating its elementary term ∇hij

(
∇qpλ

T
i Φi

)
w.r.t. f

∂

∂f

(
∇hij

(
∇qpλ

T
i Φi

))
=

[
03×4

∂
(
∇hijmp2

)
/∂f

]
(85)

in which the term ∂
(
∇hij

mp2

)
/∂f is composed as a sum of three terms:

∂

∂f

(
∇hijmp2

)
= p1 + p2 + p3 (86)

where:

p1 =
∂λ1i

∂f

(
∂dT

p1

∂α
D2ij −

∂dT
p2

∂α
D1ij

)
+

∂λ2i

∂f

(
∂dT

p1

∂α
D3ij −

∂dT
p3

∂α
D1ij

)
+

+
∂λ3i

∂f

(
∂dT

p1

∂α
D3ij −

∂dT
p3

∂α
D2ij

)
, j = Nelt (87)

p2 = λ1i

(
∂2dT

p1

∂α∂f
D2ij −

∂2dT
p2

∂α∂f
D1ij

)
+ λ2i

(
∂2dT

p1

∂α∂f
D3ij −

∂2dT
p2

∂α∂f
D1ij

)
+

+ λ3i

(
∂2dT

p1

∂α∂f
D3ij −

∂2dT
p3

∂α∂f
D2ij

)
, j = Nelt (88)

p3 = λ1i

(
∂dT

p1

∂α

∂D2ij

∂f
−

∂dT
p2

∂α

∂D1ij

∂f

)
+ λ2i

(
∂dT

p1

∂α

∂D3ij

∂f
−

∂dT
p3

∂α

∂D1ij

∂f

)
+

+ λ3i

(
∂dT

p1

∂α

∂D3ij

∂f
−

∂dT
p3

∂α

∂D2ij

∂f

)
, j = Nelt (89)

where ∂Dkij/∂f, k =, 1, 2, 3 are computed according to Eq.(37) by using ∂hij/∂f , and the derivatives of the platform rotation
matrix columns to be computed in relation to the selected platform orientation parametrization.



10

C. Computation of ∂
(
∇qp

(
∇qp

L
))

∂f

The derivative of ∇qp

(
∇qp

L
)

w.r.t. f is structured as follows:

∇qp

(
∇qp(λ

T
i Φi)

)
=

[
03×3 03×3

03×3
∂mp3

∂f

]
(90)

where the matrix ∂mp3/∂f is defined as:

∂mp3

∂f
=

∂mp31/∂f
∂mp32/∂f
∂mp33/∂f

 (91)

and the vectors ∂mp3i/∂f is structured as follows:

mp3i = −
[
∂λ4i

∂f
,
∂λ5i

∂f
,
∂λ6i

∂f

]
∂mp1

∂αi
− [λ4i, λ5i, λ6i]

∂2mp1

∂αi∂f
+

∂2mp2

∂αi∂f
(92)

where:
∂2mp1

∂αi∂f
= pfi1

∂

∂f

(
∂2dp1

∂α∂αi

)
+ pfi2

∂

∂f

(
∂2dp2

∂α∂αi

)
+ pfi3

∂

∂f

(
∂2dp3

∂α∂αi

)
(93)

∂2mp2

∂αi∂f
= t1 + t2 + t3 (94)

t1 =
∂λ1i

∂f

(
∂2dT

p1

∂ααi
d2ij −

∂2dT
p2

∂ααi
d1ij

)
+

∂λ2i

∂f

(
∂2dT

p1

∂ααi
d3ij −

∂2dT
p3

∂ααi
d1ij

)
+

+
∂λ3i

∂f

(
∂2dT

p1

∂ααi
d3ij −

∂2dT
p3

∂ααi
d2ij

)
, j = Nelt (95)

t2 = λ1i

(
∂2dT

p1

∂ααi
D2ij −

∂2dT
p2

∂ααi
D1ij

)
∂hij

∂f
+ λ2i

(
∂2dT

p1

∂ααi
D3ij −

∂2dT
p3

∂ααi
D1ij

)
∂hij

∂f
+

+ λ3i

(
∂2dT

p1

∂ααi
D3ij −

∂2dT
p3

∂ααi
D2ij

)
∂hij

∂f
, j = Nelt (96)

t3 = λ1i

(
∂

∂f

(
∂2dT

p1

∂ααi

)
d2ij −

∂

∂f

(
∂2dT

p2

∂ααi

)
d1ij

)
+ λ2i

(
∂

∂f

(
∂2dT

p1

∂ααi

)
d3ij −

∂

∂f

(
∂2dT

p3

∂ααi

)
d1ij

)
+

+ λ3i

(
∂

∂f

(
∂2dT

p1

∂ααi

)
d3ij −

∂

∂f

(
∂2dT

p3

∂ααi

)
d2ij

)
, j = Nelt (97)

with the derivatives of the platform rotation matrix columns to be computed in relation to the selected platform orientation
parametrization.

D. Computation of ∂ (∇λ (∇qe
L)) ∂f

Let us know compute the derivative of ∇λi

(
∇qei

(
λT
i Φi

))
w.r.t. f . This term is structured as follows:

∂

∂f
∇λi

(∇qei
λT
i Φi) =

∂

∂f
(∇λi

cij) +
∂

∂f
(∇λi

dij) (98)

where:

∇λi
cij = Lei

[
03×4
∂D3ij

∂f

]
(99)

and:

∂

∂f
∇λi

dij =


∂
∂f

(
dT
p1

)
D2ij − ∂

∂f

(
dT
P2

)
D1ij

∂
∂f

(
dT
p1

)
D3ij − ∂

∂f

(
dT
P3

)
D1ij

∂
∂f

(
dT
p2

)
D3ij − ∂

∂f

(
dT
P3

)
D2ij

03×4

+


dT
p1

∂
∂f (D2ij)− dT

P2
∂
∂f (D1ij)

dT
p1

∂
∂f (D3ij)− dT

P3
∂
∂f (D1ij)

dT
p2

∂
∂f (D3ij)− dT

P3
∂
∂f (D2ij)

03×4

 , j = Nelt (100)

where ∂Dkij/∂f, k =, 1, 2, 3 are computed according to Eq.(37) by using ∂hij/∂f .



11

E. Computation of ∂
(
∇λ

(
∇qp

L
))

∂f

Then, the derivative of ∇λi

(
∇qp

(
λT
i Φi

))
w.r.t. f is calculated by derivating Eq.(68) w.r.t. f :

∂

∂f

(
∇λi

(
∇qp

(
λT
i Φi

)))
= +

[
03×3 03×3

∂
∂f (∇λ4:6i

mp2) 03×3

]
(101)

where:

∂

∂f
(∇λ4:6imp2) =

[
∂2dT

p1

∂α∂f d2ij −
∂2dT

p2

∂α∂f d1ij ,
∂2dT

p1

∂α∂f d3ij −
∂2dT

p3

∂α∂f d1ij ,
∂2dT

p1

∂α∂f d3ij −
∂2dT

p3

∂α∂f d2ij

]
+

+
[

∂dT
p1

∂α
∂d2ij

∂f − ∂dT
p2

∂α
∂d1ij

∂f ,
∂dT

p1

∂α
∂d3ij

∂f − ∂dT
p3

∂α
∂d1ij

∂f ,
∂dT

p1

∂α
∂d3ij

∂f − ∂dT
p3

∂α
∂d2ij

∂f

]
(102)

where the term ∂2dT
pk/∂α∂f depends on the specific platform orientation parametrization, and ∂dkij/∂f is obtained as follows:

∂dkij

∂f
= Dkij

∂hij

∂f
k = 1, 2, 3 (103)

REFERENCES

[1] F. Zaccaria, E. Idá, and S. Briot, “Directional critical load index: a distance-to-instability metric for continuum robots,” submitted to the IEEE Transaction
on Robotics, 2024.

[2] F. Zaccaria, S. Briot, M. T. Chikhaoui, E. Idá, and M. Carricato, “An Analytical Formulation for the Geometrico-static Problem of Continuum Planar
Parallel Robots,” in Symposium on Robot Design, Dynamics and Control, ROMANSY2020, G.Ventuare et al. (Eds.), no. 512–520, 2020.

[3] S. Briot and A. Goldsztejn, “Singularity conditions for continuum parallel robots,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 507–525, 2021.
[4] S. Antman, Nonlinear Problems of Elasticity. Springer Verlag New York, 1995, vol. 107.
[5] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. Springer, 2006.


