
HAL Id: hal-04639378
https://hal.science/hal-04639378v1

Submitted on 9 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Directional Critical Load Index: a
Distance-to-Instability Metric for Continuum Robots

Federico Zaccaria, Edoardo Idà, Sébastien Briot

To cite this version:
Federico Zaccaria, Edoardo Idà, Sébastien Briot. Directional Critical Load Index: a Distance-to-
Instability Metric for Continuum Robots. IEEE Transactions on Robotics, In press. �hal-04639378�

https://hal.science/hal-04639378v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


TRANSACTION ON ROBOTICS, VOL. XX, NO. X, MONTH 2023 1

Directional Critical Load Index: a
Distance-to-Instability Metric for Continuum Robots

Federico Zaccaria1,2, Edoardo Idà1, and Sébastien Briot3

Abstract—Equilibrium stability assessment is a primary issue
in continuum robots (CRs). The possible stable-to-unstable tran-
sitions that CRs may admit complicate the use of CRs in tasks
where safety and human-robot interactions are mandatory. In
this context, metrics measuring the distance from instability are
essential but rarely developed. Existing metrics are frequently
based on the evaluation of matrices involving mixed units,
thus resulting in unit-dependent metrics. Moreover, the physical
meaning of existing metric is hard to interpretate. This paper
proposes to use the magnitude of a force that brings instability
to the CR equilibrium as a measure of the distance to instability.
The major advantages of this metric are the intrinsic physical
meaning, the practical interpretation of the results, and the well-
defined unit of the measurements. The proposed metric (named
directional critical load index) is based on the linearization of the
eigenvalues of the reduced Hessian matrix of the total potential
energy, which can be achieved regardless of the employed
discretization technique. Three different case studies illustrate
and demonstrate the main results of this paper.

Index Terms—Continuum Robots, Performance Index, Equi-
librium Stability.

I. INTRODUCTION

CONTINUUM robots (CRs) are a new class of manipu-
lators developed by researchers to improve the reduced

interaction capacities of rigid-link robots [1]. CRs are usually
made by the assembly of flexible components, and the motion
is obtained by controlled deformations of the constitutive
elements of the robot [2]. The intrinsic flexibility of CRs
enables the possibility to use them in many fields where
human-robot interaction is fundamental, such as minimally
invasive surgery [3] and collaborative tasks [4]. Still, also
inspection tasks benefit from the CRs ability to reach complex
shapes and to work in confined environments [5].

Continuum robotics has been a fast-growing research com-
munity in the last decade, and the increasing use of CRs
in different technological fields motivated researchers to pro-
pose various CRs designs. Serial-like designs [6] include
pneumatically-actuated [7], tendon-driven [8], magnetic [9] or
concentric tube [10] CRs (CTRs). Alternatively, parallel de-
signs were proposed to increase the load capacity of CRs [11]
and to obtain higher accuracy [12]. Parallel designs include
continuum parallel robots (CPRs) made by the assembly of
several passive slender links arranged in parallel [13], with
the motion obtained by the use of traditional motors placed
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at the CPRs base, or parallel continuum robots (PCRs) made
by several serial CRs mounted in parallel and interactively
displacing a shared end-effector (EE) [14].

A well-known limitation of serial and parallel CR designs
is their equilibrium stability and consequently its assessment:
the elastic structure of CRs enables possible stable-to-unstable
transitions, which ultimately depends on how the CR is loaded.
For instance, CTRs exhibit instabilities with significant impact
on the usability and controllability of the robot [15]. As the
tubes rotate and translate with respect to each other, elastic
potential energy accumulates until an unstable configuration
is met, and the energy is released with a dangerous snapping
[16]. To avoid instability, the tube curvature can be optimized
[17], but also design anisotropies [18] reduce the risk of snap-
ping. Alternatively, the work of [19] proposes a criterion that,
for given tube lengths, ensures the stable behaviour of the CTR
no matter the tubes’ base orientation is selected. In the same
fashion, CPR designs displayed stable to unstable transition
[20], which limits the CPR motion abilities [21]. It should be
mentioned that stability assessment is a relevant problem not
only in robotics: the Euler’s buckling load [22] established
the foundations for the elastic stability assessment of rigid
beam structures. Successive works focused on different aspects
of equilibrium stability, such as secondary bifurcations [23],
post-buckling instabilities [24], and investigation of stability
bifurcations [25].

A. Related works on Stability Analysis

Stability analysis of mechanical systems made of thin
beams is a challenging topic due to the severe nonlinearities
resulting from large deformations, and it is an active field
of research [26], [27]. Energetic considerations are necessary
to characterise equilibrium stability because stable CR con-
figurations are associated with a minimum of the total CR
potential energy [28], [29]. When considering the stability
of quasi-static systems, two prevalent approaches have been
identified in the literature: optimal control approaches [30]
and the analysis of the Hessian matrix of the CR energy
[29]. Stable-to-unstable transitions are due to the presence of
saddle points of the potential energy [29]. In dynamics, other
phenomena may appear, like the presence of limit cycles [31],
but their investigation is beyond the scope of our work.

When continuous (not discrete) CRs modelling approaches
are used (e.g. [13], [32]), equilibrium stability is frequently
studied using optimal control approaches (OC) [15]. These
approaches derive stability conditions through non-discretized
CR equations, and the resulting numerical test, based on the
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integration of differential equations, determines the robot’s
stability. OC approaches provide a rigorous approach mini-
mally affected by discretization issues at the cost of increased
mathematical complexity. State-of-the-art methods on CTRs
determine the equilibrium stability by the use of OC ap-
proaches [15], [30], and OC is also used in [20] to show
that CPRs admits stable-to-unstable transitions. Equilibrium
stability of planar CPRs also received significant attention,
and OC theory is preliminary used in [33], and on a family
of three-actuated-DoF planar CPRs in [34]. In [35], OC is
used for stability analysis of tendon-driven continuum robots.
Indeed, other robotic systems benefit from OC approaches
for the equilibrium stability assessment. Sagging cables of
cable-driven parallel robots are analogous to long and slender
flexible beams frequently modelled with Irvine’s model (a
particular subcase of the Cosserat beam’s model) and OC can
be used to assess the equilibrium stability of sagging cable-
driven parallel robot [36].

Alternatively, when the CRs configuration is described by
a finite number of variables (e.g. when using discretized
CRs equations), equilibrium stability can be characterized
by evaluating the positive definiteness of the Hessian matrix
of the potential energy [29]. In contrast to OC approaches,
stability assessment based on the Hessian matrix provides
intuitive mathematical derivation and simplicity, but the ac-
curacy depends on the number of discretization coordinates.
The approach proposed in [37] established a numerical method
(based on the reduced Hessian matrix evaluation) to assess
the CTRs stability, follow stable paths by continuation, and
determine bifurcations where instabilities occur. Equilibrium
stability assessment plays a crucial role in the workspace
evaluation of CRs [38], and unstable configurations define the
attainable workspace boundaries [21]. During the workspace
computation, the equilibrium stability of each configuration is
to be verified, and the positive definiteness of the reduced
Hessian matrix is a straightforward and effective strategy
that avoids differential equation integrations proper of OC
approaches. The same approach is used for different problems,
such as equilibrium stability assessment of underconstrained
cable-driven robots [39] (assuming cables as straight), or stable
equilibrium continuation of elastic beams [25].

While characterizing if a configuration is stable or not is
rather straightforward by using any of the methods mentioned
above, measuring a “distance to instability” is less obvious.
However, such stability metrics are essential in many cases,
such as when planning stable CRs trajectories [40], for defin-
ing controllers avoiding instability, or for designing robots
with a large stable workspace. However, stability metrics were
rarely investigated, and only a few works were proposed in
this direction. Based on the OC framework, a metric for the
equilibrium stability measurement of CTRs is given in [30].
Except for the two-tubes case, the proposed metric is based
on the use of a matrix determinant which cannot meaningfully
indicate the closeness to non-optimality in general [41]1.

1As an example, consider the identity matrix of dimension three, whose
determinant is unitary. However. multiplying the matrix by an arbitrarily small
constant (e.g. 10−5) drastically reduces the determinant, but still, the matrix
is full rank.

One may use the condition number as an alternative to the
matrix determinant to solve this issue. However, when the
matrix is made of non-homogeneous units, the condition num-
ber depends on the units selection, providing unit-dependent
performance measurements. The work of [42] proposed to
measure the equilibrium stability of CTRs from a different
perspective. S-curves, that describes how tubes base rotations
are transmitted to the CTR tip for fixed tubes lengths, are
used to describe the input-output relation of a two-tube CTR.
The observation that stable CTRs S-curve do not exhibit a
negative slope suggests using the S-curve slope as stability
metric. However, this approach is limited to the two-tubes
case. In the case of CPRs, a heuristic metric is proposed in [43]
within the OC framework. The proposed metric is based on
an equivalent integration length which indicates the so-called
conjugate points where instability should occur. The proposed
metric is heuristic, and its use is limited by the fact that there
is no straightforward proof that the mechanism reaches the
limit of stability when the conjugate points appears at the
abscissa zero. Additionally, the sensitivity of this metric to
small changes in other model parameters could be high, and
the metric should be used with caution [20]. Except for the
specific case of the two-tube CTRs, and the case where the
heuristic metric provided in [43] could be applied, the generic
distance-to-instability metrics are based on the computation
of determinant or condition number of matrices which may
suffer from the same issues. On the one hand, for a given
configuration of a robot under study, at a given ”physical
distance” from the limit of stability, changing the number of
variables for parameterizing any discretized model will lead to
different values of the matrix determinant or condition number.
On the other hand, those matrices mix terms with different
units with some terms that are dimensionless, whatever the
technique used for modeling the system. Using millimeters
instead of meters in such kind of matrices may lead to a
drastic change in any metrics based on the computation of
the determinant or condition number. Therefore, there is a
necessity to provide metrics that are not sensitive to such kind
of issues, and that would reflect more the physics rather than
numerical issues.

Indeed, according to [44], a good performance metric should
i) not involve mixed units of measurement, ii) admit an
analytical expression (to be used for optimization), iii) be
bounded in magnitude, and iv) attain a physical meaning to
enable effective comparison and quantification. However, ex-
cept for the two-tube CTR case in [42], none of the previously
discussed metrics ([30], [20]) satisfy these requirements. In
this paper, the focus is directed toward a methodology for the
measurement of CRs distance to instability. A criterion for said
measurement is introduced, which is based on the magnitude
of the force that brings instability to the CR equilibrium;
such criterion has a physical meaning and a well-defined unit
(Newton) intuitively, and it can be analytically approximated.

B. Contributions and Outline

The metric proposed in this paper, named the directional
critical load index (DCLI), estimates the magnitude of an
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external load that will cause a stable-to-unstable transition of
the CR when applied even quasi-statically in a given direction.
The derivation of the DCLI is based on the energy-based
modelling formalism, and its formulation can be applied to
CRs of different architectures, serial and parallel alike, as it
will be shown in the Case Studies in Sec. IV. The formulation
of DCLI does not depend on the selected discretization strat-
egy, and a finite-differences modelling technique [45] is used
for its efficiency in computing successive model-equations
derivatives. However, any discretized modelling approaches
could also be used. A major advantage of the DCLI is its well-
defined measurement unit (Newton) and its intuitive lower
and critical bound zero: these characteristics lead to practical
physical interpretations of the index results. Although it would
be beneficial to have an upper bound of DCLI, there may
exist no force in a given direction, namely a force of infinite
magnitude, to cause the CR instability, and this is further
confirmed in Sec. IV.

In this paper, DCLI is defined by considering only external
forces as a cause of the CR instability, as they cover many
practical cases (e.g. gravitational loads applied to the EE or
at a specific CR location, contacts forces). Moreover, the
derivation of DCLI assumes to know the application point
and direction of the force that causes instability. Although
this may seem a limiting factor, guidelines for selecting the
application point and direction of the force may come from the
practical scope of the CR. For instance, when the CR is used
for manipulation tasks, a possible source of instability may
be an additional EE load aligned with the gravity. Finally,
the DCLI is computed by investigating the influence of an
external force on the equilibrium stability when the motors are
fixed, considering a practical case where the robot is moved
by imposing motor values. In a straightforward manner, the
DCLI should be found solving iteratively a nonlinear system
of equations, whose solution is time-consuming to compute
and which even may admit no solution. Therefore, in pratice,
we propose to compute an approximate solution derived via a
linearization of the eigenvalues of the reduced Hessian matrix
of the potential energy. This solution, even if less accurate
that the one that may be found by the iterative procedure,
is fast to compute.Accordingly, an analytically computable
approximation of the external load for which instability occurs,
i.e. for which an eigenvalue vanishes, can be established. As
an additional benefit, the index derivation is based on alge-
braic computations only, and differential equations integration
typical of OC approaches are avoided [30], [43]. On the other
hand, as DCLI is found by a first-order Taylor approximation
of the true critical load, its value is only approximated. The
approximation, though is reduced when near an instability:
thus, the value of the DCLI can be practically exploited
in performance-driven design iterations, where a more rapid
metric may be favorable over a more accurate one.

The paper is structured as follows. Section II recalls the
energy-based modelling approach. Section III is devoted to
the stability metric derivation, and case studies are proposed
in Section IV to verify the capability of DCLI to measure
the distance to the instability and to quantify the closeness
of DCLI to the exact critical load. Finally, conclusions and

Fig. 1: Continuous parametrization of a flexible beam.

limitations are highlighted in Section V.

II. MODELLING

This section describes the energy-based modelling approach
of this paper. Sec. II-A presents the CRs architecture and
relevant variables. Then, Sec. II-B,II-C derive the deformation
energy and external load energy, respectively. The total CR
energy and constraints are discussed in Sec. II-D. Finally,
the discretization process is introduced to derive the CR
geometrico-static model in Sec. II-E.

A. Description of the Continuum Robot

According to [3], a CR is an actuable architecture whose
constitutive material forms curves with continuous tangent
vectors. In this work, a CR made by n flexible beams is
considered. For instance, n = 1 may represent an isolated
beam, while the case n > 1 includes CTRs [16] or CPRs
[11]. The CR is actuated by m motors, and the variables
associated with the motor actions are grouped into the vector
qa ∈ Rm. Then, a frame Fp is rigidly attached to a specific
CR location, assumed to be the EE reference point. The EE
pose is described by qp = [pp;αp] ∈ Rnc , where nc = 3 for
the planar case, nc ≥ 6 for the spatial case, pp describes the
EE position, and αp is a set of orientation parameters that
define the rotation matrix Rp.

Assuming the same number of controlled and actuated
variables, the vector qc ∈ Rm stacks the controlled variables.
Typically, qc is a subset of qp, and the vector qu collects the
remaining variables of qp not included in qc.

B. Deformation Energy

Let us consider a flexible beam as represented in Fig. 1: the
beam is assumed to be one of the n flexible components of
the CR, and the index i = 1, · · · , n denotes the i-th beam.
Being Li the length of the i-th beam, the coordinate si ∈
[0, Li] parameterizes the beam’s centerline. A frame Fi(si)
is attached at each beam’s cross-section and the pose of the
cross-section is defined by Ti(si) ∈ SE(3):

Ti(si) =

[
Ri(si) pi(si)

0 1

]
(1)

where Ri(si) ∈ SO(3),pi(si) ∈ R3 represent the rotation
matrix and the position of Fi(si) with respect to (w.r.t.) a
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fixed frame F0. To get the deformation energy of the beam,
let us first evaluate the strain vector ξi ∈ R6 at si:

pξi(si) = T−1
i (si)T

′
i(si) (2)

with (.)′ = d
ds , ξi = [ui,vi] and pξi ∈ se(3) is defined as:

pξi(si) =

[
pui(si) vi(si)
0 0

]
(3)

where pui ∈ so(3) is the skew-symmetric matrix obtained
by ui. Moreover, ui ∈ R3 represents bending and torsion
of the beam, and vi ∈ R3 describes shear and extensibility.
Assuming linear isotropic elasticity, the deformation energy of
the beam is given by [46]:

Vei =
1

2

∫ Li

0

(ξi(si)− ξ∗i (si))
T
Ki (ξi(si)− ξ∗i (si)) ds (4)

where (.)∗ denotes the undeformed strain configuration, and
Ki ∈ R6×6 is the material stiffness matrix. Frequently,
and if the links cross-section has circular simmetry, Ki =
diag(EIx, EIy, GIz, GA,GA,EA) where E is the Young’s
modulus, G is the shear modulus, Ix, Iy, Iz are the principal
inertia moments of the cross-section, and A is the cross-section
area.

C. External Loads Energy

Let us compute the potential energy due to external conser-
vative loads independent of the robot system and variables2.
First, the potential energy due to a distributed force fdi applied
at the i-th beam is given by:

Vdi = −
∫ Li

0

fdi(si)
Tpi(si)ds (5)

Then, concentrated loads3 are considered. The contribution of
a concentrated force f applied at papp is:

Vf = −fTpapp (6)

where papp is the application point of f . For instance, when
the force is applied to the EE, papp = pp while, if f is applied
at the coordinate sapp of the i-th beam, papp = pi(sapp).

For the following derivation, it is convenient to represent
f as its magnitude f and its direction df [47]. Thus, Eq. (6)
becomes:

Vf = −fTpapp = −fdT
f papp = −fh (7)

with h = dT
f papp.

2The same reasoning could be applied if specific conservative loads
explicitly depending on the robot variables are considered, such as linear
elastic springs attached to the frame and to the robot links

3Three-dimensional pure moments, which are non-conservative, are as-
sumed not to appear.

Fig. 2: Graphical illustration of the geometrico-static model
variables.

D. Continuum Robot Energy and Constraints

The CR total potential energy is obtained as the sum of the
deformation energy and external load contributions, that is:

Vtot =

n∑
i=1

(Vei + Vdi) + Vf (8)

Geometric constraints frequently have to be considered in
CRs. For instance, the closure-loop geometric constraints of
CPRs involve leg and rigid-platform variables [29]. In serial
CRs, when a set of independent variables qp is used to
represent the EE position, geometric constraints are introduced
as well. Additionally, when using quaternions to represent ori-
entations, unitary constraints must be enforced [25]. Without
loss of generality, the constraints are represented by:

Φ (qa,qp, ξ1(s1), · · · , ξn(sn)) = 0 (9)

where a vector Φ ∈ RnΦ is introduced to stack all the
constraints in homogeneous form.

E. Discretization and Geometrico-Static Modelling

CRs equilibrium configurations are static
configurations corresponding to critical points of
Vtot(qa,qp, ξ1(s1), · · · , ξn(sn)) subject to the constraints
imposed by Φ(qa,qp, ξ1(s1), · · · , ξn(sn)) = 0 [48]. The
use of shooting-like approaches frequently solves continuous
models [13], providing computational performances [43] and
widespread applicability [49]. On the other side, discretization
of the potential energy equations through a finite number
of variables brings simple but effective CRs analysis, in
particular when dealing with equilibrium stability assessment.
Discretization techniques include piecewise constant curvature
[50], finite differences [45], piecewise constant strains [51],
piecewise linear strains [52], assumed strain modes [53],
and the interested reader is addressed to specialized review
papers [48]. Moreover, discretized CR equations offer the
possibility to verify the equilibrium stability by checking the
positive definiteness of the reduced Hessian matrix of the
total potential energy. For these reasons, this paper is based
on the use on discretization techniques.

After the discretization process, Vtot (defined in Eq. (8))
is discretized with a finite set of variables qei ∈ RNfi , with
Nfi being the number of discretization variables. Then, being
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Ne =
∑n

i=1 Nfi, the vector qe = [qe1, · · · ,qen] ∈ RNe

stacks all the discretization variables. For later convenience,
the vectors qd = [qu,qe], and x = [qd,qc] are introduced.
Figure 2 proposes a summary of the variables to ease the
reader comprehension. The CRs configuration is thus defined
by qa,x: the total potential energy and the constraints become
a discrete function of qa,x, that is:

Vtot = Vtot(qa,x); Φ = Φ(qa,x) (10)

In the static case and for a fixed value of qa, feasible CRs
configurations are determined by the minimum of the total
potential energy Vtot [28], [29]. However, constraints Φ(qa,x)
should be enforced, and first-order Lagrange conditions deter-
mine critical points of Vtot [54]. Assuming ∇xΦ full rank, x
is associated with a critical point of Vtot if there exist a set of
Lagrange multipliers λ ∈ RnΦ such as [54]:{

∇xL = 0

∇λL = 0
(11)

where L is the Lagrangian function defined as:

L = Vtot +ΦTλ (12)

Equations (11) form the geometrico-static model of a CR, and
it is an undetermined set of nc +Ne + nΦ equations in m+
nc + Ne + nΦ unknowns. By fixing m variables to desired
values, a square system is obtained. In particular, the forward
geometrico-static (FGSP) consists in finding x and λ for given
qa and external loads:

F =


∇xVtot +∇xΦ

Tλ = 0

Φ = 0

qa − qd
a = 0

(13)

with qd
a desired motor values. Equation (13) forms a square

system of m + nc + Ne + nΦ nonlinear equations in the
unknowns y = [qa,x,λ] that can be solved by using root-
finding techniques, such as the Newton method. The Jacobian
matrix J = ∂F/∂y, that can be supplied to the numerical
solver of Eq.(13) to speed up the computation, is structured
as follows:

J =
∂F

∂y
=

A1 U1 P1 GT

A2 U2 P2 0
Im 0 0 0

 (14)

where Im is the identity matrix of dimension m, and:

• A1 = ∇qa
(∇xL) , U1 = ∇qd

(∇xL)
• P1 = ∇qc

(∇xL) , G = (∇λ (∇xL))T = ∇xΦ
• A2 = ∇qa

Φ , U2 = ∇qd
Φ , P2 = ∇qc

Φ

All the terms included in J can be computed analytically from
F, and their expressions depend on the specific discretization
technique employed (the expressions for a finite-difference
modelling approach are reported in [55]). As shown in [29],
matrix J contains the necessary information to investigate
singularity conditions and to assess the CR equilibrium stabil-

ity. In particular, when a Type-2 singularity4 is encountered,
matrix J becomes singular.

III. DIRECTIONAL CRITICAL LOAD INDEX

This section derives the DCLI focus of this paper. First,
equilibrium stability conditions are derived in Sec. III-A.
Then, Sec. III-B proposes a numerical approach to compute
the exact load value that causes instability, and it discusses
its limitations. Sec. III-C presents the distance-to-instability
index introduced in this paper. Then, the index computation is
discussed in Sec. III-D.

A. Equilibrium Stability Assessment
Solutions of Eq. (13) are CRs equilibrium configurations

that correspond to critical points of Vtot. Second-order con-
ditions establish sufficient conditions for a critical point to
be a local minimizer of Vtot [54] and, consequently, a stable
equilibrium configuration.

To assess equilibrium stability, the Hessian matrix of L, H,
is computed as follows:

H =
[
U1 P1

]
=

∂2L
∂x∂x

; H ∈ R(nc+Ne)×(nc+Ne) (15)

Then, the matrix Z spanning the right nullspace of G, is
defined as:

GZ = 0; Z ∈ R(Ne+nc)×nz (16)

with nz = Ne+nc−nΦ. According to second-order Lagrange
conditions, a robot equilibrium configuration is stable if the
reduced Hessian matrix Hr is positive definite [54], where Hr

is:
Hr = ZTHZ; Hr ∈ Rnz×nz (17)

In practice, equilibrium stability is assessed by verifying that
all eigenvalues of Hr are strictly positive. Being σk the k-th
eigenvalue of Hr, the configuration is stable if the minimum
eigenvalue σmin is positive:

σmin = min
k

(σk) > 0 (18)

B. Exact Directional Critical Load Computation
As previously mentioned, this paper proposes to measure the

distance from instability by investigating the influence of an
external load f on the equilibrium stability of a configuration
obtained by the solution of Eq. (13), and thus for fixed motor
values5. The force direction df and the application point papp

4As detailed in [29]: (i) Type 1 singularities are singularities of the inverse
geometrico-static problem (IGSP) and are limits of the end-effector space: a
non-null motion of the actuators leads to no motion of the end-effector; (ii)
Type 2 singularities are singularities of the forward geometrico-static problem
(FGSP) and are limits of the active-joint space: a non-null motion of the end-
effector leads to no motion of the actuators. Moreover, it has also been proven
that they are the zones delimiting the stable configuration domain, i.e. that
they are the limits of stability. In such a configuration, the stiffness of the
robot is null along at least one direction.

5It is possible also to measure the influence of an external load on the
equilibrium stability of configurations obtained by the solution of the inverse
geometrico-static problem. However, there is little practical interest in the
investigation of the case where the values of some controlled variables are
assigned: maintaining fixed the value of controlled variables when varying f in
practical cases is not trivial as it requires complex force-estimation techniques
[56]. Instead, it is more frequent for practical applications the case of assigned
motor values. Thus, only the FGSP solutions are considered in the following.
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Fig. 3: Illustration of when solving σmin = 0 with a root-
finding technique may not be effective.

are considered as known and fixed (see Eq. (7)), and the goal
is to compute the force magnitude f that causes instability
in a given direction. The selection of df ,papp is guided by
the scope of the robot in order to consider possible scenarios
where an external load is applied to the robot (e.g. an EE load
during a pick and place operation, or a possible load on the
CPR leg during a contact).

As a distance-to-instability metric, it is desirable to compute
the exact critical load that causes instability: this could be
done by varying f and solving the FGSP until a value of
f that causes instability is met, that is, the value of f for
which σmin = 0. For the scope, a numerical approach may
be devised, aiming at an efficient computation of fCRIT ,
based on a nonlinear root-finding technique (e.g. the Newton
method): a solution to Eq. (18), where f is the unknown and
σmin = 0, is sought. Unfortunately though, this approach
requires solving the FGSP in Eq. (13) at each procedure
and, although this approach seems to be more efficient, it
may be ineffective. Let us consider for simplicity a Newton
method for the solution of σmin = 0. Starting from f0, the
force update may select a new value of fnew that corresponds
to unstable regions where no FGSP solution is numerically
reachable (see Fig. 3). As illustrated in [29], passing from
positive to negative σmin, there exists a value of f for which
σmin = 0, that is, fCRIT . This value of f is a stable-to-
unstable transition that may correspond to a Type-2 singularity
[29], also defining a limit of the FGSP solvability for the
same assembly mode of the robot under consideration. In fact,
if a type-2 singularity is crossed, the correct solution to the
FGSP would be different than the one under consideration,
leading to completely different stability performances, and
ultimately wrongly assessing the value of fCRIT for the
considered assembly mode and equilibrium configuration. In
order to avoid these issues, approaches that avoid overpassing
the singular configuration like [57], [58] could be used.

In the present work, we prefer to use a different numerical
approach for the computation of fCRIT , less time efficient
but simpler to implement, that employs a constant and limited
update of f . This approach is illustrated in Fig. 4. Starting
from f = 0, the value of f is gradually incremented with a
fixed increment δf until instability occurs. First, the FGSP
is solved with a given initial guess y0 and f0 = 0 to get

the configuration y. Then, Hr is built from the output of the
FGSP, and σmin is computed. If σmin ̸= 0, f0 is incremented
of a user-defined quantity δf , that is:

fnew = f0 + δf (19)

After the force update, the algorithm restarts by repeating the
FGSP solution, and an initial guess for the robot configuration
is required. The previous FGSP solution may be used as an
initial guess, but it is convenient to update better y accordingly
to fnew. In this way, at the next iteration, the convergence of
the solver is faster since the given initial guess is in accordance
with the new value of f . For the scope, the tangent vector tf
is defined as:

tf =
∂y

∂f
/

∥∥∥∥∂y∂f
∥∥∥∥ (20)

where ∂y
∂f is obtained by using Eq. (30). Then, tf is used to

update y accordingly to δf :

ynew = y + tfδf (21)

The values ynew, fnew are used as y0, f0 to solve again the
FGSP. The algorithm is repeated until a value of f is found so
that σmin = 0, or the maximum number of allowed iterations
is reached.

The proposed numerical approach is iterative and, depend-
ing on the choice of δf , several FGSP solutions are required
with a consequent increase in the overall computational cost
for the identification of fCRIT . Moreover, using a constant
and small update δf poses complexities in the selection of
δf . Since fCRIT is unknown, δf should be selected as small
to obtain accuracy in the computation of fCRIT . However,
small values of δf considerably increases the computational
cost of the algorithm, and a fast (and reliable) estimation of
fCRIT becomes desirable. Thus, the next Section proposes a
computationally-efficient approximation of fCRIT to be used
as distance-to-instability index.

C. Distance to Instability Index

The scope of this section is to provide an index approxi-
mating the exact value of fCRIT with reduced computational
effort. To do this, let us consider Eq. (18). The value of σk

for a given f = f⋆
k , namely σ⋆

k(f
⋆
k ), can be approximated by

first-order Taylor’s expansion of σk around a generic f :

σ⋆
k(f

⋆
k ) ≃ σk(f) + Sk(f)(f

⋆
k − f) (22)

where Sk can be obtained as [59]:

Sk(f) =
dσk

df
= νk(f)

T dHr(f)

df
νk(f) (23)

the proof of Eq.(23) is given in Appendix B. The term
νk is the normalized eigenvector associated with the k-th
eigenvalue of Hr, namely σk. Please note the dependence
of σk, Sk,νk on f : these values are computed at the current
robot configurations and σ∗

k is estimated by using Eq.(22). To
estimate the force magnitude for which instability occurs, let
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Fig. 4: Schematics of the numerical approach for the computation of the exact critical load.

us compute the value of f⋆
k for which σ⋆

k = 0. This is obtained
by fixing σ⋆

k = 0 in Eq. (22), and rearranging its terms as:

f⋆
k = f +

(
−σk(f)

Sk(f)

)
(24)

f⋆
k represents a value of f for which, approximately, at least

one eigenvalue of Hr is zero, and thus the matrix is not
positive definite anymore. The quantity σk/Sk estimates the
additional load magnitude to be applied to cause σk = 0, while
Sk provides information on the direction of additional force
to be applied: as σk is always positive for stable equilibrium,
σk/Sk could be either positive or negative. Negative values of
Sk represent additional forces oriented as df , while positive
values of Sk are associated with an additional load oriented
opposite to df . By using Eq. (24) for each k, nz different val-
ues of f⋆

k are obtained. To measure the distance to instability,
the smallest additional magnitude should be used as metric. It
seems legitimate to verify only the value of σk/Sk associated
with σmin but, depending on the value of Sk, any eigenvalue
could be the one associated with the smaller value of f⋆

k , and
all the nz eigenvalues must be checked. Moreover, Sk admits
both positive and negative values, but only loads oriented as
df are of interest. Thus, the directional critical load index
(DCLI) is defined as follows:

DCLI(f) = min
∀Sk<0

(
−σk(f)

Sk(f)

)
(25)

DCLI represents the smallest additional force magnitude of f
with respect to nominal external actions, i.e. the robot weight,
that causes at least a zero eigenvalue and, consequently, a limit
of the stable equilibrium6. DCLI has a well-defined unit (New-
ton), and it can be used to measure and physically understand
the distance from the instability, where larger values indicate
greater distance. Moreover, it should be stressed that DCLI
is directional since the direction df is known and fixed, and
DCLI represents the additional load applied at papp in a given
direction df that causes instability.

D. Index Computation

This Section discusses how to compute the DCLI in prac-
tice, as several steps are necessary, and differentiating Hr is

6In the case no Sk < 0 exists, DCLI is set as equal to ∞.

Algorithm 1: DCLI computation.
1 [y,J] = Solve Geometrico-Static Problem;
2 Extract G,H from J ;
3 Z = NullspaceComputation(G);
4 Compute Hr = ZTHZ;
5 [σ,V] = Eigenvalue decomposition of Hr;
6 if Equilibrium is Stable then
7 Compute C and ∂y

∂f
= −J−1C;

8 Compute ∂H
∂f

, ∂Z
∂f

, ∂H
r

∂f
;

9 for k = 1: nz do
10 σk = σ(k), νk = V(:, k);
11 Compute Sk = νT

k
∂Hr

∂f
νk;

12 f⋆(k) = σk
Sk

13 end
14 DCLI = mink(f

⋆)
15 else
16 DCLI = 0 ;
17 end

not straightforward. The required steps to calculate the DCLI
are schematically summarized in Alg. 1, and the detailed
methodology for computing its terms is shown in the follow-
ing. For a given external load, the solution of Eq. (13) gives
the CR configuration. However, the resulting configuration
depends on the value of f that is, y = y(f). Additionally,
after a solution to Eq. (13) is found, matrix J is obtained
from Eq. (14), and G and H, are extracted as blocks of J
without further computations. Then, Z can be computed from
G, and Hr is obtained from Eq. (17). It is noteworthy that
even though there is an infinite possibility of computing Z,
a specific one is required for properly computing DCLI, as it
will detailed at the end of this Section. To check the positive
definiteness of Hr, an eigenvalue decomposition is performed
to get i) the vector σ collecting nz eigenvalues, and ii) the
matrix V whose columns are nz eigenvector. Suppose the
equilibrium is stable (verified by Eq. (18)): in that case, the
index computation continues. If the configuration is unstable,
the DCLI is not defined.

Then, Eq. (23) requires computing dHr/df : a finite-
difference approximation may be used as a straightforward
solution (see [54], Chapter 8, Section 1), but an analytical
formulation for dHr/df can also be derived when using
discretized robot model equations, as shown in the following.
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Employing a finite-difference approximation for dHr/df is
simple but time-consuming, and, depending on the selected
finite-difference approximation strategy, multiple FGSP solu-
tions are required at the cost of higher computational time.
Instead, an analytical formulation of dHr/df is preferred
when DCLI has to be computed several times, such as for
workspace characterization. To obtain an analytical formu-
lation of dHr/df , the use of the product derivative rule on
Eq. (17) results in:

dHr

df
=

dZT

df
HZ+ ZT dH

df
Z+ ZTH

dZ

df
(26)

The differentiation of H is addressed here first, and the com-
putation of dZ/df is addressed later. Matrix H is computed
after the solution of Eq. (13) and, in general, H depends on
y(f) and f , that is:

H = H(y(f), f) (27)

Consequently, the total derivative of H w.r.t. f is obtained as
the sum of two terms:

dH

df
=

∂H

∂f
+

n+nc+m+nϕ∑
i=1

∂H

∂yi

∂yi
∂f

(28)

Since L = Vtot +ΦTλ and Vf only explicitly depends on f
(see Eq. (7)), the first term of Eq. (28) simplifies as follows:

∂H

∂f
=

∂

∂f

(
∂2L
∂x∂x

)
= −

(
∂2h

∂x∂x

)
(29)

where h = dT
f papp is previously defined in Eq. (7). In-

stead, the term ∂H/∂yi can be computed analytically, and
its expression depends on the specific discretization technique
employed. Due to its lengthy expression, its formulation in the
case of the finite-difference modelling approach is not reported
in this paper for brevity, but the interested reader in addressed
to a detailed technical report [60].

To compute the second term of Eq. (28), it is necessary to
evaluate ∂y/∂f , and the implicit functions theorem is used for
the scope. Let us consider Eq. (13): F is a set of equations
in the unknowns y and dependent on the parameter f . F is
assumed to be a set of continuous and differentiable functions
w.r.t. y, f . Given a pair (y, f) that satisfies F(y, f) = 0,
and assuming ∂F/∂y full rank, there exists a unique function
r : R → Rn+nc+m+nϕ such as y = r(f). Moreover, the
partial derivative of r w.r.t. f (and thus ∂y/∂f ) is given by:

∂r

∂f
=

∂y

∂f
= −

(
∂F

∂y

)−1
∂F

∂f
= −J−1C (30)

where J is defined in Eq. (14), and C = ∂F/∂f = [−∇xh;0].
Let us now consider Z: a specific computation methodology

of Z is proposed, which allows for a streamlined derivation
of ∂Z/∂f , that is ultimately needed in Eq. (26). Nullspace
bases are frequently computed using numerical techniques,
such as singular value decomposition. The resulting nullspace
basis is orthonormal, that is, ZTZ = I and Z is dense.
However, since Z is obtained numerically, this approach leads
to a cumbersome derivation of ∂Z/∂f , which depends on the
specific numerical algorithm employed, and which may not

ensure continuity of Z with respect to variations of f [61].
On the other side, fundamental nullspace basis [62] offers a
non-orthonormal alternative that can be computed analytically.
Thus, the analytical formulation of Z enables the possibility
to calculate ∂Z/∂f more easily.

To get a fundamental basis of Z, it is necessary to per-
mute the columns of G to obtain Gp = GP, where P ∈
R(m+nc)×(m+nc) is a permutation matrix. The scope of P is
to get a full rank and well-conditioned matrix Gd ∈ Rnϕ×nϕ

from:

Gp =
[
Gd Gu

]
(31)

with Gu ∈ Rnϕ×nz . Matrix P can be found by inspecting G
and identifying a set of nϕ linearly independent columns that
form a well-conditioned Gd. However, when the dimension
of G increases, no trivial full-rank partition is available in
general. As stated in [63], any choice of P ensuring Gd full-
rank is adequate and, by randomly scanning the columns of
G until a well-conditioned partition is found, matrix P can
be computed. However, the computational cost of this strategy
drastically increases with nϕ. For instance, when using finite-
difference techniques for the geometrico-static modelling, the
quaternion-unitarity constraints must be enforced for each
beam’s cross-section, leading to a large value of nϕ. To
overcome this issue, a heuristic approach is proposed in Ap-
pendix A for the computation of P. However, other approaches
may be equivalently proposed for the scope.

As long as Gd is full rank, a fundamental nullspace basis
of Gp is obtained as:

Zp =

[
Zd

Inz

]
(32)

with Zd = −G−1
d Gu. Finally, Z is obtained by permutating

the columns of Zp as done for the rows of Gp, that is Z =
PZp.

To analytically calculate dZ/df , the first step requires to
compute dG/df . Since G depends on y(f) and not on f
explicitly, dG/df is expressed as follows:

dG

df
=

m+nc+Ne+nϕ∑
i=1

∂G

∂yi

∂yi
∂f

(33)

The expression of ∂G/∂yi depends on the specific modelling
strategy, and its are reported in [60] for the interested reader.
Then the derivative of Gd,Gu w.r.t. f are obtained by using
P as follows:

dGp

df
=

dG

df
P =

[
dGd

df
,
dGu

df

]
(34)

The term dZp/df is obtained by deriving Eq. (32) w.r.t. f :

dZp

df
= −

[
dG−1

d

df Gu +G−1
d

dGu

df

0

]
(35)

where dG−1
d /df = G−1

d (dGd/df)G
−1
d . Finally, dZ/df is

recovered as dZ/df = PdZp/df .
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(a) (b)

(c) (d)

Fig. 5: Buckling of straight beams: (a) clamped beam with free distal section, and (b) clamped beam with pinned distal section.
Then, the values of the DCLI (dotted line) and σmin (continuous line) are displayed by varying f for the scenario (a),(b)
in (c),(d), respectively. The decreasing trend of DCLI (f) when approaching the critical load confirms the correctness of the
distance-to-instability measurement.

IV. CASE STUDIES

This Section proposes three different case studies: initially
straight beams and their elastic buckling (Sec. IV-A), a two-
tubes CTR with four controlled DoF (Sec. IV-B), and a spatial
CPR with two controlled DoF (Sec. IV-C). These case studies
are selected to illustrate how the proposed formulation of the
DCLI can be applied to different scenarios (passive elements,
serial CRs, and parallel CRs). Finite differences [29] are
used as discretization techniques to obtain the geometrico-
static model of Eq. (13) for each case study. However, any
other discretization technique can be used. Even though finite
differences do not offer the best performances in terms of
computational time [64], the analytical formulation of Eq. (13)
considerably simplifies the computation of Equations (28)
and (33). The details on the model’s implementation and
the explicit derivation of the equations are not reported in
this section for brevity sake. However, detailed equations are
available on the technical report [60] associated with this
paper.

A. Buckling of beams

This Section proposes the analysis of initially straight beam
instability and the comparison of the DCLI with Euler’s critical
load for the beam buckling to verify the correctness of the
equilibrium stability prediction and the DCLI. For each beam,
DCLI has been computed by performing a finite-differences
discretization with Ne = 200. As shown in [45], a planar
beam Ne ≥ 50 ensures sufficient accuracy in the geometrico-
static problem solution. The early work of Euler [22] defined
analytical conditions for the buckling of ideal elastic beams
subjected to axial loads. For each considered beam, L = 1 m,
the cross-section is circular with diameter 2 mm, and E =
210 GPa.

First, let us consider a clamped-free beam as illustrated
in Fig. 5a: the beam is clamped at the proximal section,
initially straight, and parallel to the fixed-frame x axis. Euler’s
buckling formula provides the value of the compressive axial
force magnitude f to be applied at the tip of the beam to
cause elastic instability. Under the assumptions that shear and
extensibility are negligible, the Euler’s critical load fEUL for
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a clamped-free beam can be computed as:

fEUL =
EIπ2

(2L)2
(36)

for the selected beams parameters, fEUL results in 0.407 N.
When no load is applied at the beam, DCLI (0) = 0.407 N.
DCLI (0) is in accordance with fEUL, and the difference
between DCLI (0) and fEUL is negligible up to four digits.

Then, the exact critical load fCRIT is computed by using the
numerical algorithm proposed in Sec. III-B. The force applied
at the beam tip is gradually increased with a δf = 0.001 N,
and, for each step, σmin and DCLI (f) are computed. The
results of this computation are reported in Fig. 5c. The exact
critical load value results in fCRIT = 0.407 N, obtained in
407 steps (and thus 407 geometrico-static problem solutions).
In particular, σmin becomes negative and the equilibrium
unstable when the Euler’s load is reached, confirming the
correctness of fCRIT . Moreover, for each value of f , the
sum DCLI(f) + f ≃ fEUL is constant7: as the beam remains
straight and undeformed at each step, the value of DCLI +f
truly represents the critical load. Similar results were obtained
in [43], where the index based on an equivalent integration
length gives the exact beam length for which instability should
occur for a given load.

Then, let us consider the beam of Fig. 5b: the beam is
clamped at the proximal section, initially straight, parallel to
the fixed-frame x axis, and pinned at the distal section. In this
case, the Euler’s critical load is obtained as:

fEUL =
EIπ2

(0.699L)2
(37)

and, with the selected beams parameters, fEUL = 3.322 N and
DCLI = 3.322 N. The difference between DCLI and fEUL is
negligible up to four digits. The exact critical load fCRIT is
computed with the numerical algorithm proposed of Sec. III-B:
the value of fCRIT = 3.322 N is obtained with 3322 steps,
with δf = 0.001 N. To confirm the correctness of fCRIT , it is
possible to note that σmin of Fig. 5d becomes negative when
the Euler’s load is reached. As before, DCLI tends toward zero
when σmin decreases, and DCLI(f)+f is constant and equal
to fEUL.

B. A two tubes CTR with four controlled DoF

This Section introduces the application of DCLI for a two-
tube CTR, a well-known class of CRs where instability occurs
[19]. The two-tube case is a simple but effective benchmark
to test the DCLI since an analytical condition exists for the
stability assessment, and is therefore used to showcase that our
index performs at least as state-of-the-art ones. A CTR made
by n = 2 concentric tubes is considered (Fig. 6a). A fixed
frame F0 is attached to the robot base, the CTR centerline is
parametrized with the coordinate s, and the index i represents
the i-th tube, where i = 1 is the inner tube, and i = 2
is the outer tube. Tubes are of length Li (measured from

7As in any discretization process, the number of discretization coordinates
influences the accuracy of the results. With the selected number of discretiza-
tion coordinates (Ne = 200), the obtained numerical errors are lower that
10−4, thus negligible for the scope of DCLI

s = 0) and actuated at s = −βi. The tubes are actuated
in translation and rotation: θi0 is the rotation of the tube’s
base, and βi is called transmission length. The CTR energy
is obtained by considering shear-less and inextensible tubes,
and the discretization process is performed by using finite
differences, with 50 points for CTR sections from 0 to L2

and from L2 to L1.
As previously mentioned, the two-tube CTR is a well-

known situation where analytical conditions exist for the
global stability of the CTR. Assuming planar precurvature only
(u∗

i = [u∗
ix, 0, 0]), and no external load applied to the robot, the

CTR equilibrium is globally stable if the following inequality
is verified [19]:

ζγ =
cot(γ)
√
γ

< ζlim (38)

where ζγ is computed by the knowledge of γ, defined as
follows:

γ = L2
2u

∗
1xu

∗
2x

k1bk2b(k1t + k2t)

k1tk2t(k1b + k2b)
(39)

The term kbi is the flexural stiffness, and kti is the torsional
stiffness of the i-th tube while the term ζlim of Eq. (38)
is equal to zero in the case β1 and β2 are assumed to
be zero. Equation (38) determines conditions for the global
stability of two-tube CTRs, and S-curves were introduced
to practically visualize the CTR motion abilities. S-curves
describe the relationship between the base orientations and
the resulting CTR tip orientation, providing an intuitive repre-
sentation of the robot motion abilities [19]. First, let us define
ϕ0 = (θ10 − θ20) as the rotation offset of the tubes at the
base, while ϕL = (θ1(L2) − θ2(L2)) is the rotation offset of
the tubes at L2. Then, S-curves are built by fixing θ20 = 0,
repeatedly solving the FGSP with ϕ0 ∈ [0, 2π] and measuring
ϕL for each ϕ0.

First, the correctness of equilibrium stability prediction is
verified by computing S-curves with no load applied to the
robot (f = 0). The base orientation of the outer tube is fixed
as zero, and the inner tube is rotated at the base counterwise
by a small step. At each rotation, the FGSP is solved with
given base angles (thus fixed ϕ0) and the previous solution
is used as initial guess. Then, the orientation of both tubes
at the CTR distal section is measured to compute ϕL: as a
consequence of the torsion over the tubes, these values differ
for the orientations at the base.

Tubes parameters are selected as E = 80 GPa, u∗
1x =

1/0.50 m−1, u∗
2x = 1/0.70 m−1. The first tube

has inner diameter d1inn =1.0 mm, and outer diameter
d1out =1.5 mm, while the second tube has d2inn =1.5 mm,
and d2out = 2.0 mm. Computing the S-curves for L2 = 0.4 m
ensures globally stable equilibrium since ζγ = −0.164 < 0.
This is confirmed by the always positive value of σmin, as
shown in Fig. 7a. Instead, the S-curves for L2 = 0.6m violates
the inequality of Eq. (38) (ζγ = +0.242 > 0), and σmin goes
toward negative values (Fig. 7b). Moreover, the observation
that S-curves of stable CTRs are monotonic (the slope of the
curve is always positive) motivated [42] to consider the slope
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(a) (b)

Fig. 6: a two-tube CTR. (a) relevant dimensions and variables, (b) a cross-section of the tubes to highlight the torsion angles.

(a) (b) (c)

Fig. 7: S-curves of a two-tube CTR. σmin is depicted over a globally stable S-curve, and on a unstable case (b). Instead, for
the same unstable case, (c) displays the value of the stability index of [42].

of S-curves as a stability metric. In particular, the stability
metric based on the slope SL is defined as:

SL =
π

2
− atan

(
∂ϕL

∂ϕ0

)
(40)

The index SL has a well-defined unit (radians), SL > 0,
as long as the equilibrium is stable and larger values of SL
indicate greater distance from instability. Fig. 7c illustrates the
values of SL for the case L2 = 0.6 m, and these values will
be later used to verify the correctness of DCLI w.r.t. state-of-
the-art indices, such as SL8

To compute DCLI, the influence of a tip load on the
equilibrium stability is considered. The agreement of DCLI
with the state-of-the-art is checked by selecting the unstable
case L2 = 0.6 m, and computing the S-curves highlighting
DCLI over different directions df and no external load applied
on the CTR. Figure 8 illustrates six S-curves at the value of
DCLI (0): for each curve, df is aligned to one of the fixed-
frame axes F0. with positive and negative directions.

8Unstable solutions are not plotted in Fig. 7c, as well as in the following
ones, as specialized numerical methods are needed to correctly track them,
and this is not the aim of the current paper.

By looking at Fig.8, it is possible to note that DCLI
approaches zero when instability is reached9. This trend is in
accordance with the values of SL (Fig. 7c). This comparison
confirms the coherence of DCLI w.r.t. state-of-the-art results.

Then, the estimation provided by DCLI is compared with
the exact value of fCRIT by computing the absolute error
eabs = |fCRIT − DCLI|. For instance, let us consider df =
[1, 0, 0]e, and the corresponding values of DCLI over the S-
curve of Fig. 8a. For each point of the S-curve, fCRIT is
computed with δf = +0.001 N, and a maximum number
of steps equal to 2000, thus exploring forces up to 2 N.
The resulting value of eabs is displayed in Fig. 9a, and two
scenarios can be identified. In a first scenario, there exist no
fCRIT between [0,2] N: this happens between ϕ0 ∈ [0, 140]◦,
and in the upper branch of the S-curve. As an example,
Fig. 9b reports the trend of σmin when using the numerical
algorithm of Sec. III-B for ϕ0 = 60◦: the value of σmin

varies when changing f but it never goes to negative values.

9It should be considered that DCLI approaches zero in the proximity of a
singularity and close to the instability. As DCLI is obtained by a linearization
of the reduced Hessian matrix eigenvalues, small values of DCLI are obtained
and this means that a small perturbation is required to cause instability.
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(a) df = +[1, 0, 0], positive x (b) df = −[1, 0, 0], negative x (c) df = +[0, 1, 0], positive y

(d) df = −[0, 1, 0], negative y (e) df = +[0, 0, 1], positive z (f) df = −[0, 0, 1], negative z

Fig. 8: For the same S-curve, different values of DCLI (0) are obtained by changing df .

As DCLI is obtained by linearization, it displays finite but
high values. This means that the configurations is significantly
far from the instability. Instead, between ϕ0 ∈ [140, 190]◦,
there exist values of fCRIT ∈ [0, 2] N: in this region, when
increasing f , the value of σmin reaches negative values, as
illustrated in Fig. 9c for ϕ0 = 160◦. Thus, when there exists
a load fCRIT that causes instability, DCLI displays reduced
values and, when approaching the stability limits on the S-
curve, the difference between DCLI and fCRIT reduces: this
is confirmed by the value of eabs which decreases when
approaching the instability.

Instead, when DCLI is low, it does not necessarily mean that
fCRIT is low. This is evident in the upper part of Fig. 9a where
no fCRIT ∈ [0, 2] N exists, but DCLI is low in the proximity
of the instability. However, it should be considered that the
S-curve of Fig. 8 (and thus the values of DCLI) are computed
with f = 0, and the instability phenomenon is happening as
a cause of the torsional energy accumulated in the CTR, as
described in [15]. When varying f during the computation of
fCRIT , the shape of the S-curves varies consequently, and it
may happen that previously unreachable values of ϕ0 becomes
accessible: the application of the external load may increase
the stability of some configurations.

Then, the influence of the tip force direction df on the val-
ues of DCLI is investigated. For the scope, df is parameterized

by using spherical coordinates as follows:

df =

sinα cosβ
sinα sinβ

cosα

 (41)

where α is the inclination angle, and β is the azimuth. For a
given ϕ0 and given CTR configuration, a two-dimensional grid
that discretizes uniformly α ∈ [0, 2π], β ∈ [0, 2π] is generated,
and DCLI computed for each pair of α, β.

First, let us consider the case of ϕ0 = 60◦ illustrated in
Fig. 10a. By changing α, β, the value of DCLI (0) mod-
ifies accordingly, and a minimum of DCLI = 0.149 N is
found at α = 1.84, β = 5.17 rad, corresponding to df =
[0.47,−0.86,−0.27]. At the minimum, DCLI (0) and fCRIT

are comparable, with 0.214 N and 0.149 N, respectively,
and the absolute error is reduced. Instead, the previously
investigated direction df = [+1, 0, 0] → α = π/2, β = 2π is
far from the minimum, high values of DCLI are displayed, and
no fCRIT exists. When considering a configuration closer to
the instability (ϕ0 = 160◦, Fig. 10b), the direction where DCLI
(0) is minimum modifies to α = 1.663 rad, β = 6.098 rad and
DCLI (0) at the minimum is 0.136 N. fCRIT is 0.078 N for the
same direction, displaying a reduced absolute error between
fCRIT e DCLI (0). It should also be noted that, since polar
coordinates are employed, the trend of DCLI (0) is periodic,
and the same minimum is found twice in Fig. 10.
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(a) df = +[1, 0, 0] (b) ϕ0 = 60◦ (c) ϕ0 = 160◦

Fig. 9: Comparison between fCRIT and DCLI (0). Figure (a) displays the value of eabs for the S-curve computed with L2 = 0.6
and df = +[1, 0, 0]. In grey zones, no fCRIT exists between [0, 2] N. Figure (b),(c) display the value of σmin when using the
numerical algorithm of Sec. III-B, for ϕ0 = 60◦, 160◦, respectively.

(a) ϕ0 = 60◦ (b) ϕ0 = 160◦

Fig. 10: Influence of the inclination angle α and the azimuth angle β of the tip force direction df on DCLI. Figure (a) is
relative to ϕ0 = 60◦, while figure (b) corresponds to ϕ0 = 160◦. Minimums of DCLI are highlighted by a red circle.

As a summary, DCLI effectively measures the distance to
instability since i) DCLI goes to zero when the instability
occurs, and ii) DCLI is in accordance with state-of-the-art
indices. Moreover, near the instability when fCRIT is low,
DCLI provides a good estimation of the instability force.
Neverthless, it should be considered that the DCLI can be
used with systems with more than two tubes as well. As long
as the discretized model equation for the CTR are derived as
in Eq.(13), DCLI can be obtained as explained in Sec. III-C
by computing successive derivatives of the model equation to
obtain dHr/df as in Eq.(26).

C. A spatial CPR with two controlled DoF

This case study aims to illustrate the application of DCLI
on a more complex continuum structure, that is, a CPR.
In this context, the DCLI can be used to analyze the CPR
limit payload, namely an additional gravitational force due to
the additional weight on the EE, that would bring the robot
instability even in the case of quasi-static motion. In particular,
The two-controlled DoF CPR that was proposed in [65] and
illustrated in Fig. 11 is used as a benchmark. This CPR is

considered because its workspace and its equilibrium stability
limits have been experimentally validated. The CPR focus of
this section is a RFRFR robot, and it has two rotative motors
(R) whose axes are coaxial and attached to the proximal
section of two flexible chains. A transmission system transfers
the motion from the two motors to the actuated coaxial joint
R. Flexible chains, made by several slender beams arranged
in parallel, are connected through a passive revolute joint (R)
and the robot EE is coincident with the passive revolute joint
R, with all the R joints being nominally parallel. With this
beam arrangement, flexible link 1 and 3 (see Fig. 11a) are
synchronously moved by the same motor, whereas the other
actuator rotates link 2. Thus, the CPR has two actuated DoF:
its end-effector moves in a vertical plane when no loads other
than the ones belonging to the plane are applied on the robot.
If out-of-plane loads are applied, this robot may deform in the
space, as shown in [65]. In addition, some of its planar unstable
configurations can only be predicted with spatial models.

An illustration of the prototype modelling framework is
proposed in Fig. 11b: a frame Fp is attached to the robots
EE, and variables qp described the pose of Fp w.r.t. the fixed
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(a) (b)

Fig. 11: The CPR prototype of [65]. Figure (a) provides details on the prototype components, while Figure (b) illustrates the
CPR modelling schematics.

frame F0, As one motor actuated link 1 and 3, while the other
motor moves link 2, qa ∈ R2, and the motors are moved to
obtain a controlled xy position of the EE (according to F0 of
Fig. 11b) As noticeable in Fig. 11a, intermediate constraints
are introduced in within each flexible chain to increase the
prototype’s stiffness in the direction orthogonal to the motion
plane. The geometrico-static modelling of these link, as well
as the overall robot’s modelling, have been discussed in [65]
and, in the following, the EE mass m = 0.216 g is considered
as a concentrated EE load aligned with the gravitational
acceleration g = [0,−9.81, 0], and the links weight is included
as distributed loads. The resulting EE force is fEE = 2.11 N.

The evaluation of the equilibrium stability of the considered
CPR is crucial since unstable configurations define the limits
of the mobility of the robot. Let us first consider the prototype
workspace (WS), experimentally validated in [65], and illus-
trated in Fig. 12a. Region S is a stable equilibrium region,
where the assigned motor values correspond to attainable
static robot configurations, while region U corresponds to
an unstable region. The outer border of the WS is associated
with a Type-1 singularity [29], which is a limit of the in-
verse geometrico-static problem solvability. Instead, the inner
border of S is associated with a leg singularity [29], and
after crossing it, the robot equilibrium becomes unstable. In
particular, when the equilibrium becomes unstable, the EE
pose is not more controllable since an uncontrolled out-of-
the-plane motion occurs.

This phenomenon is highly undesirable for practical ap-
plications of this prototype, and the goal is to measure the
distance from the instability by using DCLI. To characterize
the robots WS in terms of DCLI, the influence of a tip external
load with direction aligned to the gravity is investigated
(df = ±[0, 1, 0] accordingly to the F0 of Fig. 11b). Results
are illustrated in Fig. 12b, 12c, where the values of DCLI
(fEE) are displayed. In particular, the attention is directed
to values of DCLI ≤ 5 N: as DCLI is used to measure the

distance to instability, and since fEE = 2.11 N, variations of
more than 200% of the EE load are not of practical interest,
since the resulting CPR workspace may considerably differ
from the one of Fig. 12a. Values of DCLI greater than 5 N
are undisplayed (part in yellow of Fig. 12).

First, let us consider df = −[0, 1, 0], corresponding to f
aligned with gravity. As displayed in Fig. 12b, approaching the
instability in the upper WS region causes DCLI values which
tend to zero. Instead, the other WS regions display values
greatly higher than fEE , indicating a larger distance from the
instability. On the other hand, when consider df = +[0, 1, 0]
the resulting DCLI (fEE) is illustrated in Fig. 12c. As ap-
proaching the instability at the lower WS region, DCLI (fEE)
goes to zero.

Then, the closeness of DCLI (fEE) to fCRIT is quantified.
To do this, at each step of the workspace computation DCLI
and fCRIT and the absolute error eabs = |fCRIT − CLI|
are computed. In particular, to compare DCLI (fEE) with
fCRIT , the computation of fCRIT is performed as follows.
First, let us consider the workspace of Fig. 12a obtained
with fEE = 2.11 N aligned with −y. At each stable
workspace point, the motor angles qa are extracted from the
CPR configuration and consider these values as fixed. Then,
the numerical procedure of Sec. III-B is used: the FGSP is
repeatedly solved with desired motor angles qa by increasing
the tip load until instability is met or the maximum allowed
iterations number is reached. Since fCRIT is to be computed at
each workspace point, |δf | is selected as 0.01 N as a trade-off
between accuracy and computational cost, and the maximum
number of iterations is set as 500 to explore forces up to 5 N.

The results of this computation are displayed in Fig. 13a,13b
df = −[0, 1, 0],df = +[0, 1, 0], respectively. As for the two-
tubes CTR case, some regions exist where no fCRIT ∈ [0, 5] N
exists. However, it is important to note that when DCLI is low,
fCRIT is in accordance with DCLI, and eabs is reduced. In
particular, regions close to the instability where DCLI (fEE)
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(a) Workspace (b) df = −[0, 1, 0]. (c) df = +[0, 1, 0]

Fig. 12: The workspace of the CPR prototype. Figure (a) highlights the stable region S and the unstable region U. On the same
workspace, the trend of DCLI (fEE) with df = [0,−1, 0] is reported in b) for a negative force sense, and c) for a positive
force sense. Type-1 singularities are depicted in red, and leg singularities in black.

(a) df = [0, 1, 0], negative sense (b) df = [0, 1, 0], positive sense

Fig. 13: Comparison between fCRIT and DCLI (fEE) for df = [0, 1, 0]. Figure (a) displays the value of eabs for a negative
force sense, while figure (b) for a positive force sense. Grey zones are region where no fCRIT exists between [0, 5] N.

≤ 1 N, display reduced absolute errors eabs (eabs ≤0.1 N).
This confirms the capability of DCLI to measure the distance
to the instability and, close to the instability, estimate the true
load to be applied at the CPR to cause unstable transitions.

Finally, we measured the computational performances of
DCLI w.r.t. state-of-the-art metrics. Focusing on Fig. 13a, we
measured the computational cost for the determination of the
determinant of Hr (det(Hr), the conditioning number of Hr,
(cond(Hr), DCLI and fCRIT at each workspace location of
Fig. 13a where fCRIT exits. DCLI requires 0.0690 s, which
is higher than the cost of det(Hr) (0.0020 s) and cond(Hr)
(0.1340 s) but, still, its cost is reduced (lower than the
average cost of the FGSP solution that is 0.118 s). However,
DCLI provides a physical interpretability that det(Hr) and
cond(Hr) cannot guarantee. Instead, fCRIT predicts accurate
results but its cost is approximately 100 times higher that
DCLI (6.11 s).

V. CONCLUSIONS

This paper proposed a criterion to measure the distance-to-
instability of CRs. In contrast to state-of-the-art approaches,
the DCLI does not involve the use of mixed units, and it pro-
vides the physical meaning of the results. As DCLI represents
the additional load to be applied at a defined location of the
robot to cause instability, DCLI possesses a well-defined unit
(Newton). The applicability of DCLI was demonstrated over
different case studies, namely the buckling of straight beams,
instability of CTRs, and the stable-to-unstable transitions of
an existing CPR prototype. No matter whether the case study
is considered, as the instability is approaching, DCLI tends
toward zero: this confirms the correctness of the distance-
to-instability measurement. To further verify this, DCLI was
compared with a state-of-the-art index for CTRs and, as DCLI
goes to zero near instability, also the index of [40] vanishes.
Finally, the accuracy of DCLI on the critical force estimation,
and its computation times, are assessed by comparing DCLI
with the exact force that causes instability, the latter computed
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Algorithm 2: Permutation Matrix Computation
1 Function [P] = GetPermutation(G):
2 [a, b] = size G;
3 P = 0, Gd = ∅;
4 for i = 1 : a do
5 Rv = 0;
6 for j = 1 : b do
7 Gm = [Gd(1 : i, :),G(1 : i, j)];
8 Rv(j) = inverse conditioning of Gm;
9 end

10 idx = column of G where max of Rv occurs;
11 Gd = [Gd,G(:, idx)];
12 Set P(i, idx) = 1;
13 Set b = b− 1;
14 Remove G(:, idx) from G;
15 end
16 return

by an ad hoc numerical approach proposed in this paper. It is
shown that (i) as the instability is approaching, the distance
between DCLI and the exact load reduces and DCLI can be
used to estimate the critical instability load, and (ii) DCLI
is 100 times faster to compute. These characteristics can be
positively exploited when iterative computations are required,
such as when dealing with optimal design and non-linear
optimization: a more rapid metric may be favorable over a
more accurate one.

This work establishes the foundations for the future devel-
opment of analysis tools for CRs. Authors believe that even
though DCLI may only be used to measure the distance-to-
instability in quasi-static scenarios, it may still be useful in
contexts such as stable trajectory planning of CRs or pick-
and-place task planning. Also, the applicability of DCLI in
other underactuated robotics systems, and the extension of
the index formulations to include inequality constraints (e.g.
for cable-driven parallel robots) will be objective of future
development. Nonetheless, the definition of DCLI also repre-
sents a starting point for more robust and precise indexes, for
example accounting for how dynamic forces affect instability,
or independent of the force application direction.

APPENDIX

A. Heuristic Algorithm for the computation of P

In the following, a heuristic algorithm (Alg. 2) is proposed
for the computation of P, aiming to create P that max-
imises the inverse conditioning of Gd. The proposed approach
requires scanning nϕ times the columns of Λ, aiming to
determine a matrix P that maximizes the inverse conditioning
of Λd. A pseudocode of the algorithm is reported in (Alg. 2).
First, the algorithm starts by initializing P = 0 and Λd = ∅.
The goal is to select nϕ columns of Λ to create a full-rank
and well-conditioned Λd. The algorithm starts by scanning
the first row of Λ to select the term with the higher inverse
conditioning, and the corresponding column of Λ is selected.
This column (labelled with idx) is inserted in Λd and removed
from Λ to avoid repetitions. Matrix P is updated accordingly
to put the column idx as the first column of Λd. Then, the
second row is considered. For each column of Λ, a (2× 2)

matrix Λm is obtained by collecting Λd and the considered
column of Λ (see line 12 of Alg. 2). The second column to be
put in Λd is the one that maximises the inverse conditioning
of Λm. Matrix P is updated to put the selected column as the
second of Λd. The algorithm proceeds in the same fashion
for the next rows by building Λm, selecting columns that
maximise the inverse conditioning of Λm, and creating P
consequently. The algorithm stops when all the nϕ rows of
Λ have been considered.

B. Proof of Eq. (23)

This Appendix proposes the proof of Eq. (23). Let us
consider Hr being a symmetric matrix with only real entries,
and consider the following eigenproblem:

Hrνk = σkνk (42)

where σk is the eigenvalue, and νk the normalized eigenvector.
Under these assumptions:

νT
k νk = 1 νT

k

dνk

df
= 0 (43)

By differentiating Eq. (42) and left-multiplying by νT
k we

obtain:

νT
k

dHr

df
νk + νT

kH
r dνk

df
=

σk

df
νT
k νk + σkν

T
k

dνk

df
(44)

By considering Eq. (43), Eq. (44) simplifies as follows:

νT
k

dHr

df
νk + νT

kH
r dνk

df
=

σk

df
(45)

Then, as long as Hr is symmetric:

(Hrνk)
T = (σkνk)

T → νT
kH

r = σkν
T
k (46)

Thus, by inserting Eq. (46) into Eq. (45) and considering
Eq. (43), it is possible to note that the term νT

kH
r dνk

df vanishes
and we obtain the final expression of Eq. (23):

dσk

df
= νT

k

dHr

df
νk (47)
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