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ABSTRACT

One aspect of obtaining realistic results in room acoustic simulations for virtual reality environments or room
acoustic design is careful material property adjustments to achieve agreement between the simulation output
and measured results. Nonetheless, calibrating geometric room acoustic simulations presents several challenges
in selecting absorption and scattering coefficient values. This work aims to improve model calibration efforts
by developing a gradient-descent algorithm that minimizes differences between simulated and measured results.
The algorithm follows by taking the derivative of room acoustic metrics such as reverberation time or clarity
with respect to the absorption coefficient values. The resultant gradient thus derives from a single deterministic
ray-tracing result represented by a set of ray paths and a set of absorption coefficients values for each surface.
This formulation consequently enables efficient computational realization in calibrating absorption coefficients.
Incorporating scattering coefficient adjustments would require further repeated simulations, currently not optimized.
A reverberation-time optimized initialization and inequality constraints help to maintain realistic absorption
coefficient values. Application of the calibration algorithm to an abbey church demonstrates the robustness and
efficiency of the method.

1 Introduction

Room acoustic design, auralizations, and virtual recon-
structions of heritage spaces commonly employ numer-
ical methods based on geometric acoustics (GA) to pre-
dict a space’s response [1, 2]. As with any other numer-
ical simulation, proper material-property assignment is
essential to achieving realistic results [3]. Calibrating a

GA model requires carefully adjusting surface scatter-
ing and absorption characteristics to achieve agreement
between simulated and measured results. Nonetheless,
the number of available numerical algorithms to per-
form model calibration remain limited.

The aim of GA simulation methods is to estimate a
room’s energetic-decay response based on the laws of
specular and diffuse reflection applied to rays or parti-
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cles emitted from a source and detected by a receiver.
Algorithms to determine the source-to-receiver path
include image-source methods (ISM), ray-tracing tech-
niques, or cone or beam-tracing approaches (see [4]
for a review). Typically, random-incidence absorption
coefficients determine the amount of energy lost at each
reflecting surface, whereas random-incidence scatter-
ing coefficients determine the ray’s trajectory after a
reflection. The absorption coefficients have a strong
influence on the output metrics. However, uncertainties
in their values have long been known to be a chal-
lenge in room acoustic modeling. How to rigorously
adjust these values to achieve agreement between sim-
ulation output and measurement results has remained
even more elusive, although several techniques exist.
The approaches broadly fall into guess-and-check man-
ual adjustments or complicated non-linear optimization
approaches.

One of the most commonly used techniques is to adjust
values “manually in an iterative process" [5]. Martel-
lotta et al. [6] considered “case by case" modification
of materials to achieve less than 1 JND between the
predicted and measured reverberation time (RT), with
adjustments beginning “from surfaces with the most un-
certain behavior and covering the largest areas." Postma
and Katz [3] manually adjusted absorption coefficients
of the material with the largest surface area until ob-
taining 1 JND of T20 and the EDT. They then used
scattering coefficient adjustments to calibrate C50, and
lastly applied a fine-tuning step taking into account
observations of local variations due to source-receiver
locations. Their approach required about six iterations
when applied to a lecture hall and church.

Rather than manual adjustments to absorption coeffi-
cients, Christensen et al. [5] applied a genetic algorithm
to optimize the absorption coefficients of a GA model.
The algorithm had some success at calibrating to within
1 JND several of the target acoustic parameters for sev-
eral of the target frequency bands. However, without
careful initialization and parameter constraints, the cali-
brated values “did not lead to realistic materials in most
cases" [5]. In addition, the large computational expense
led the authors to conclude that “we do not conisder the
calibration utility ... fast enough to be a useful tool" [5].
A later work by Pilch [7] compared the effectiveness
of three different non-linear optimization algorithms
in calibrating GA models, with results comparable to
those of Christensen et al. [5].

The proposed optimization algorithms of Christensen et
al. [5] and Pilch [7] highlight the utility of using numer-
ical algorithms over manual adjustments. While man-
ual adjustment has the benefit that an experienced prac-
titioner can ensure physically meaningful calibrated
absorption coefficient values, it is tedious and prone
to human error and bias. On the other hand, while
complicated non-linear optimization algorithms pro-
vide a programmatic approach, their precise underlying
behavior may be unclear, necessitating careful initial-
ization and parameter ranges to ensure reliable results.
As a result, there remains a need for calibration ap-
proaches which are simple, computationally efficient,
and intuitive to control while remaining numerically
robust to avoid human errors and bias.

This work develops a gradient-descent based optimiza-
tion algorithm to improve GA model calibration. The
approach derives from taking the gradient of room-
acoustic metrics with respect to the absorption coef-
ficient values. The method consequently allows con-
trollable iterative adjustments to absorption coefficient
values. However, because the gradient applies to a
fixed set of source-receiver paths, it cannot optimize
scattering coefficient values. In addition, a maximum-
likelihood calibration applied to the Sabine equation
provides an initialization procedure which incorporates
statistical uncertainty in material properties. Calibra-
tion of the abbey church Saint-Germain-des-Prés vali-
dates the proposed technique.

2 Methods

2.1 Geometric Acoustics and the Echogram

Models applying GA methods estimate the temporal
energetic response of a source within a room through
the use of acoustic rays. Each ray carries some propor-
tion of the total emitted sound power, while the GA
method determines the ray’s path. Although the exact
ray trajectories may slightly vary between GA methods
and implementations of diffuse scattering, all pure GA
algorithms result in a set of rays, each with their own
amplitude and ray path.

For a room defined by N surfaces, each with absorption
coefficient αn, the energetic response (echogram) may
be expressed as

E(t) =
M

∑
m=1

Wm

(
N

∏
n=1

(1−αn)
pnm

)
δ (t− τm) (1)
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where M is the number of rays and τm is the impact
time of the mth ray with the receiver position. The
integer pnm represents the number of times the mth
ray reflected from the nth surface. The ray paths, and
thus the variable pnm, implicitly depend on the room
geometry, the scattering coefficients, and the scatter-
ing method employed. The sum of pnm over the index
n represents the order of the ray, e.g., ∑n pnm = 0 in-
dicates the direct sound while a ray with ∑n pnm = 1
resulted from a first-order reflection. The initial ray
energetic amplitude

Wm =
W
M

Q(θm,φm) (2)

where W is the sound power of the source and
Q(θm,φm) is its directivity factor function, represents
the fraction of the total sound power each ray car-
ries. For cone or beam tracing algorithms or for image
source methods, an additional 1/r2

m factor must appear
to compensate for spherical spreading.
The echogram allows calculation of many room acous-
tic parameters. For example, to compute various re-
verberation time metrics, one needs the energy decay
curve

EDC(t) =
∫

∞

t
E(t ′)dt ′ (3)

=
∫

∞

t

M

∑
m=1

Amδ (t ′− τm)dt ′

=
M

∑
m

τm≥t

Am,

where

Am =Wm

(
N

∏
n=1

(1−αn)
pnm

)
. (4)

On a normalized logarithmic scale, the EDC becomes

L(t) = 10log10

 M

∑
m

τm≥t

Am

−10log10

(
M

∑
m=1

Am

)
.

(5)

Let t1 be the first time that L(t) drops below−5 dB and
t2 be the first time that L(t) drops below −25 dB. Then
the RT metric T20 becomes

T20 =
60(t2− t1)

L(t1)−L(t2)
(6)

=
6ln(10)(t2− t1)

ln(EDC(t1))− ln(EDC(t2))
.

Other RT metrics follow by simply replacing the corre-
sponding levels for t1 and t2. For example, for T30, the
corresponding levels are -5 dB and -35 dB, while for
EDT, the corresponding levels are 0 dB and -10 dB.

Clarity metrics likewise derive from the echogram. For
example, let t50 be the time 50ms after the first ray
arrives, i.e., t50 = τ1 +50ms. Then

C50 = 10log10

(∫ t50
τ1

E(t)dt∫
∞

t50
E(t)dt

)
(7)

= 10log10

(
τm≤t50

∑
m=1

Am

)
−10log10

 M

∑
m

τm>t50

Am


For the case of C80, the value t80 = τ1 +80ms replaces
t50 in Eq. (7).

2.2 Gradient-Descent Optimization

Model calibration requires adjusting the material prop-
erties expressed by the absorption and scattering coeffi-
cients so that simulated GA output matches measured
results. Accomplishing model calibration through nu-
merical optimization requires defining a suitable ob-
jective function, determining constraints for the free
variables, and a numerical technique to perform the
optimization.

A reasonable objective function applied in previous
works is to minimize the squared error between a mea-
sured and simulated room acoustic metric. Ranges
of published values can guide upper and lower-bound
constraints for the absorption coefficients [8], whereas
realistic ranges of scattering coefficient values may be
estimated from the geometric variations of the reflected
surface [3]. Choosing a suitable numerical technique
to perform the optimization is less straightforward.

If the objective function was convex, then any opti-
mization algorithm would likely be suitable. However,
both the Sabine and Eyring equations demonstrate that
many different combinations of absorption coefficients
applied to different surfaces can lead to the same RT. In
fact, these RT equations represent an under-determined
system of equations, where many free variables deter-
mine a single output value. Although GA models can
add a few more metrics such as clarity, there remains
the problem that only a few output metrics inform mate-
rial assignment of numerous unknowns. Consequently,
one anticipates that objective functions based on a few
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derived room acoustic metrics will be non-convex with
many local minima. That Christensen et al. [5] found
that the genetic algorithm produced unrealistic absorp-
tion coefficient combinations while still minimizing
their objective function further corroborates this claim.

In the case of an objective function with many local
minima, one reasonable approach is to choose the local
minima closest to the initial data. The use of man-
ual calibration motivates this choice because practi-
tioners often try to make small adjustments to main-
tain reasonable material properties. Developing an
algorithm which can make these minor adjustments in
a programmatic rather than guess-and-check fashion
would greatly facilitate GA model calibration. The nat-
ural choice of algorithm to accomplish this choice is a
gradient-descent approach.

In a gradient-descent algorithm, one begins with
an initial set of absorption coefficients ααα(0) =

[α
(0
1 ,α

(0)
2 , · · · ,α(0)

N ]T and makes iterative updates to
these values using the local gradient of the objective
function as

ααα
(k+1) = ααα

(k)−µ∇J(ααα(k)), (8)

where J is the objective function and µ is the step size
or learning rate.

Gradient-descent methods, while powerful and com-
putationally efficient, require the gradient of various
metrics with respect to the absorption coefficients. Be-
cause the metrics all make use of the echogram, it is
convenient to derive its gradient here. The derivative
of the ray’s energetic amplitude Am with respect to the
nth absorption coefficient is

∂

∂αn
Am =− pnmWm

(1−αn)

N

∏
n′=1

(1−αn′)
pn′m = Bnm (9)

where
Bnm =− pnm

(1−αn)
Am. (10)

Consequently,

∂

∂αn
E(t) =

M

∑
m=1

Bnmδ (t− τm). (11)

Because the ray path pnm remains fixed over the op-
timization, the gradient does not alter the temporal
values of the echogram, only the ray amplitudes. Im-
portantly, because Bnm relates to the already known

ray amplitude Am by two multiplies, these coefficients
may be computed with relative efficiency. In fact, to
compute the entire gradient for a room with N surfaces
(or materials) requires 2NM multiplications.

2.2.1 Gradient of Reverberation Time Metrics

Reverberation-time metrics follow from the energy de-
cay curve. Its derivative with respect to αn, referred to
for convenience as DEDCn, is

DEDCn(t) =
∂

∂αn
EDC(t) =

M

∑
m

τm≥t

Bnm (12)

which is simply a summation over the same temporal
indices as in the EDC(t) but with new ray amplitudes
given by Bnm.

For the purpose of optimization, it is convenient to
optimize with respect to reverberation rate, i.e.,

R20 = 1/T20 =
ln(EDC(t1))− ln(EDC(t2))

6ln(10)(t2− t1)
. (13)

so that a R20 = 1 s−1 means that a room decays 60 dB
per second. This choice places the EDC in the numera-
tor and yields a simpler expression for the gradient.

Before proceeding, note that

∂

∂αn
ln[EDC(t)] =

DEDCn(t)
EDC(t)

, (14)

so that, under the approximation that t1 and t2 may be
treated as constants, the gradient of R20 with respect to
the nth absorption coefficient becomes

∂R20

∂αn
=

1
6ln(10)(t2− t1)

(
DEDCn(t1)

EDC(t1)
− DEDCn(t2)

EDC(t2)

)
.

(15)

For other reverberation time metrics, such as EDT or
T30, one simply needs to change the time indices t1 and
t2 to correspond to those associated with the desired
metric.
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2.2.2 Gradient of Clarity Metrics

The gradient of clarity follows as

∂C50

∂αn
=

10
ln(10)

∂

∂αn

(
ln

(
τm≤t50

∑
m=1

Am

)
− ln

(
M

∑
τm>t50

Am

))

(16)

=
10

ln(10)


τm≤t50

∑
m=1

Bnm

τm≤t50
∑

m=1
Am

−

M
∑

τm>t50

Bnm

M
∑

τm>t50

Am

 .

For computing derivatives of C80, one need only replace
t50 with t80.

2.2.3 Optimization Algorithms

With closed-form solutions for the derivatives, it is
now possible to develop gradient-descent algorithms
to optimize absorption coefficient values in GA model
calibrations. First, define a squared-error objective
function between the measured R20 and simulated R̃20
as

JR20(ααα) = (R̃20(ααα)−R20)
2 (17)

where the dependence of R̃20 on the absorption coef-
ficients is made explicit. Taking the derivative with
respect to the absorption coefficients gives

∂

∂αn
JR20 = 2(R̃20−R20)

∂

∂αn
R̃20, (18)

where Eq. (15) gives the value of ∂

∂αn
R̃20. After a

single iteration, the nth absorption coefficient becomes

α
(k+1)
n = α

(k)
n −2µ(R̃(k)

20 −R20)
∂

∂αn
R̃(k)

20 . (19)

After computing a new set of absorption coefficients,
the new R̃(k+1)

20 follows by recomputing the echogram
using the same pnm but with the updated absorption
coefficient values.

Likewise for clarity, defining a squared-error objective
function as

J(ααα) = (C̃50(ααα)−C50)
2 (20)

gives an update of

ααα
(k+1) = ααα

(k)−2µ(C̃(k)
50 −C50)∇αααC(k)

50 (ααα). (21)

2.2.4 Combining Metrics and Source-Receiver
Pairs

The various room acoustic metrics may be added into
a single objective function. As discussed by Pilch [7],
each metric should first be normalized by a value of 1
JND to ensure equal weighting. Of course, one may
also choose to weight certain metrics over others, e.g.,
prioritizing RT metrics over clarity. In addition, multi-
ple source-receiver pairs may be added to optimize over
many positions. Because the gradient is a linear opera-
tor, averaging across source-receiver pairs amounts to
averaging each of their individual gradients in a global
update step. For more details on normalization proce-
dures, see [7].

2.3 Initialization Through
Reverberation-Time-Equation Calibration

Because of anticipated non-convex objective functions
with many local minima, choosing a good initial esti-
mate is essential to obtaining the most reliable results
[5]. Although the best initial values would follow from
careful measurements, using tabulated values available
in handbooks is often the only feasible option. How-
ever, these published values may significantly vary
from actual ones. Consequently, it would be bene-
ficial to apply an initial calibration step to ensure a
reasonable initial value ααα(0) to feed into the gradient-
descent algorithm. This work proposes the use of a
maximum-likelihood constrained optimization applied
to the Sabine equation to perform this task.

The Sabine equation expresses the RT as

T60 =
0.164V

ST ααα
(22)

where S is a vector containing the surface areas of each
wall. While GA models allow more complex physics
compared to the simplifications made to derive this re-
sult, the Sabine estimate is often reasonable, especially
for simply shaped rooms [9]. Rearranging terms shows
that all possible combinations of ααα which yield the
same value of T60 lie on the hyperplane defined by

ST
ααα = b, (23)

where
b =

0.164V
T60

(24)

is a constant.
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The aim of the RT pre-calibration is to ensure that the
gradient-descent algorithm’s initial values ααα(0) satisfy
the Sabine equation as a preliminary validity check.
Constructing a probabilistic model for each absorp-
tion coefficient allows one to choose the absorption-
coefficient-value combination which is mostly likely to
occur. This choice is necessary as there are an infinite
number of combinations which produce the same target
RT.

Because absorption is limited to 0 ≤ α ≤ 1, the trun-
cated normal distribution (see [10]), serves as a conve-
nient parameterized model of the probability. Using
the parameters µ and σ , the mean and standard devi-
ation of the untruncated normal distribution, one may
express the relative certainty of different absorption
coefficient values. In this way, one speaks of the likeli-
hood or probability of the absorption coefficient falling
between certain ranges. For example, a probability den-
sity function (PDF) defined by µ = 0.5 and σ = 0.01
would represent a material whose absorption coeffi-
cient value falls very near α = 0.5, whereas values of
µ = 0.1 and σ = 0.5 could be used to model a material
with low absorption but whose precise value is known
with little certainty. Tabulated datasets can assist in
choosing appropriate choices of µ and σ [8].

With a probabilistic model of each individual absorp-
tion coefficient, one may describe the likelihood of any
combination of ααα through a likelihood function

LN(ααα) =
N

∏
n=1

fn(αn; µn,σn), (25)

where fn are the individual probability density func-
tions of each absorption coefficient. Calibration re-
quires that the absorption coefficients produce the mea-
sured T60 according to the Sabine equation. Conse-
quently, one seeks to find the maximum likelihood of
this function on the hyperplane defined by ST ααα = b. In
practice, it is easier to maximize the log-likelihood

lN(ααα) = log[LN(ααα)] =
N

∑
n=1
−1

2

(
αn−µn

σn

)2

+Cn

(26)

where Cn is a scale-factor constant. The optimization
problem may be expressed as

maximize lN(ααα) (27)

subject to ST
ααα = b

0≤ αn ≤ 1.

Loosely speaking, among the set of absorption coef-
ficients which yield the desired T60, the maximum-
likelihood estimate (MLE) seeks to find the combi-
nation ααα(0) which is most likely to occur given the
probabilistic model.

Momentarily setting aside the inequality constraints,
the solution follows from Lagrange multipliers. The
Lagrangian is

L (ααα,λ )=

(
N

∑
n=1
−1

2

(
αn−µn

σn

)2

+Cn

)
+λ (ST

ααα−b).

(28)
Differentiating with respect to ααα and setting the result
equal to zero leads to

ααα
(0) = µµµ−

(
b̃−b
ST KS

)
Snσ

2
n , (29)

where

K =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

N

 (30)

is the covariance matrix and b̃ = ST µµµ . Importantly,
this form of calibration modifies absorption coefficients
with the highest uncertainty and that are attached to
the largest surface areas. This closed-form solution
assumes that the inequality constraints are inactive. In
the case a constraint is active, one must apply a numer-
ical method to find the minimum. However, the simple
expression of the objective function and constrains al-
lows straightforward implementation into commonly
available optimizers.

3 Results

The GA model under consideration is that of the abbey
church Saint-Germain-des-Prés (Fig. 1). Postma and
Katz [3] contains more details on the GA model cre-
ation and room acoustic measurements for this building.
Although that work considered manual adjustments of
absorption and scattering coefficients to calibrate aver-
aged metrics across source-receiver pairs, the present
work applies the proposed method as part of an auto-
mated calibration procedure.

First, the initial absorption and scattering coefficient
values were the same initial values appearing in [3], Ta-
ble 4. While [3] adjusted scattering coefficient values
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during their calibration procedure, the present work
can only modify absorption coefficients so that the scat-
tering coefficients remained fixed. Next, an in-house
ray-tracing program evaluated the church’s energetic
response for two source and six receiver locations as
shown in Fig. 1. The green dotted curves in Fig. 1(b)-(e)
indicates the averaged T20, EDT , C50, and C80 across
the twelve source-receiver pairs using the initial values
contained in [3] with no effort at calibration. Similar to
[3], the initial values underestimate RT metrics at low
frequencies.

Second, the pre-calibration step applied the RT-
initialization using the MLE constrained optimization.
A three-tiered ranking determined the material uncer-
tainties σ . Materials with high uncertainty values, such
as the alter, pulpit, organ, or pews, used a value of
σ = 0.1. Those with lower uncertainty, such as the
stone floor, used a value of σ = 0.01, while all other
materials used σ = 0.05. The MLE step then cali-
brated the initial absorption data against the averaged
T20 across the twelve source-receiver pairs. Applying
these adjusted absorption coefficient values to the ray-
tracing results produced the metrics appearing as blue
dash-dot curves in Fig. 1(b)-(e). This simple step, fol-
lowing from a closed-form solution, already yielded
significant improvement; all metrics fell within 1.5
JND and both clarity metrics fell within 1 JND.

Lastly, the gradient-descent calibration procedure si-
multaneously optimized across the two sources, six
receivers, and four room acoustic metrics (T20, EDT ,
C50, and C80) for each octave band. Using a metric
weighting of [2, 0.1, 1, 1], respectively, favored adjust-
ing metrics which had the worst agreement after the
MLE step. The optimization required roughly three
minutes (CPU: Intel i7, RAM: 32 GB). Results after
twenty iterations appear as the dashed red curves in
in Fig. 1(b)-(e). For all cases, the averaged value fell
within 1 JND of the averaged measured value across
the twelve source-receiver pairs.

4 Discussion

The two primary challenges of calibrating a GA model
are first, ensuring agreement between measured and
simulated data and second, ensuring reasonable cali-
brated absorption coefficient values. To achieve the lat-
ter, the proposed method employs two key approaches:
an initialization based on maximum-likelihood estima-
tion using statistical models of material uncertainties

and a gradient-descent algorithm which provides mi-
nor iterative adjustments to the absorption coefficient
values.

Although the method also employed inequality con-
straints as in [5, 7], during the calibration procedure
these constraints remained inactive as the adjustments
were very small. For example, the maximum change
in absorption coefficient values between the initial ma-
terial properties and the MLE initialization was only
five percent absorption. The gradient-descent approach
modified the MLE coefficients further by at most an-
other four percent absorption. The final calibrated val-
ues all fell within four percent absorption of the initial
values used in [3]. Consequently, one strength of the
proposed algorithm is its ability to tune the model us-
ing only minor adjustments. This essentially shifts the
focus of model calibration onto obtaining the most re-
alistic initial absorption coefficient values and properly
quantifying material uncertainty, rather than hoping
that algorithms producing widely fluctuating values
will yield a meaningful end result.

5 Summary

This work derived a gradient-descent optimization ap-
proach to calibrating geometric acoustic models. The
technique followed by differentiating room metrics
with respect to the absorption coefficients. An ini-
tialization procedure based on maximum-likelihood
estimation employed a statistical model of material un-
certainty to improve calibration results. Application of
the model to the abbey church Saint-Germain-des-Prés
demonstrated its ability to tune absorption coefficient
parameters in order to acheive 1 JND agreement be-
tween measurements and simulations. Future work
includes validating the method in different rooms, de-
veloping analytic methods to optimize scattering coef-
ficients, and improving statistical modeling of material-
property uncertainty.
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Fig. 1: (a) GA model of Saint-Germain-des-Prés with the source-receiver locations used in the calibration. Averaged
values of room metrics including (b) T20, (c) EDT , (d) C50, and (e) C80, during the calibration procedure.
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