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I. INTRODUCTION

In the present technical report, associated with the paper [1], we provide the expressions of the derivatives of matrices H, G
with the respect to (w.r.t.) the variables f. Sec. II recalls the energy-based discretized modelling employed in [1]. This recall
is necessary in order to have a self-contained report. Section III provides the geometrico-static model equations expressions
when a finite-differences discretized modelling approach is used [2],[3]. Then, Sec. IV derives the expressions of matrices
H, G while Sec. V computes the derivatives of matrices H, G necesary for the distance-to-instability metric computation.

II. MODELLING

This section describes the energy-based modelling approach of this paper. Sec. II-A presents the CRs relevant variables.
Then, Sec. II-B,II-C derive the deformation energy and external load energy, respectively. The total CR energy and constraints
are discussed in Sec. II-D. Finally, the discretization process is introduced to derive the CR geometrico-static model in Sec. II-E.

A. Description of the Continuum Robot

In this report, a CR is considered to be made by n flexible beams, and the CR is actuated by m motors. The variables
associated with the motor actions are grouped into the vector q, € R™. Then, a frame F, is rigidly attached to a specific
CR location, assumed to be the EE reference point. The EE pose is described by q, = [p,; ap] € R™, where n, = 3 for the
planar case, n. > 6 for the spatial case, p, describes the EE position, and «,, is a set of orientation parameters that define the
rotation matrix R,. Assuming the same number of controlled and actuated variables, the vector q. € R™ stacks the controlled
variables. Typically, q. is a subset of q,, and the vector q,, collects the remaining variables of q, not included in qc.

B. Deformation Energy

Let us consider a flexible beam as represented in Fig. 1: the beam is assumed to be one of the n flexible components of

the CR, and the index ¢ = 1,--- ,n denotes the i-th beam. Being L; the length of the i-th beam, the coordinate s; € [0, L;]
parameterizes the beam’s centerline. A frame F;(s;) is attached at each beam’s cross-section and the pose of the cross-section
is defined by T;(s;) € SE(3):
R;(si i\Si
Tqv,(si)—[ i Pl )] (1)

where R;(s;) € SO(3),pi(s;) € R? represent the rotation matrix and the position of J;(s;) with respect to (w.r.t.) a fixed
frame Fo. To get the deformation energy of the beam, let us first evaluate the strain vector &; € RS at s;:

€(s:) = T (5:) Ti(s:) @)
with (\)' = £, ¢, = [u;,v;] and 21 € se(3) is defined as:

where 1; € s0(3) is the skew-symmetric matrix obtained by u;. Moreover, u; € R? represents bending and torsion of the
beam, and v; € R? describes shear and extensibility. Assuming linear isotropic elasticity, the deformation energy of the beam
is given by [4]:
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Fig. 1: Continuous parametrization of a flexible beam.

where (.)* denotes the undeformed strain configuration, and K; € R®*6 is the material stiffness matrix. Frequently, K; =
diag(El,;,EI,,GI,,GA,GA, EA) where E is the Young’s modulus, G is the shear modulus, I, I, I, are the principal inertia
moments of the cross-section, and A is the cross-section area.

C. External Loads Energy

Let us compute the potential energy due to external conservative loads. First, the potential energy due to a distributed force
f;; applied at the i-th beam is given by:

L;
Vie= [ fuls)pi(sr)ds )
0
Then, concentrated loads' are considered. The contribution of a concentrated force f applied at p,y, is:

Vf = _prapp (6)

where pgp, is the application point of f. For instance, when the force is applied to the EE, pqp, = pp While, if f is applied
at the coordinate sy, of the i-th beam, payp = Pi(Sapp)-

For the following derivation, it is convenient to introduce f and dy: f represents the magnitude of f while d; represents
the orientation of segment and its direction in terms of start and end point. Thus, Eq. (6) becomes:

Vf = _prapp = _fd?papp = _fh @)
with h = d?papp.

D. Continuum Robot Energy and Constraints

The CR total potential energy is obtained as the sum of the deformation energy and external load contributions, that is:
n
Viet = 3 (Vbi + Vas) + Vs ®)
i=1
Geometric constraints frequently have to be considered in CRs. For instance, the closure-loop geometric constraints of CPRs
involve leg and rigid-platform variables [3]. In serial CRs, when a set of independent variables q, is used to represent the EE
position, geometric constraints are introduced as well. Additionally, when using quaternions to represent orientations, unitary
constraints must be enforced. Without loss of generality, the constraints are represented by

®=0 ©)

where a vector ® € R™® is introduced to stack all the constraints in homogeneous form. CRs passive joints, (such as connections
between the rigid platform to the passive beams in continuum parallel robots), can be modelled. For instance, revolute joints ,
spherical joints, cylindrical joints, and fixed joints can be modelled. Without loss of generality, the constraint of the i-th beam
®; € R"#: can be represented by:

P, =C,

(RIR,(L;) — R?(Li)RPW (10

pi(L:i) — (Pp + Rypyi)
where p,, R, are the position and the orientation matrix of 7, w.r.t. Fo, ps; € R? is a vector pointing from the i-th joint
position to F,, (thus constant w.r.t. F,), , respectively. The vector p;(L;) is the position of the i-th beams at the coordinates

L; and R;(L;) is the orientation matrix at L; of the same beam. The superscript (.) indicates the extraction of the three
independent components of its argument, assumed to be a skew-symmetric matrix. Matrix C; € R"™#: X6 is named joint matrix,
and Table I summarizes how C; is structured for different kinds of passive platform joints.

IThree-dimensional pure moments, which are non-conservative, are assumed not to appear.



Name Fixed Spherical Revolute Local z Cylindrical Local z
n° DoF 0 3 1 2
I»  O2xa 02 02x1 Iax2 O2x1
5 0 I
c Ts [05x3  Ts] O3x3 I3 Io 02x1 02 0O2x1

TABLE I: Values of C for different platform constraints. The number of DoF is indicated with n® DoF, I} is the identify
matrix of dimension k, and Oy, denotes a matrix of dimension % x h full of zeros. Revolute and Cylindrical pairs are assumed
to be aligned with the z local axis.

E. Discretization and Geometrico-Static Modelling

CRs equilibrium configurations are associated with critical points of V;,;, which depends on qq, q,, and a set of continuous
strain-functions &,. Discretization of the potential energy equations through a finite number of variables brings simple but
effective CRs analysis, in particular when dealing with equilibrium stability assessment. When employing a discretization
technique, V;,; (defined in Eq. (8)) is discretized with a finite set of variables q.; € RNsi| with N t; being the number of
discretization variables. Then, being N, = Y_I" | Ny;, the vector qc = [Qe1, " ,Qen] € RYe stacks all the discretization
variables. For later convenience, the vectors q; = [qu, Qe), and x = [qq, q.] are introduced. The CRs configuration is thus
defined by q,,x: the total potential energy and the constraints become a discrete function of q,, X, that is:

Viot = Viot(da; X); @ = ®(qa, %) Y

In the static case and for a fixed value of q,, feasible CRs configurations are determined by the minimum of the total
potential energy V;,; [3]. However, constraints ¢ should be enforced, and first-order Lagrange conditions determine critical
points of Vi, [5]. Assuming V4 ® full rank, x is associated with a critical point of V;,; if there exist a set of Lagrange
multipliers A € R™® such as [5]:

L=0
VL (12)
VAaLl=0
where L is the Lagrangian function defined as:
L=V +®"X (13)

Equations (12) form the geometrico-static model of a CR, and it is an undermined set of n. 4+ N, 4+ ng equations in m +n. +
N, + ng unknowns.

III. GEOMETRICO STATIC-MODEL EQUATIONS
This section derives the expressions of Eq.(12) when a finite-differences modelling approach is used. Let us first expand
Eq.(12) as follows:
Va.Vio + Vo, (A®) =0

Vel =0

— Te) = 14

{ Vit _0 Va, Viot + Va, (AT®) =0 (14)
®=0

To derive the expression of these equations, let us consider the deformation energy of the i-th beam of Eq. (4) in the case
shear and extensibility are neglected, here reported for clarity:

1 (L . .
Va=s / (ws(s) — 1} (5))T K (w,(s) — uf(s)) ds (1)

When a finite-differences approach is employed, it is convenient to parametrize the orientation of each cross-section by using
unit quaternions h; € R*, h; = h;; + hise; + hizes + hises, e = [1,0,0],e5 = [0,1,0],e3 = [0,0, 1]. In this case, the i-th
beams curvature u;(s) € R3 is computed as follows:

uir(s) = 2h] B{h}; k=1,2,3 (16)
with the matrices B, structured as follows:
0O -1 0 O 00 -1 0 0 0 0 -1
1 0 0 0 00 0 -1 0 0 1 0
Bi=tlo 0o o 1’ |10 0 o' o -1 0 o0 an
0O 0 -1 0 01 0 0 1 0 0 0

Thus, inserting Eq. (16) into Eq. (15), and by assuming u; = O for simplicity, the following expression of V;; is obtained:

1 [k 3 T N2
V=g /O (;Kk (2nByh!)? | ds (18)



The finite-difference approximation is introduced by first discretizing the rod into N,;; elements of equal length L., = L/N,y,
with the orientation of the j-th element of the i-th beam being defined by h,;. The vector q.; collects the N¢;;: quaternions
h;; of the i-th beam. The expression of V,; becomes:

Neit 1 Le; 3 2
Zve”, Veij = 5/0 (;Kk (2h]Bih};)" | ds (19)

The expression of h;j is then approximated by the use of a first-order backward finite difference approximation:

h;; —h;; 4

h!; ~ 20
" Lei ( )
Inserting Eq. (20) into Eq. (19) and integrating in s results in the following expression of V;;:
3 2
K h;; —h;;_
Viij = Z i (2h?jBkﬂL“) Q1)
k=1 ¢

Once the term V; is obtained, to compute L, it is necessary to evaluate the influence of distributed loads Vy; (Eq. (5)). First,
the position of each beam’s element p;; is recovered by the use of the following formula:

pi(s) = pij + zRyjes; © =5 — jLe; (22)

with R;; the orientation matrix of the j-th element, recovered by the knowledge of h;;. pg, hg, that are the base position and
orientation of the beam, are usually computed from g,;, depending on the employed actuator. To compute Vy;, let us recall its
expression of Eq. (5) for clarity:

L
Vi = — / £] pids (23)
0

By discretizing the beam into N;; equal elements, inserting Eq. (22) into Eq. (23), and integrating in s, the following expression
is obtained:

Net

Vi = Z Vaij  Vaij = —f] (pij + LeRyjes) (24)

At this stage, the derivation of the geometrico-static model equations starts. Being ®; the constrain vector of the i-th beam,
we assume that only fixed constraints appears. This case is selected as it is the most general, and others kind of joints may be
considered as subcases of the fixed-joint case. Being p;j, R;; the values of the position and orientation of the last element of
the i-th beam computed from Eq. (22), the expression of ®; is computed as follows:

(RTR,; — R;;R )V} .
N I ' 25
pij — (P + Rypysi)| " (23)

Let us derive Vq_, L, by considering separately the contribution of the deformation energy, distributed loads energy, and
geometrical constraints:

@izci[

Vqﬂq‘c = VCIm‘ Vei + vqﬂivdi + vqei ((I)Zﬂ)‘l) (26)

For each term, the expression of Vy,;(.), that is the j-th component of Vg, (.), is derived. Let us expand the expression of
Vei as follows to illustrate where h;; appears in V,;:

elt 3 2 2
Ky, h;; —h;; 4 h;jr1 —hy;
V,, = ZL : <+ <2hz‘TjBk]LJ> + <2h£‘+1BkJLJ +... 27)
]:1 k‘=1 et e e
The term h;;, as a cause of the finite-difference approximation, appears in the term j and j + 1. Thus, Vi, Ve; is structured

as the sum of two terms:
Vhi]. Vei = a;; + b; (28)

and the terms a;;, bjx, A;;, can be computed as follows:

+2Z Bkh”AUk, a;; €R? (29)
= —22 Bkhz(J—i-l)Akaa b;; € R* (30)



Then, the term Vy,; Vy; is calculated by differentiating Eq.(24) w.r.t. hy;:

Neit
Vi, Vai = 1 (Vi Pir + Lei Vi, (Rires)) (32)

r=1

with the terms Vy,; pir and Vy,; (Ri-e3) compute as follows:

Vh,;Pir = LeiDsig; 5 <77 Vn,;pir =0; j>71 (33)

Vh,; (Rire3) =Dg;j5 j =7; Vn,; (Riye3) =0; j#7 (34)
The matrix D3;; (and the matrices D1;5,Dg;; that introduced for later convenience), are structured as follows:
[+h1ij  +hoij  —hsij  —haij|
Duij =2 | +hai;  +hsij  +hai;  +h; (35
| —haij  +hai; —hi;  +hoj |
[—hai;  +hsij +hoij —hiij]
Doij =2 |4+hiy  —hoyy  +hsij  —hag (36)
| thaij  +hiy  +hag  +hsig |
[+haij  +haij +hig  +hai)|
Dsij =2 | —haij —hiij +hai;  +hag; (37
| thiy  —hai;  —hsij +hag |

Finally, to compute Vg, <<I’ZT)\Z'), the j-th component Vy,; (‘I'ZT)\Z-) is calculated. For the following derivation, it is
convenient to simplify the expression of the orientation contraints. Being d,1,dp2, dps the columns of the platform rotation
matrix such as R, = [dp1,dp2,dps3], and d;1,d;2,d;s the columns of the i-th beam rotation matrix at s = L (R;; =
[di1, ds2, dis], 7 = Neit), the following equivalent expression of the orientation constraint is obtained:

dgldg — dZle
(RyRi(Li) — R} (Li)R,)"= ¢ dlids —dlyd, (38)
d;gdg — dggdg
Thus, )\iT(In- is explicitly computed as follows:
A ®; = [Mi, Asi, Aei] (Pi(Li) — (Pp + Ryppyi)) + Ari (d],dy — dydy)
+ Az (djyds — dl3dr) + Ags (d)pds — dlzd2)  (39)
Deriving Eq. (39) w.r.t. h;; results in two terms:
Vi, (A ) = ¢y + dj (40)

where c;; € R%:
Cij = Lei[Ai, Asis Ai] D3ij 41)

Instead, the term d;; € R* is non-null only for j = Ny, and it is structured as follows:
dij = A5 (dZ1D2ij - dgzDUj) + A2 (d§1D3ij - dgngij) + Az (d]ngsij - d,:,FgD%j) s J = Neu (42)
Finally, the last required term for the geometrico-static model derivation is V¢, £, that can be computed as:
Va, L = Vg, Viet + Vo, (AT ®:) 3)

where Vg,V = —[031;I5] and, being q, = [p,, @] € R™ with p, € R? the platform position and o € R"<~3 the platform
orientation parameters, the term qu(Aféi) is structured as follows:

Va, AT @) = —[Mai, Asi, Aei) [Ts myp1] + [031  mys] (44)
the vector my,; € R™ 3 is:
0 od od od
my; = 5~ (Rypsi) = pran aopél + priz a;z +Pris ;3 (45)

with dd,,\, /Ocx to be computed in relation to the selected platform orientation parametrization. The expression of m,; € R™~3
depends on the platform orientation parametrization as well, and it is structured as:

odT, odr, odT, od7, odT, odr, ,
mys = Ay ( 8(1; doij — 8; duiij | + A2 Tz;d?)ij - aic];duj + + A3 a; dsij — 82 d2ij |, j = Ne (46)

with adgk /Oa to be computed in relation to the selected platform orientation parametrization.



IV. MATRICES COMPUTATION

This Section derives the expression of the matrices required for the distance-to-instability metric computation. In particular,
matrices H and G are necessary, and their expression is the following:

Va. (Vg L) Vg, EV /.I)] [VA (V eﬁ)]
H= q a a dp .G = q 47
vqp (quﬂ) vqp qu‘C) ’ ( )

The next sections derives each required term separately .

A. Computation of Vq, (Vg L)

Let us start by computing the derivatives of V£ w.r.t. qc;: this term is obtained by considering V¢;, Vy; and )\iT<I>i
separately. The derivative of Vg _,Ve; W.rt. qg; is computed according to Eq. (28) as a diagonal block matrix:

Eqx FL, - 0 0
F,o E;» --- 0 0
V. (VQeiVei) = (48)
0 0 - En,1 Fly,
0 O e FiNelt EiNelt
in which:
E;j = M;; + Njjq (49)
3 Kk
Fij = —4) == ((Bihij)(Brhiji1)" — BrAijn/2) (50)
k=1 "¢
3 Kk
M,;; = —4; I (Brhy;)(Bi hyy)" (51)
3 K}c
Nij = =4 == (Bihij1)(Brhij1)” (52)
i Lei

Let us consider now Vg, Vy;. To compute derivative of Vi, Vg w.rt. hyj, it is first convenient to insert fg = [fdzs fay, faz]
inside Eq. (32), and to obtain the following expression:

Neit
Vhij Vii = Z vhq‘,_j (fgpw) + Leivhij (deRireS) (53)

r=1

Then, it is convenient to define the following operator that transforms the generic vector z = [21, 22, 23] € R® into a 4 x 4

matrix structured as follows:
+23 —29 42z 0

~ [—Z2 —Z3 0 “+21
Z= “+21 0 —23 +22 (4)

O +Zl -|—ZQ -|-213

The derivative of Vh,;j Vais w.rt. hy; is expressed as follows:
Vi, (Vi (£ Pir)) = 4 (55)
Then, let us consider qu.)\iT'I)i of Eq.(40). First, let us compute the derivative of Eq.(40) w.r.t. h;;, that is:
Vh,, (vhu(AZ@i)) = Vn,ci + Vi,d; (56)
Considering Eq.(41), and by introducing A4.6; = [Aai, Asi, A6i], the expression Vi, c; is obtained as:
Vn.Cij = 2LeciAscs (57)
The term Vi, d;; is non-null only for j = N, and it is structured as follows:

Vi iy = M (dpn = dya ) + dai (dyn — dys ) + Agi (dyz — dys ), j = N (58)



B. Computation of Vg, (Vq,L)

By inspecting the terms of V4 L, the only term involving q. is (A?(Ih) The derivative of Vg, A?‘Il'i w.r.t. h;; is non-null
only for j = Ny, and it computed as follows:

Ta ) _ | Osxsa
th‘ (VQpAi (I,l) - {Vhijmzﬂ} (59)
in which:
odT. odT, odT. odT.
Vh,;mpa = Ay ( 8;1 Do — aopruJ) + Ao <£D3z‘j - aZfDuj) +

ody, adl, .
+ Az TDsij - TDQij , J = Neie (60)
Since derivatives W.r.t. qp, q. are commutative, Vg, (Vq,£) = Vg, (Vg L

C. Computation of Vg, (Vq,L)

To compute Vg, (quﬁ), let us consider V;,; and )\f@i separately. Since Vq,Vior is constant, its derivative w.r.t. qp is
null. Instead, the derivative of qu()\iT@i) w.r.t. qp is structured as follows:

O3x3  O3xs
v (v AT, ) = [P 61
dp dp ( ) 03 «3 my3 ( )
where the matrix m,; € R3*? is defined as:
myp3;
mp3 = (IMyp32 (62)
my;33

and the vectors my3; are obtained by differentiating Eq. (44) w.r.t. o;. In particular, m,,3; is structured as follows:

8mp1 8mp2
80@ 8041»

myp3; = — [\, Asi, Aei) (63)

where:
8mp1 o 82 dpl 82 dp2 82 dpg
day; Pra dada; TPz dada; thyis dada;

om a2dT a2dT a2dT 82dT 32dT a2dT ‘
6;2 = A1 (Mgdmj - Wap%duj +A2; szd&‘j - Wjd“j + 4+ A3 nga‘zj - szdmj » J = Neu
(65)

with the derivatives of the platform rotation matrix columns to be computed in relation to the selected platform orientation
parametrization.

(64)

D. Computation of V (Vq, L)

Let us calculate Vi, (Vg A7 ®;). Derivating c;; w.r.t. A; results in:
Vacij = Lei [03%‘%} (66)

while, by differentiating d;; w.r.t. A;, the following expression is obtained:

d/ Dy;; — d;ngij

d 1D3ij — d¥3D1ij

d;5D3ij — dpzDaij
0354

Vi, dij = » J = Neu (67)



E. Computation of V x (quﬁ)
Let us compute the derivatives of quﬁ. In particular, V4, Vit is constant, and its first derivative w.r.t. A; vanishes. Instead,
let us consider Vg ()\,T'I>Z> of Eq.(44), where a differentiation w.r.t. A results in:

Ta \) _ 03x3 —I5343
o (T () = [ 20 0 )
where V3, .,y € R3*3 is structured as follows:
3dT odL odT. odZL. od~T. odZL.
Vape Mp2 = l o d2’L] 8(22 dyj, Tczld?)ij - Topjd”j’ Tgld&‘j - Tjdm’j (69)

with the derivatives of the platform rotation matrix columns to be computed in relation to the selected orientation parametriza-
tion.

V. COMPUTATION OF MATRICES DERIVATIVES

The goal of this Section is to compute the derivatives of H, G. In particular, we seek to compute:

Ny

OH 8yi

.Z Dy: O 70
G Jy;

Z oy, Of ()

where y = [qq,qe, dp, A] and n,, is the dimension of y. Since H, G are structured as illustrated in Eq.(47), the derivates of
each term in H, G are computed separately in the following. The values of the terms Qy;/0f are assumed to be known.

 [Va (Va£) Va (Va,0)]. Vs (V. £)
H‘[vqp (Val) Ve Evcﬂ G= [Vi (vqpﬁ)] 72

A. Computation of 0 (Vq, (Vq.L)) /0f

Let us first consider Vg, (Vq,,£) which is structured as:

vqei (VQ(»H‘C) = vqei (vqei VeL) + (vqei (vqei le)) + (vqei (vqei (A;T@))) (73)
The derivative of V_, (Vq.,Vei) wrt. f is obtained by derivating Eq. (48):
fE) FED 0
5 <’T 12) aF (Ej2) -~ 0 0
w (chi (chiVei)) = : (74)
0 0 g (Bina,-1) % (Fin...)
0 0 T % (F“Velt) aof (EiNelt)
in which:
GE” B 8Mzg aNij+1
aF 6‘f + af (75)
OF;; Ky, Oh;; Ohiiq\\p 1041
3f] = _42 I.. ( Bi afj )(Brhij1)" + (Byhyj) (B 8} )" = Big 3; ) (76)
OM,; Ky Oh; 70hi; 1
8fj = _42 T (Bkh”)(Bk 37 )T 4 (Bihy,)(BF o7 i) ) (77)
8NZ K Oh;; oh;;
i - 742 £ (B ) By )T 4 (B (BT ) 9

OAir _ <3hi(j+1)

T T )
Bih;; +hf,, B ) (79)

kaf



Let us consider the j-th term of Vg, (Vq,,Va:). Since Vi, (Vhi]. Vdi) of Eq.(55) is constant, if derivative w.r.t. f is null:
0

—Vh,. Vi) =0 80
aF Vh,, (Vi Vai) (30)
To compute the j-th term of Vg, (qui (A?@)), let us calculate the derivative w.r.t. f of Eq.(56):
0 T 0 0
a7 ¥ (Vhij(&- ‘I’i)) =af (Vn,cij) + a7 (Vmdi) 81)
in which: o
0 OAy:6i
— Cij) = 2L 2
8f (vh,lcu) ( 8f > (8 )
and:

5 (Tidi) = 2 (o = i) o+ 2 (= )+ 52 (= ) +

ddy  Odyy ddy;  Odys ody,  Odys\
: - : - : - =N,
+Alz< >+)\21< 8f Bf +)\3z 3f 3f y J elt (83)

In particular, the derivatives of the rotation matrix columns d,; are computed by first calculating OR,,/0f and then extracting
the columns:

R, '<OR, 0oy
= 84
of ; Oa; Of 84)
where a;; ¢ = 1,--- ,n. — 3 is the i-th parameter of the platform orientation.
B. Computation of 8 (Vq, (Vq.L)) Of
The derivative of Vg, (Vg £) w.rt. f is computed by differentiating its elementary term Vy,; (qu)\;@i> wrt. f
0 T _ 034
a7 (Y, (Var®:)) = [a (Vo) /05 (85)
in which the term 9 (Vp,;my;2) /Of is composed as a sum of three terms:
0
af (Vh,,mp2) = p1 + P2 + Ps3 (86)
where:
Iy [ Od}y odZ, Og; ( 0dL, odZ,
== Dyij — — 2Dy LS Dsy; - 2Dy,
P1= 57 <8a 2~ 5o 2V ) T 9 o ¥ T 9a v )T
OA3; (9dg1 8dg}) .
ij— —=——Dai; |, j=Ne 87
(’)f < D 3ij da 243 J lt ( )

02d’ 02d’, 02d’ 02d’,
P2 = Au; ( o L Dai; — 8@5;D1ij> + A2 (a - Dsi; — Dad p2D1ij> +

32dT1 82dT3
+ As; (aaaprgij — aaé}DZi]) , J=Nes (88)

da  Of Jda  Of

Jda  Of Ja  Of

odT, oDy;;  0d% 9Do;; \
+A3i<a(’: ajiﬂ— agf’ a;J ,j=Na: (89)

— (8‘1;?1 ODy;;  Odly aDlij) Moy <8d§1 0D3;;  0dly 8D1ij>

where 0Dy, /0f, k =,1,2,3 are computed according to Eq.(37) by using 0h;;/0f, and the derivatives of the platform rotation
matrix columns to be computed in relation to the selected platform orientation parametrization.



C. Computation of 0 (qu (quﬁ)) of

The derivative of Vg, (quﬁ) w.r.t. f is structured as follows:

03x3 O3x3
Va, (Vq, A ®;)) = s 90
dp ( QP( 7 )) [ded 88; ‘| ( )
where the matrix dmy,3/0f is defined as:
Omy31/0f
om P
a—f”‘”’ = |Omy30/0f 1)
Omy33/0 f
and the vectors Omys;/0f is structured as follows:
8)\4i 6{»\51 8)\61 8mp1 82mp1 82mp2
i = — ) ) — [Aasy Asiy A6i) 755 2
s {af of (’)f} Do [Pais As 6]8ai8f Do 0f ©2)
where: o2 o (0% o (0% o (0%
my O pl 9 p2 9 p3
daof ~ Prigs <8a8ai> T PGy (8(18%) T Prisgy (8&80@) ©3)
82mp2
dond =t; +to+t3 94)
aA ; 82dT 82dT a)\ ; anT 82dT
t1 = | o 2hdayy — —Lodyy 2 2 sy — Ly |+
af day; ooy af Jaay; ooy

ONg; [ 0*dY, o%dr. .
+ 3 ( pl dgij — 71)3(12@ y J = Nelt (95)
o oo

02d7] 02dZ Oh,; 02d7] 02dZ. Oh;;
t2 = )\11‘ ( aapl Dgij - a;?DuJ’ = + )\21‘ 7plD3ij - JDUJ' Y +

Jda; Jay; af 15e 6%} Jday; af
0%dT, 9%d~. oh;; .
+ Az (acxopr?)ij - aaapé D2ij> afja J = Newr (96)

o (02d} o (02d], o (02d]; o (0°df;
t3 = Ay (Qf(@aai d2ij*87f Do diij | + A2 87]” Wai d3ij*87f Do dij | +

o (0*d%] o (0*d% ,
+ Az <8f (é?cw:f dsi; — af Wj doij |, 5= Ner (O7)

with the derivatives of the platform rotation matrix columns to be computed in relation to the selected platform orientation
parametrization.

D. Computation of 0 (Vx (Vq, L)) 0f
Let us know compute the derivative of Vy, (qui ()\ZTtl’l)) w.rt. f. This term is structured as follows:

9 . ) 9
VA (Vo AT®,) = — (Vi) + — (V. dis 98
8va7,(vq67, ) ) 8f (v)\lcj)+ af (V)\l ]) ( )
where:
034
VaCij = Lei | 9Ds; 99
of
and: 2 (d%}) Daij — 2 (d%,) Dy, d? -2 (Dyy;) — db, 2 (Dyyy)
E) ( g}) 243 E) ( 52) 1ij gla 243 ;23 1ij
9 77 (dp1) Dsij — 57 (dps) D1 d;1 57 (Dsij) —dpsgr (D) |
7V)\id“ _ o pl 1] ) P3 ) 4 pl o J P30 J , = N it (100)
of Y éf (dgz) D3ij — L{[f (d1T33) Dyij dgzéf (D3w) - dggéf (D2ij) ‘
03><4 03><4

where 0Dy;;/0f, k =,1,2,3 are computed according to Eq.(37) by using oh;;/0f.



E. Computation of 0 (V)‘ (quﬁ)) af
Then, the derivative of V3, (qu (AthIn)) w.r.t. f is calculated by derivating Eq.(68) w.r.t. f:

8 03)(3 03><3
5= (9 (Va, (AT8:))) = 101
(3'f ( i dp 4 + Bif (V)\4:Gimp2) 033 ( :
where
0 22d”, 22dT. 92d7, o*dr. 9dy, 0%d,,
aif (v/\4;6imp2) = aaap; inj Ba@pjf dlzja Oaa} d3U 6&6; dl”’ 3016; ds” 60‘8; dZW}

Jda  Of da  Of da  Of oo Of da  Of Jda  Of

+ |: adpl Oda;; 8dp2 odyij 8dp1 dd3zij adp?) Odyqj adpl Od3; 6d§3 Oda;j (102)

where the term 82d »/0ad f depends on the specific platform orientation parametrization, and ddg;; /0 f is obtained as follows:

Odyi; Oh;;
=D k=123 103
af kij 8f ( )
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