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Abstract. In the combinatorial optimization field, Knowledge Discov-
ery (KD) mechanisms (e.g., data mining, neural networks) have received
increasing interest over the years. KD mechanisms are based upon two
main procedures, being the extraction of knowledge from solutions, and
the injection of such knowledge into solutions. However, in a multi-
objective (MO) context, the simultaneous optimization of many conflict-
ing objectives can lead to the learning of contradictory knowledge. We
propose to develop a Solution-based KD (SKD) mechanism suited to MO
optimization. It is integrated within two existing metaheuristics: the It-
erated MO Local Search (IMOLS) and the MO Evolutionary Algorithm
based on Decomposition (MOEA/D). As a case study, we consider a bi-
objective Vehicle Routing Problem with Time Windows (bVRPTW), to
define accordingly the problem-dependent knowledge of the SKD mech-
anism. Our experiments show that using the KD mechanism we propose
increases the performance of both IMOLS and MOEA/D algorithms.

Keywords: Knowledge Discovery, Multi-objective Optimization, Combinato-
rial Optimization, Routing Problems

1 Introduction

Efficient exploration of the search space is a key element of solving discrete
optimization problems. Indeed, the search space is a set of regions containing
solutions of different quality, from which it may be more or less difficult to es-
cape. In this paper, we assume that solutions in the same region share common
characteristics and, by wisely combining them, it is possible to reach more inter-
esting regions with better-performing solutions. This assumption was verified on
Solomon’s benchmark, where 40% (resp. 25%) of arcs are shared between close
(high-quality) solutions in instances with tight (resp. wide) time windows. In
addition, this assumption is used by PILS [1], in which the structure of local op-
tima guides the exploration towards regions that are difficult to reach by simple
local search (LS) algorithms.
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Knowledge Discovery (KD) processes have already received various interests,
in single-objective [1, 11, 23] and in multi-objective (MO) [18, 24, 32] optimiza-
tion. In particular, the concept of innovization introduced by Deb et al. [10],
focuses on the dependency between the decision variables of a solution to help
an optimization algorithm to reach specific parts of the objective space. We in-
vestigate a different approach by using the representation of the solution (here,
as a permutation) instead of directly using the decision variables. Our approach
finds echoes in Estimation of Distribution Algorithms [22], and more recently in
linkage learning for permutation problems [13], although our approach exploits
only frequent common structures found instead of using bayesian networks to
learn more precise dependencies between variables.

In this article, we further develop the notion of Solution-based Knowledge Dis-
covery (SKD) metaheuristics, by extending the construction of knowledge groups
developed in [18]. This work leads to a new model coherent with MO optimiza-
tion algorithms. We instantiate the model with the Iterated MOLS (IMOLS) [5]
and the MO Evolutionary Algorithm based on Decomposition (MOEA/D) [34].

Since the extraction and injection procedures are themselves dependent on
the problem studied, we decided to base our study on a bi-objective Vehicle
Routing Problem with Time Windows (bVRPTW) already presented in [19]. In
this problem, we minimize the total traveling cost and waiting time of drivers,
which are conflicting objectives [7]. Indeed, when a driver arrives too early a
waiting time is incurred, increasing the duration of the route for the driver.
Considering real-life situations (e.g. food delivery, medical transportation), this
additional time may incur satisfaction issues. Moreover, in the classical version
of the VRPTW, the first objective to optimize is the number of vehicles, which
is a discrete objective function, and then the total traveled distance is minimized
as a second objective. However, the use of two continuous objectives (the total
cost and the total waiting time) together allows the generation of fronts that
contain, in general, many more non-dominated solutions, and it is better suited
to a MO context, especially when knowledge is extracted from solutions.

The article is structured as follows: Section 2 presents MO optimization con-
cepts and the IMOLS and MOEA/D metaheuristics. Our contribution, the SKD
metaheuristic, is presented in Section 3. The model is integrated into IMOLS and
MOEA/D in Section 4. Section 5 presents the problem and defines the knowl-
edge to extract and inject in this context. In Section 6 our experimental protocol
is presented and the results obtained are discussed. We conclude in Section 7.

2 Context

2.1 Multi-Objective Optimization

A Multi-objective Combinatorial Optimization Problem (MoCOP) is commonly
formalized as follows [8]:

(MoCOP ) =

{
Optimize F (x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ D,
(1)
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where n ≥ 2 objective functions fi have to be optimized, x is a vector of decision
variables, and D is the set of solutions. The objective space is the image of F .

We say that a solution x dominates a solution y, noted x ≺ y in a minimiza-
tion context, if and only if for all i ∈ {1 . . . n}, fi(x) ≤ fi(y) and there exists
j ∈ {1 . . . n} such that fj(x) < fj(y). The dominance relation induces a partial
order in the solution space. Indeed, there exist pairs of solutions that cannot be
compared to each other. Such solutions are said to be non-dominant .

A Pareto front is defined as a set of non-dominated solutions. A feasible
solution x∗ ∈ D is called Pareto optimal if and only if there is no solution x ∈ D
such that x ≺ x∗. We solve a MoCOP by finding all the Pareto optimal solutions,
which form together the Pareto optimal set. The image of the Pareto optimal
set by the objective function F provides the true Pareto front.

To compare Pareto fronts, and thus the algorithms providing them, many
indicators have been developed [27]. In this paper, we consider the unary hy-
pervolume (uHV) [35] metric. It is defined relatively to a reference point Zref ,
generally (1.001, . . . , 1.001), and requires that the objectives of the solutions are
normalized between 0 and 1. This indicator is to be maximized and allows a good
evaluation of the front’s accuracy, diversity, and cardinality. Geometrically, the
uHV represents the volume of the objective space (bounded by Zref ) covered by
the members of a non-dominated set of solutions.

Many metaheuristics based on LS techniques, called MOLS [5], or using evo-
lutionary algorithms, like Non-Domonated Sorting Genetic Algorithm (NSGA-
II) [9], and MOEA/D [34], have been designed to solve MO problems. The follow-
ing sections focus on iterated MOLS (Section 2.2) and MOEA/D (Section 2.3).

2.2 Iterated MOLS

A MOLS is an algorithm that iteratively explores solutions selected from a cur-
rent population, by using LS procedures, accepts candidates during the search,
and then updates an external archive of non-dominated solutions. We refer to the
survey of Blot et al. [5], for a comprehensive overview of all possible mechanisms
related to the conception of MOLS. A large part of MOLS algorithms is Pareto-
based, meaning that they rely on the dominance criterion to accept neighbors
during the search, contrarily to aggregation-based ones, which aggregate the dif-
ferent objectives to turn the problem into single-objective optimization. Among
the Pareto-based algorithms, we find the Dominance-based MOLS (DMLS) al-
gorithms [20] and the Pareto LS (PLS) [25].

In addition, it is possible to consider iterated MOLS (IMOLS), which mimic
iterated LS, by using a perturbation procedure as a restart when a particular
condition is reached (e.g., convergence of the MOLS).

2.3 MOEA/D

MOEA/D [34], is a genetic algorithm widely studied in the literature [33], ap-
proximating the Pareto front by decomposing the MO problem into several scalar
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objective subproblems. There exist many ways to generate M scalar problems,
but in every case, it requires a set of weight vectors w1, . . . , wM . A weight vector
w = (w1, . . . , wn) is such that, ∀i ∈ {1, . . . , n} wi ≥ 0 and

∑n
i=1 wi = 1, where

n is the number of objectives considered. During the execution of MOEA/D, a
population of solutions is maintained, where the i-th solution of the population is
the best solution found for the i-th subproblem. Usually, a random permutation
of the subproblems is defined in the beginning so that subproblems are always
solved in the same order. Subproblems are iteratively solved, by applying a ge-
netic step composed of crossover and mutation operators. When the subproblem
i is optimized, two solutions from the population are selected for the crossover
step. To perform that selection, two neighbor subproblems of subproblem i (in-
cluded) are chosen, knowing that the neighborhood of a subproblem contains the
m subproblems associated with the closest (for the Euclidean distance) weight
vectors to weight vector wi. The mutation is commonly replaced by a LS [6,
15, 17], to intensify the search in the regions identified with the crossover. If
the final solution obtained is better than the initial solution considered for the
subproblem, then it is replaced. The final solution is also tentatively added to
an external archive storing the best non-dominated solutions found during the
search and returned once the termination criterion of the algorithm is reached.

2.4 Unified View of IMOLS and MOEA/D

SELECTION

End of cycle

PERTURBATION

UPDATE

EXPLOITATION

Best front

Initial front

Fig. 1. The proposed unified view for
IMOLS and MOEA/D metaheuristics.

End of cycle

Best front

Initial front

INJECTION

PERTURBATION

UPDATE

EXPLOITATION

SELECTION

CREATION

EXTRACTION

Fig. 2. The unified view integrating the
three steps of the SKD.

This section shows the structural similarities between IMOLS and MOEA/D
through a unified view. Our motivation behind this unification is to show how our
knowledge discovery mechanism (SKD), presented in Section 3, can be integrated
into algorithms sharing the same structural properties.

The IMOLS and MOEA/D frameworks can be abstracted with the following
four main steps: Selection, Exploitation, Update, and Perturbation. The
Figure 1 shows how these steps interact together. The Exploitation step is
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used for intensification while the Perturbation one for diversification. A cycle is
defined as a succession of a fixed number of iterations of the three first steps (i.e.,
Selection, Exploitation, and Update). When a cycle ends, a Perturbation

occurs, if a specific criterion is met, to update the current population before the
next Selection, and so forth, until a termination criterion is reached (generally
based on time or number of iterations). An external archive is maintained to track
the best non-dominated solutions found and is finally returned. The steps are
discussed below with details about their instantiation in IMOLS and MOEA/D.

The Selection step chooses one or several solutions to explore in the current
population, initialized with the initial front provided. This choice can be done
randomly, or following a criterion to focus on a specific region of the objective
space. In IMOLS, the selection is directly performed from the current population.
In MOEA/D, each subproblem is sequentially selected, and consequently, the
associated solution is explored.

Exploitation is the intensification step of the algorithm where the search fo-
cuses on specific regions of the search space. During this step, the neighborhood
of the selected solutions is exploited, until a criterion is reached, to generate new
(better) candidate solutions. In IMOLS, the exploitation consists of accepting
either non-dominated or dominating neighbors of the selected solutions, con-
sidering a reference set. Consequently, many iterations are needed to reach out
to a Pareto local optima. In MOEA/D the exploitation consists of applying a
single-objective LS [14], for the selected subproblem, until a local optimum is
reached.

When new solutions are found after the exploitation, the Update step ten-
tatively integrates them into the external archive and the current population.
While the external archive generally relies on bounded mechanisms, it is possible
to adopt different strategies to update the current population (e.g., replacement
of the solution explored, keeping non-dominated solutions in priority).

In neighborhood-based algorithms and evolutionary ones, it is necessary to
perturb solutions to escape regions with local optima. The Perturbation gen-
erates new solutions to be explored by applying random moves, destroy and
repair mechanisms, or genetic operators. It acts like a diversification step where
new regions of the search space can be identified and then explored. After the
perturbation, the solutions are used to create a new current population, and a
new cycle is started. In IMOLS, the perturbation relies on LS mechanisms. In
MOEA/D, it corresponds to a crossover.

In the next section, we present the SKD mechanism. Its integration in IMOLS
and MOEA/D is presented in Section 4.

3 Solution-based Knowledge Discovery

3.1 Global Overview and Main Issues

In [18], the concept of knowledge groups is introduced. The idea is to divide the
objective space into regions each representing a knowledge group. A knowledge
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group gathers structural elements of the solutions of the same region. If the
approach was promising, many obstacles remain and have to be tackled to ensure
a model, that can be easily integrated into various MO algorithms. The first
issue concerns the creation of knowledge groups. The creation proposed in [18]
was dependent on the aggregations used in MOEA/D, which highly restricted
its range of applications. Our proposition, detailed in Section 3.2 overcomes
this limit, allowing many more integration possibilities. Then, the interaction
between the extraction (resp. injection) procedure and the groups newly created,
is presented in Section 3.3 (resp. Section 3.4). Although the interactions remain
similar to those described in [18], we present them in a more flexible way to
allow a better integration in metaheuristics.

3.2 Creation of Knowledge Groups

The problem is associating each knowledge group with a region of the objective
space. We consider that each group is related to a representative, inducing the
region of the group. In the following, we consider, for simplicity purposes, a bi-
objective space. We propose two strategies to create the kG representatives of
the groups. The first one, represented in Figure 3, with kG = 5 representatives
named gi, generates kG uniformly spread weight vectors. Then, to evaluate the
proximity of a solution to a group we aggregate the objectives of the solution
by using the weight vector associated with the group. This strategy is a simple
variant of [18] allowing to use it in other algorithms than MOEA/D. The second
strategy, represented in Figure 4, links the extreme points of the current front
with a straight line. Then, kG points (including the extreme points) are regularly
created on the line. Each created point corresponds to a representative of a
group. The proximity of a solution to a group is then evaluated by the Euclidean
distance between the objective vector of the solution and the representative.
With this second strategy, it is possible (and recommended) to dynamically
update the representatives of each group, before the extraction, if the extreme
points vary. In both figures, each point of the Pareto front is linked to its closest
representative, which leads to different distributions for each construction.

3.3 Extraction and Knowledge Groups

The extraction procedure is presented in Algorithm 1. It is possible to deactivate
the extraction until a certain execution time is reached, to balance low-quality
and high-quality solutions. In the following, we activate the procedure with no
delay, at the beginning of the execution, since an initial front is provided.

For the extraction procedure, a learning set L of solutions generated during
the execution of the algorithm is provided. However, MO algorithms explore
plenty of solutions during their execution (e.g., MOLS), and learning from all of
them would scramble the knowledge added to the groups. Consequently, a subset
of L that contains only the solutions that undergo the extraction procedure is
considered. Here, we suggest to keep only the non-dominated solutions of L. In
particular, it allows the learning to focus on the most interesting solutions. Please
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Objective 1

Objective 2

0

Fig. 3. Creation of groups based on weight
vectors (denoted WG).

Objective 1

Objective 2

0

Fig. 4. Creation of groups based on ex-
trema points (denoted EG).

note that other possibilities may be taken into account as a random sample or
a mix of dominated and non-dominated solutions.

Once L is filtered, knowledge is extracted from each remaining solution x. It is
then added to the de closest groups (function SelectGroups, l.4 of Algorithm 1)
of x, following the evaluation of the proximity between a solution and a group
provided in Section 3.2. The parameter de allows the control of the diversification
of the mechanism: smaller values correspond with fewer groups being updated.
Then, the elements of knowledge are added to the corresponding groups, and a
score (e.g., the frequency of appearance) reflecting the relevance of each element
is updated. However, we choose not to allow the same solution to contribute
more than once to a group, to avoid the bias induced by local optima. The set
L is emptied after updating the groups.

The construction of L and the function Filter used in Algorithm 1 are pre-
sented in Section 4 since they are algorithm-dependent. The functions Extract
(l.3) and Update (l.5), being problem-dependent, are presented in Section 5.2.

Algorithm 1: Extraction procedure.

Input: A the current archive, G the knowledge groups, L the learning set, and
de the number of groups to update.

Output: The updated knowledge groups.
1 S ← Filter(L)
2 for x ∈ S do
3 K ← Extract(x)
4 G = {G1, . . . , Gde} ← SelectGroups(G, de, x)
5 Update(G,K)
6 L← ∅
7 return G
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3.4 Injection and Knowledge Groups

At that point, all the solutions from the current population undergo the injection
procedure presented in Algorithm 2.

First, the knowledge to inject has to be selected. Likewise for the extraction
(see the SelectGroups function), a subset of di groups containing the closest
groups to x is created. Again, this parameter controls the diversification of the
mechanism. The function SelectOne applied to the di candidate groups selects
the final group, that will produce the knowledge to inject in the solution x. It can
be done at random, or following a specific criterion if a group is preferred. Then,
some knowledge is selected from the resulting group with the SelectKnowledge
function. In particular, the selection of the knowledge should use the scores of
the elements in the group. In that case, it is possible to select the elements with
the highest score or by means of a roulette wheel mechanism. Each element k of
knowledge is tentatively injected into a solution x′ (initially x) using the function
Inject. All solutions accepted (e.g. those non-dominating x′) during the injec-
tion of k are added to a set S′. The next solution x′ to undergo the injection can
be replaced by taking one of the solutions of S′ (function SelectNextSolution).
For that choice, it is possible to select a solution at random, with a dominance
criterion, or with an aggregation when it is defined. Finally, after the injection
of all the elements of knowledge, all the accepted solutions are returned.

SelectOne (l.2), SelectKnowledge (l.3), and SelectNextSolution (l.7) used
in Algorithm 2 are defined in Section 4 since they are algorithm-dependent. The
problem-dependent function Inject (l.6) is defined in Section 5.2.

Algorithm 2: Injection procedure.

Input: G the knowledge groups, x the current solution, and di the number of
candidate groups.

Output: Accepted solutions.
1 G = {G1, . . . , Gdi} ← SelectGroups(G, di, x)
2 G′ ← SelectOne(G)
3 K ← SelectKnowledge(G′)
4 S ← ∅
5 x′ ← x
6 for k ∈ K do
7 S′ ← Inject(k, x′)
8 x′ ← SelectNextSolution(S′, x′)
9 S ← S ∪ S′

10 return S

3.5 Integration of SKD into the Unified View

The Solution-based Knowledge Discovery (SKD) uses knowledge groups and the
procedures of extraction and injection suited to MO algorithms. The Unified



Solution-based Knowledge Discovery for Multi-objective Optimization 9

View presented in Section 2.4 contains successive steps of intensification and
diversification. The intensification is usually the core of the MO algorithms where
identified regions of the search space are deeply explored using an underlying
local knowledge given by the neighborhood. In this section, we integrate the SKD
into MO algorithms using our unified view (see Figure 1). We aim to improve
the diversification phase, by exploring larger regions of the search space with the
knowledge stored in the groups.

At the beginning of the execution, given the initial front provided, the knowl-
edge groups are created following one strategy presented in Section 3.2.

Applying the extraction procedure at every iteration would result in a lot of
noise for the knowledge groups. In particular, waiting a few iterations allows the
learning set to contain more interesting solutions. Hence, the Extraction step
should be applied only after the end of a cycle, on a subset of explored solutions.

Any solution can undergo the injection but, like the Extraction, applying
it to all the explored solutions would waste computational resources. Thus, we
consider that the injection should be applied only after the end of a cycle and
more precisely after the Perturbation if it occurred or after the Extraction

otherwise. After the injection, a new cycle (i.e., an intensification step) is started
by updating the archive and the current population. These remarks lead to the
conception of the model presented in Figure 2.

4 SKD for IMOLS and MOEA/D

4.1 SKD for IMOLS

We follow the DMLS model originally introduced by Liefooghe et al. [20]. The
problem’s representation, the solution evaluation, and the neighborhood struc-
ture are defined in Section 5.1 with the problem. The algorithm starts from an
initial front given by the user, integrated into a bounded archive, A, of size Ua,
representing the current population. The archive is bounded by using the crowd-
ing distance [9]. Then, Uc randomly selected solutions from the archive (among
the not entirely explored ones) form the set to explore. The DMLS algorithm
iteratively explores the selected solutions. During the LS, the neighborhood of a
solution x is explored until a non-dominated solution, considering all solutions
of A, is found [4]. If no solution is found, x is tagged as explored and is no longer
selected during the current cycle, moreover tagged solutions cannot be selected
during the LS. If any, the accepted solution is tentatively added to A.

In the iterated variant, we manage a second (unbounded) archive, A∗, con-
taining the best non-dominated solutions found during the execution. After lc
iterations (denoting the length of a cycle), the uHV of A is evaluated, and the
solutions of A are integrated into A∗. Before starting a new cycle, if all solutions
of A are tagged as explored or the uHV has not been increased by at least euHV

after two consecutive cycles, a perturbation step occurs. During this step, all tags
are removed from solutions, all elements from A are tagged as explored and a
new archive A is created by perturbing solutions from A∗. To perturb a solution
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x, we apply three moves of the LS, with the following acceptance criterion: a
solution y is accepted when ∀i ∈ {1, . . . , n}, fi(y) ≤ (1+ϵp) ·fi(x), with ϵp ∈ R+,
allowing a slight relaxation of the objectives of x to test the dominance relation.
This version of IMOLS is called RIMOLS.

Following the steps presented in Section 3.5, the extraction and injection
procedures are added to RIMOLS. The variant using the weights (resp. the ex-
trema) to create the groups is called WGIMOLS (resp. EGIMOLS). Concerning
the extraction procedure, we have to define how the learning set is managed and
how its elements are filtered. Every solution tentatively added to A after the
exploration step should be added to the learning set, since it may produce inter-
esting knowledge to exploit. We only keep non-dominated solutions to filter the
solutions of the learning set. Concerning the injection procedure, it is sequen-
tially applied to all the solutions from A. The SelectOne, SelectKnowledge,
and SelectNextSolution functions from Algorithm 2 are defined hereafter.
The SelectOne function chooses the group that gives the knowledge to inject.
Here, we choose the group randomly. For the SelectKnowledge function, we
rely on the scores of the elements learned. We consider Ni elements, randomly
selected among the Nf elements with the highest scores, as it was done in [1].
More details are given in Section 5.2 in the context of the problem. Finally,
for the SelectNextSolution function, the initial solution is returned (x in Al-
gorithm 2). Indeed, since we work with a MOLS algorithm, we prefer staying
locally around the solution by attempting to inject knowledge into it rather than
trying to highly optimize the solution. Finding a better solution is interesting,
but could dominate a large part of the archive, resulting in a loss of diversity.

4.2 SKD for MOEA/D

Now we provide an instantiation of MOEA/D, called RMOEAD, following the
framework described in Section 2.3. We consider scalar problems obtained with
a weighted sum of the objectives. Contrary to Tchebycheff decomposition, it does
not require a reference point. Given a weight vector w, the fitness of a solution
is defined as the following quantity: g(x|w) =

∑n
i=1 wi · fi(x). However, all the

solutions of the true Pareto front can not be obtained with such aggregations.
In the following, we generate M weight vectors uniformly distributed, assuming
that is enough to obtain diverse subproblems. A Partially Mapped Crossover
(PMX) [16] is applied with probability ppmx. Among the two generated solutions,
only one is randomly chosen to keep the population’s size constant. When the
crossover is not applied, the solution associated with the i-th subproblem is kept.
The mutation is a LS detailed in Section 5.1, and applied with probability pls.

Following the steps presented in Section 3.5, the extraction and injection
procedures are added to RMOEAD. The variant using the weights (resp. the ex-
trema) to create the groups is called WGMOEAD (resp. EGMOEAD). For the
extraction procedure, we keep the idea exposed in Section 4.1. Each solution
tentatively added to the external archive (Update step of Figure 1), is added
to the learning set. Then, the knowledge is extracted from non-dominated solu-
tions of the learning set. The injection procedure is applied to all the solutions
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of the current population (i.e., the best solution of each subproblem). The func-
tions SelectOne and SelectKnowledge are the same as presented in Section 4.1,
but SelectNextSolution differs. The next solution is the best (considering the
aggregation of the associated subproblem) accepted during the injection.

5 Case Study: bi-objective VRPTW

5.1 Presentation

See [19] for a detailed formalization of the bi-objective VRPTW (bVRPTW)
considered. The bVRPTW calls for the determination of routes such that the
traveling cost (i.e. the sum of the Euclidean distance between consecutive cus-
tomers) and the total waiting time (i.e. the sum of the waiting times induced by
an early arrival to deliver a customer) are simultaneously minimized. Moreover,
each solution of the bVRPTW needs to satisfy the following constraints: each
route starts and ends at a specific location (called depot), each customer is vis-
ited by exactly one route, the sum of the demands of the customers in any route
does not exceed the capacity of the vehicles, and time windows are respected
(late arrivals are not allowed).

A solution to the problem is encoded as a customer permutation and evalu-
ated with the split algorithm provided by [26], providing a feasible solution. For
this study, we consider the operators Relocate, Swap, and 2-opt∗. These sim-
ple operators are largely used in LS algorithms for routing problems [28] since
they can produce a large neighborhood, and allow an easy incremental evalua-
tion. The Relocate operator moves one customer from its current position to
another location. The Swap operator exchanges in the solution the position of
two customers. The 2-opt∗ operator generalizes the 2-opt, by involving different
routes. In RMOEAD a Randomized Variable Neighborhood Descent is applied
for exploitation [19, 30], where the order of the operators is kept during descent
(until a local optimum is reached) but shuffled each time the LS is applied. In
RIMOLS, the order of the operators is randomized too, but the search stops at
the first accepting neighbor. Only feasible solutions are considered.

5.2 Knowledge Related to a Solution

In this section, the remaining Extract and Update (resp. SelectKnowledge and
Inject) functions from the Algorithm 1 (resp. Algorithm 2), are defined to suit
the bVRPTW context. These functions are inspired by the Pattern Injection LS
(PILS) method [1]. It is an optimization method relying on frequent patterns
from high-quality solutions to explore vast neighborhoods. PILS has already
been integrated into the Hybrid Genetic Search [31] and the Guided LS [2] to
solve the Capacitated Vehicle Routing Problem (CVRP).

In routing problems, patterns are defined as sequences of consecutive cus-
tomers on a route without the depot. Those with a size between 2 and sp
are extracted from generated solutions by Extract. In particular, a route r =
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(0, v1, . . . , v|r|, 0), containsmax(|r|−k+1, 0) patterns of size k. Once the patterns
are extracted, Update adds them to corresponding groups. If the pattern already
belongs to the group, its frequency is incremented. Otherwise, it is added with
a frequency of one. Different groups may have different frequencies for the same
pattern. A pattern becomes frequent when its frequency exceeds a threshold lf

For the injection, SelectKnowledge randomly selects a pattern size among
{2, . . . , sp} to not bias the selection towards smaller, more numerous, patterns.
Then, Ni patterns are randomly chosen among the Nf most frequent patterns of
the corresponding size (without repetition). Only patterns tagged frequent can
be selected. Given a pattern and a solution x, the Inject function creates a
solution from x containing the pattern provided, as explained in [1] (except that
reversed fragments are discarded due to time windows). First, arcs connecting
the pattern are removed, thus creating partial routes, which are reconnected
(with an exhaustive search) to form feasible solutions. Several solutions may be
accepted during the reconstruction step. In IMOLS, all non-dominated solutions
are accepted, while solutions with better fitness are accepted in MOEA/D.

6 Experimental Study

6.1 Choice of Parameters Value

The tuning of the parameters for the RMOEAD variant comes from previous tun-
ing with irace [21] and we refer to [19] for a detailed analysis of the parameters.
M = 40 subproblems are created, with m = 10 neighbors. At most 2 neighbors
may have their solution replaced during the update step. The crossover is applied
with probability ppmx = 1.00, and the LS with probability pls = 0.10.

For RIMOLS, the parameters are chosen to be fair with RMOEAD. The archive
limit is set to Ua = 40. Each iteration, Uc = 1 solution is explored. The pertur-
bation occurs when the uHV does not increase by at least euHV = 10−2, and
during the perturbation, ϵp = 0.02. A cycle performs lc = 100 iterations.

The parameters value of EGMOEAD and WGMOEAD (resp. EGIMOLS and
WGIMOLS) are similar and their values follow the recommendation made in [19].
ppmx is set to 0.50. There are kG = 20 knowledge groups. The maximum size sp
of extracted patterns is set to 8 (resp. 5) for instances of class 2 (resp. class 1)
since large (resp. short) routes are designed. The knowledge is added to de = 1
group, and the knowledge to inject is provided by at most di = 1 group. Ni = 100
patterns of the same size are tentatively injected into each solution. They are
selected among the Nf = 250 most frequent patterns of the corresponding size
in the group. The threshold frequency for patterns is set to lf = 2.

6.2 Experimental Protocol

The experiments are run on two computers “Intel(R) Xeon(R) CPU E5-2687W
v4 @ 3.00GHz”, with 24 cores each. Our framework is implemented in the jMet-
alPy framework [3]. The source code and our results are available on a Git3.

3 https://gitlab.univ-lille.fr/clement.legrand4.etu/skd_integration
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The Solomon [29] and the Gehring and Homberger [12] benchmarks are com-
monly used to evaluate the performance of MO algorithms. Solomon’s bench-
mark contains instances with up to 100 customers. Customers can be randomly
located (R), clustered (C), or mixed (RC). Each category is divided into two
classes. Instances of class 1 have tighter time windows than instances of class 2,
which are less constrained. Gehring and Homberger’s benchmark uses a similar
instance generation but considers a larger number of customers.

To fairly compare the algorithms, they are all initialized with the same fronts.
Hence, we generate 30 initial fronts (available on Git) for each instance. In
IMOLS, the initial front is directly used as the initial population, however, in
MOEA/D, each subproblem is initialized with the best solution of the front.

The six algorithms are then executed over 30 seeds on each instance. The
termination criterion for each run is set to 10 (resp. 20) minutes for instances
of size 100 (resp. 200). The average uHV obtained over the 30 runs is compared
with Pairwise Wilcoxon tests with Bonferroni correction.

6.3 Results

Table 1. Average uHV (×103) of the algorithms on the different categories of instances.
RMOEAD and RIMOLS are the reference algorithms. EGMOEAD, WGMOEAD, EGIMOLS,
and WGIMOLS are the learning variants. Gray cells are statistically better comparing
all algorithms, i.e., the six rows. Bold values represent the best-performing algorithms
when MOEA/D (resp. IMOLS) variants are compared together (i.e., three rows each).

Size 100 200

Category C R RC C R RC

Class C1 C2 R1 R2 RC1 RC2 C1 C2 R1 R2 RC1 RC2

RMOEAD 833 888 805 773 776 792 703 613 755 668 733 702
WGMOEAD 904 912 834 795 784 808 793 788 800 741 806 792
EGMOEAD 856 902 806 778 762 792 744 740 784 723 774 765

RIMOLS 923 966 850 761 837 766 822 746 754 654 758 619
WGIMOLS 970 987 886 814 844 823 885 826 811 761 854 830
EGIMOLS 958 986 885 807 844 814 875 835 814 751 842 814

Table 1 summarises the results obtained. Detailed results per instance are
available on the Git provided. First, RIMOLS returns better results than RMOEAD

except on instances R2 and RC2 of size 100, and RC2 of size 200. Indeed, in-
stances of category 2 are less constrained, leading to a bigger exploration space.
In that case, it seems preferable to use MOEA/D rather than IMOLS to intensify
the search. However, this consideration does not apply to C2 instances, probably
due to the presence of clusters, leading to more local optima.

We can see that using SKD (no matter the strategy used to create the
groups) positively impacts RIMOLS in all instances. The same conclusion holds
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for RMOEAD except on RC1 instances of size 100, with EG groups. Moreover,
using SKD is even more beneficial in instances of bigger sizes.

In MOEA/D, using the strategy with the weight vectors to create the groups
is statistically better than using the other one. Probably because the algorithm
itself uses weight vectors to decompose the search space. Concerning the IMOLS
algorithm, both strategies are often equivalent, but using the weight vectors
leads to slightly better results. Thus, this strategy should be preferred in general.
Additionally, using SKD allows the creation of more diversified Pareto fronts for
MOEA/D and IMOLS (see Figure 5 for comparison).

Fig. 5. Results of the execution on instance RC2 2 6 (run 6), from the Gehring and
Homberger set. The associated hypervolume and size of the final fronts (blue dots) are
shown, as well as the reference front (orange dots).

7 Conclusion

In this paper, we proposed to extend the mechanism of [18] to develop a solution-
based KD mechanism, called SKD, which extracts knowledge from solutions
and injects knowledge to explore new regions of the solution space. The mech-
anism is mainly based on the creation of knowledge groups, dividing the ob-
jective space. Here, two creation strategies for the groups are developed and
compared. Any MO algorithm that can be an instantiation of the unified al-
gorithm presented in Figure 1, can be extended by integrating SKD as shown
in Figure 2. Then, we integrated SKD into two MO algorithms (IMOLS and
MOEA/D) to solve a bi-objective routing problem, and we defined accordingly
the algorithm-dependent components and the problem-dependent knowledge.
Experiments were performed over instances with different characteristics of size
and structure. In most cases, using SKD increases the performance of the original
algorithm, showing an interest in our developed mechanism. Moreover, creating
the groups with the weight vector strategy seems more profitable.

Future works should investigate the impact of the initialization on SKD.
More precisely, the time to start the learning may impact the resolution and
further analysis may be beneficial. Finally, it could be interesting to investigate
the possibility of transferring the knowledge learned from one instance to another
without starting from scratch again. This may be done by detecting similarities
in the instances.
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