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NONNEGATIVE POLYNOMIALS AND MOMENT PROBLEMS ON ALGEBRAIC CURVES

LORENZO BALDI*, GRIGORIY BLEKHERMAN †, AND RAINER SINN‡

Abstract. The cone of nonnegative polynomials is of fundamental importance in real algebraic geometry, but its
facial structure is understood in very few cases. We initiate a systematic study of the facial structure of the cone
of nonnegative polynomials P on a smooth real projective curve X. We show that there is a duality between its
faces and totally real effective divisors on X. This allows us to fully describe the face lattice in case X has genus
1. The dual cone P∨ is known as the moment cone, and it plays an important role in real analysis. We compute
the Carathéodory number of P∨ for an elliptic normal curve X, which measures the complexity of quadrature
rules of measures supported on X. This number can also be interpreted as a maximal typical Waring rank with
nonnegative coefficients. Interestingly, the topology of the real locus of X influences the Carathéodory number of
P∨. We apply our results to truncated moment problems on affine cubic curves, where we deduce sharp bounds
on the flat extension degree.
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1. Introduction

Providing representation for real nonnegative polynomials is a fundamental challenge in real algebraic
geometry, dating back to the works of Hilbert [Hil88] and Artin [Art27] on the existence of sums of squares
representations. Over the last century, these results, now called Positivstellensätze, have been extensively
studied and generalized, see e.g. [Mar08]. However, the geometric properties of the set of nonnegative
polynomials are less understood. More specifically, the polynomials of degree 2d nonnegative on a variety
X form a convex cone, which we denote PX,2d , but its facial structure is fully known only in very few cases
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[Sch21,Kun14]: degree 2d univariate polynomials (or equivalently, quadratic polynomials on the rational
normal curve), quadratic polynomials on Rn and quartic polynomials on R2.

We initiate a systematic study of the facial structure of the cone of nonnegative polynomials on a real
projective curve X. We show that there is a nice duality between the faces of the cone of nonnegative
polynomials and totally real divisors on X. For elliptic normal curves, which is the natural next step from
the known case of the rational normal curve, we provide a complete description of the face lattice of PX,2d .
Interestingly, our description is independent of the topology of the real locus of the elliptic curve.

While the cone of nonnegative polynomials is a central object in real algebraic geometry, its dual convex
cone P∨X,2d plays an important role in real analysis for the study of truncated moment problems. In the
analysis literature, P∨X,2d is called the moment cone. It corresponds to the convex cone of linear functionals,
acting on polynomials of degree 2d, that can be written as integration with respect to a measure supported
on X. We leverage our understanding of the cone of nonnegative polynomials on elliptic normal curves to
find the Carathéodory number of themoment cone, improving results of [dK21]. The Carathéodory number
is an important parameter for the complexity of quadrature formulas [RS18], and can also be interpreted
as the maximal rank in a real symmetric tensor decomposition with nonnegative coefficients. Interestingly,
we find that the Carathéodory number depends on the topology of the real locus: smooth totally real genus
one curves can have either one or two connected components, and the Carathéodory number is different in
these two cases.

Finally, we leverage our projective study to investigate the truncated moment problem on smooth affine
planar cubic curves. These truncated moment problems (for specific rational curves), have been studied e.g.
in [Fia11,Zal23]. We provide sharp degree bounds for flat extension, improving the known results. The flat
extension bounds apply to all smooth cubic curves, and depend on the real topology of X and the number
of points that X has at infinity. Based on these results we can claim that the truncated moment problem on
smooth cubic planar curves is now fairly well-understood.

1.1. Main results. In this section, we state our main contributions. For a detailed comparison with the
existing literature, we refer the reader to Section 1.2.

For the study of nonnegative polynomials, it is more convenient to work with homogeneous polynomials
(forms) on projective varieties. This is the approach we will take until we discuss moment problems, which
are traditionally considered on affine varieties. Let X ⊂ Pn = Pn(C) be a real projective curve, and denote
the real locus of X by X(R) ⊂ Pn(R). We work with totally real curves, i.e. curves such that X(R) is Zariski
dense in X. Our main object of study is the cone of nonnegative forms on X of degree 2d. By replacing
X with the d-th Veronese embedding νn,d(X) we may restrict ourselves to analyzing nonnegative quadratic
polynomials on real curves, and thus we define

PX,2 ≔
{
q | degq = 2 and for all A ∈ X(R), q(A) ≥ 0

}

to be the convex cone of quadratic forms nonnegative on X(R). It is known that PX,2 is a closed, pointed
convex cone in the real vector space R2 of quadratic forms on X. When the context is clear we will also
simply use P to denote PX,2.

The cone PX,2 has one zero dimensional face: the origin. One-dimensional faces of PX,2 are its extreme
rays. To any positive dimensional face F we associate a unique totally real effective divisor div(F), which we
call the face divisor of F, as follows. The face divisor is equal to half the real part of the divisor divq, for any
quadric q in the relative interior of F. In the converse direction, to any totally real effective divisor D we
associate the face FD consisting of all quadratic forms q such that divq ≥ 2D. The above allows us to define
a two maps Φ and Ψ between faces F ⊂ P and totally real effective divisors on X: Φ which sends a positive
dimensional face of PX,2 to its face divisor div(F), and the mapΨ which sends a totally real effective divisor
D to its associated face FD . We show that the maps Φ and Ψ form a Galois connection between the positive
dimensional faces of PX,2 and the partially ordered set of totally real effective divisors in the image of Φ,
i.e. the poset of face divisors.

Theorem A (see Theorem 3.2.5 and Theorem 3.2.6). Let (F \{{0} },⊂) be the poset of positive-dimensional faces
of PX,2, ordered by inclusion. Then Φ andΨ form a Galois connection between (F \{{0} },⊂ ) and the face divisors
(ImΦ,≤). This means that, for all positive dimensional faces F ∈ F \ {{0} } and face divisors D ∈ ImΦ:

div(F) ≤D ⇐⇒ F ⊇ FD
2



Moreover, we have (Ψ ◦Φ)(F) = Fdiv(F) = F for all F ∈ F \ {{0} }.
The study of the face lattice of P thus reduces to understanding the following crucial question: which

totally real effective divisors are face divisors of some face F of P? For the case of the rational normal curve
X = ν1,d (P1) ⊂ Pd it is known (see Example 3.1.1) that any real effective divisor of degree at most d is a
face divisor, i.e. there are no constraints on face divisors, except for the natural restriction on the degree.
We will show that the situation is only slightly more complicated in genus 1, i.e., for elliptic normal curves
X ⊂ Pn. In particular, for rational and elliptic normal curves the poset of divisors associated to faces of P
is a lower set in the poset of all divisors. That means that if D′ ≤ D for a face divisor D, then D′ is also a
face divisor: in this case, we can extend the Galois connection in Theorem A from the face divisors to all
totally real effective divisors. As we show in Example 3.2.8, the set of face divisor is not always a lower set
in Div(X): therefore we ask the following question.

Question. For which projective curves X is the set of face divisors a lower set in the poset Div≥0(X)?

To study the case of elliptic normal curves, we connect extreme rays of P defined by nonnegative quadrics
with the maximal number of real zeroes to positive two-torsion points in the Jacobian of X, see Defini-
tion 3.4.4. In particular, we have the following asymptotic result, which holds in arbitrary genus.

Theorem B (see Corollary 3.4.10). Let X ⊂ Pn be a totally real smooth irreducible curve of genus g . For all
sufficiently large d, there are 2g distinct families of extreme rays of PX,2d defined by forms with the maximal
number of real zeroes, which are parametrized by the positive 2-torsion points J(X)+2 � (Z/2Z)g .

In Theorem B we study only extreme rays defined by forms with the maximal number of real zeros.
However, it is shown in Example 3.3.3 that not all the extreme rays are always of this form. It is therefore
natural to ask the following question.

Question. Describe all extreme rays of PX,2d for sufficiently large d.

We now investigate in detail the genus one case. For the special case of plane cubics, we describe in Sec-
tion 4.1 the facial structure of the cone of nonnegative quadratic forms by elementary methods, providing
explicit Artin-type nonnegativity certificates. More generally, the previous results allow us to completely
describe the facial structure of PX,2d for elliptic normal curves. Since the Veronese embedding of an elliptic
normal curve is again an elliptic normal curve, also in this case it is sufficient to study the cone PX,2 on
nonnegative quadratic forms.

Theorem C (see Theorem 4.2.3). Let X ⊂ Pn be a totally real elliptic normal curve with embedding given by
the divisor E. If we denote {O,T } = J(R)+2 the positive 2-torsion points, then all the proper faces of PX,2 can be
described as follows:

(i) FD , where D is a totally real effective divisor of degree 1 ≤ degD ≤ n. In this case, we have dimFD =
2(n+1−degD).

(ii) FD , where D is a totally real effective divisor of degree n + 1 such that [D − E] = O ∈ J(R)+2 . In this case,
FD = R≥0 · q is an extreme ray of P and q = ℓ2 is the square of a linear form.

(iii) FD , where D is a totally real effective divisor of degree n+ 1 such that [D − E] = T ∈ J(R)+2 . In this case,
FD = R≥0 · q is an extreme ray of P, and q is not a sum of squares.

It is clear that on an elliptic normal curve X ⊂ Pn any face divisor FD has degree at most n + 1, since
degX = n+1. Theorem C shows that up to degree n any totally real effective divisor D is a face divisor. On
the other hand, if D has degree n+1 then D is a face divisor if and only if the points of D sum (in the group
law of X) to a positive 2-torsion point. Theorem C also shows that the set of face divisors is a lower set in
the poset of totally real effective divisors on X, as in the case of P1.

Now we move to the study of the dual cone P∨X,2, which consists of linear functionals in the dual space
to quadrics on X, that can be expressed as integration with respect to a measure supported on X(R). Equiv-
alently, P∨ is the convex hull of the set of point evaluations on the points of X(R), restricted to quadrics on
X. The Carathéodory number CX,2 of P∨X,2 is the minimal natural number CX,2 such that any linear functional
L ∈ P∨X,2 is conic sum of at most CX,2 point evaluations. This important problem has been studied from
different perspectives, and it is equivalent to determining the minimal number of nodes in a quadrature
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rule, or the maximal rank in a symmetric tensor decomposition with nonnegative coefficients. We refer the
reader to Section 1.2 for a detailed comparison with the existing literature.

In particular, the study of the nonnegative cone on elliptic normal curves allows us to determine the
Carathéodory numbers, which remarkably depend on the topology of the real locus of the curve.

Theorem D (see Theorem 5.1.4). Let X ⊂ Pn be a totally real elliptic normal curve.

(i) If X(R) is connected, then CX,2 = degX = n+1.
(ii) If X(R) is disconnected, then CX,2 = degX +1 = n+2.

The proof of Theorem D is inspired by Hilbert’s proof that every nonnegative ternary quartic is a sum
of at most three squares (see [BPSV19] for a modern exposition). It is natural to ask if the same proof
technique can be applied to curves of higher genus as well.

Question. Is the Carathéodory number determined by the topology of X(R) for curves of arbitrary genus and
sufficiently high degree?

We now describe our results on the truncated moment problem. We switch from the projective setting
to the affine one, and focus on the planar case, which is the most studied in the literature. Let then X be
an affine real cubic plane curve, whose projectivization is smooth. In this affine setting, the moment cone
P∨X,≤2d is not necessarily closed, and it is equal to the projective moment cone minus the evaluations at
points at infinity.

The moment problem consists of determining, for a linear functional L, whether L ∈ P∨X,≤2d or not. The
most effective and studied criterion to solve this problem is the flat extension criterion, which can be de-
scribed as follows. Given a linear functional L acting on polynomials on degree ≤ 2d, we say that L̃, acting
on polynomials of degree ≤ 2d +2, is a flat extension of L if:

(i) L is the restriction of L̃ to polynomials of degree ≤ 2d; and
(ii) the bilinear forms (p,q) 7→ L(pq) and (p,q) 7→ L̃(pq) (defined respectively on polynomials of degree
≤ d and ≤ d +1) have the same rank.

The flat extension criterion states that if L has a flat extension, then L ∈ P∨X,≤2d .
Leveraging our projective study of the Carathéodory numbers, we show that for plane cubics the flat

extension criterion is not always a necessary condition for L ∈ P∨X,≤2d . To find an effective necessary con-

dition, we introduce the notion of almost flat extension of L. This is an extension L̃ of L to degree ≤ 2d + 4,
where the rank of the associate bilinear forms is allowed to grow by one, instead of remaining constant (see
Definition 6.1.2 for a precise definition).

With the use of almost flat extensions, we can solve the moment problem for affine plane cubics .

Theorem E (see Proposition 6.2.1 and Theorems 6.2.2 and 6.2.4). Let X(R) ⊂ R2 be the affine real locus
of a totally real plane cubic, whose projectivization X is smooth, and let L be a linear functional acting on
R[x,y]≤2d

/
I (X)≤2d . Then L is a moment linear functional if and only if L admits an almost flat extension.

Moreover:

(i) ifX(R) is connected and the projective closureX(R) contains only one point at infinity, then L is a moment
linear functional if and only if L admits a flat extension;

(ii) if X(R) has two connected components, then L is a moment linear functional if and only if L admits an
almost flat extension, and the almost flat extension condition cannot be replaced by flat extension.

To the best of our knowledge, this is the first solution of themoment problem for irreducible, nonrational
curves. We refer to Section 1.2 for a detailed comparison with the existing literature.

1.2. Related works. The first part of the manuscript deals with the geometrical properties of the convex
cone of nonnegative polynomials, and in particular on the set of extreme rays (see Theorem A and Theo-
rem B). The first results in this direction were obtained in [CL77], where they provide several examples of
extreme rays (that are not SoS) of the nonnegative cone for the case X = Pn. In particular, they highlight
the role of the zeroes of nonnegative polynomials, to determine if they define extreme rays or not. We refer
to the survey [Rez00] for more details on the developments in the twentieth century, and to [Sch21] for the
description of Hilbert’s cases and other results of local nature.
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Beyond such results, the case of ternary sextics was studied recently in [KS18]. In particular, the authors
characterize the sets of nine points in the projective plane that admit a nonnegative, extreme ternary sextic
vanishing precisely on them. These results are only partial, and before Theorem C a complete description
of the extreme rays and the faces of the nonnegative cone was known to be possible only for Hilbert’s cases.

Results related to our study of nonnegative quadratic forms have been discussed in [Vin93] and [Kum19]
for nonnegative differential forms. In these works the properties of the real Jacobian variety are exploited,
in analogy to Theorem B and Theorem C.

We now focus on the study of the dual convex cones P∨X,2, and in particular of their Carathéodory num-
bers. Exact results concerning Carathéodory numbers are rare in the literature. The rational univariate
case is e.g. completely solved in [Sch17, Cor. 9.16]. To the best of our knowledge Theorem C is the first
complete description for non-rational curves, and the first time where the topology of the real supporting
set is shown to play a key role in the analysis of Carathéodory numbers.

Asymptotic estimates for Carathéodory numbers on (affine) curves have been recently studied in [RS18].
There, the point of view is the one of minimal nodes necessary for quadrature rules. Other asymptotic
estimates for compact affine curves can be found in [dK21, Th. 4.8]. Theorem C shows that, in the genus
one case, the topology of the real locus distinguishes between the two possibilities left open from [dK21,
Th. 4.8]. Other estimates on the Carathéodory numbers for higher dimensional cases have been investigated
in [dS18,dK21,GHK23].

We can also interpret the Carathéodory number as the rank of a real symmetric tensor decomposition
with nonnegative coefficients, using forms supported on the Veronese embedding of the curve (we refer
to Section 5.2 for more details). The similarities and differences between the complex case, real case, and
real case with nonnegative coefficients have been investigated in [QCL16, BS16, Ang17, ABC18]. Finally,
let us mention that our results on Carathéodory numbers rely on the analysis of convex hulls of (Veronese
embeddings of) curves. The existence of semidefinite representations for such convex hulls was studied in
[Hen11,Sch11,Sch18].

We conclude by studying the moment problem in the case of affine plane cubic curves in Theorem E.
This problem has been studied in [Fia11] for the curve y = x3, in [Zal23] for curves of the form y = q(x) and
yxℓ = 1, and in [Zal22] for the union of parallel lines. Other results for curves defined by sparse equations
have been studied in [Zal21]. All these works deal with (unions of) rational curves, and the authors are
able to characterize membership in the moment cone with the flat extension condition (partial studies for
genus one curves can be found in [Bha20]). The flat extension condition is not necessary in our genus one
case, and to overcome this problem we introduce the notion of almost flat extension. Moreover, we remark
that these results apply for linear functionals L ∈ P∨X,≤2d for large enough d, while Theorem E applies for
any d ≥ 1.

1.3. Structure of the manuscript. The next sections are structured as follows. In Section 2 we summarize
the necessary preliminaries on real algebraic curves (Section 2.1), convex geometry (Section 2.2) and on the
duality between nonnegative forms and measures (Section 2.3).

In Section 3, we start by presenting the facial structure of PP1,2d (Section 3.1). To generalize the descrip-
tion to arbitrary curves, we show in Section 3.2 how to move in the general case from the faces of the cone
of nonnegative quadrics to (totally real, effective) divisors and, vice versa, from divisors to faces. We then
turn our attention to the dimension of the faces in Section 3.3. We finally describe the extreme rays arising
from nonnegative quadrics with the maximal number of real zeroes in Section 3.4.

In Section 4, we investigate the genus one case, and in particular plane cubics (Section 4.1) and elliptic
normal curves (Section 4.2), showing a complete description of the facial structure of the nonnegative cone.

In Section 5 we move to the dual setting, i.e. to the study of Carathéodory numbers for elliptic normal
curves. In Section 5.1 we determine exactly the Carathéodory numbers in both the connected and discon-
nected case, while in Section 5.2 we interpret our results in terms of Waring decompositions.

Section 6 is dedicated to the study of flat extension properties for affine plane cubic curves. In Section 6.1
we introduce the concept of almost flat extension, and in Section 6.2 we prove that whether flat extension
and almost flat extension are necessary and sufficient to solve themoment problem depends on the topology
of the real locus and on the number of real points at infinity.
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2. Preliminaries

To make the article accessible to different audiences, we summarize in this section the basic definitions
and notations about real algebraic curves (Section 2.1), convex geometry (Section 2.2), and finally about
nonnegative forms and moment problems (Section 2.3).

2.1. Real algebraic curves. We refer to [Man20] for the basics of real algebraic geometry, which we briefly
recall in this section. In the following, varieties are always to be understood as reduced, (geometrically)
irreducible and smooth.

AnR-variety is a pair (X,σ), whereX is an (abstract) complex algebraic variety and σ is an anti-regular (or
anti-holomorphic) involution on X, see [Man20, Def. 2.1.12]. We will often omit σ from the notation. The
real locus of the R-variety (X,σ), denoted X(R), is the set of fixed points for σ, i.e. X(R)≔ {x ∈ X : σ(x) = x }.
We denote by C(X) the C-algebra of rational functions and by R(X) the R-algebra of real rational functions
on X. We say that an R-variety is totally real if X(R) is Zariski dense in X (these are called varieties with
enough real points in [Man20]).

Concretely, we are interested in real algebraic projective subvarieties, which we call real varieties for short.
These are subvarieties X ⊂ Pn = Pn(C) of the projective space, which are invariant under the natural invo-
lution of Pn, i.e. the coordinate-wise conjugation. Equivalently, real varieties X ⊂ Pn are given as the
zero locus of (finitely many) real n-variate homogeneous polynomials {p1, . . . ,pa} ⊂ R[x0, . . . ,xn] = R[x].
The real homogeneous coordinate ring is R[X] = R[x]/I , where I = I (X) is the ideal of (real) polynomi-
als vanishing on X ⊂ Pn. R[X] is a graded ring, with the grading induced by R[x] = R[Pn]. We denote
by Rk ≔ R[X]k = R[x]k/Ik the k-graded part, i.e. the R-vector space of homogeneous real polynomials (or
forms) of degree k on X(R). The field of real rational functions on X is R(X) = Quot(R[U ]), where U ⊂ X is
an open real affine variety and R[U ] is the coordinate ring of U .

If dimX = 1 (dimension as a complex algebraic variety), we say that (X,σ) (resp. X ⊂ Pn) is a R-curve
(resp. a real projective curve). When X is totally real, the real locus X(R) of aR-curve is a real differentiable
manifold of dimension 1.

A (Weil) divisor D =
∑
A∈X aAA on a curve X is an element of the free abelian group on the points of X.

This means that a divisor is a formal combination of points A ∈ X with integer coefficients aA ∈ Z, where
aA = 0 for all but finitely many A ∈ X. We denote by (DivX,+) the abelian group of divisors on X. A divisor
D =

∑
A∈X aAA ∈ DivX is called effective if aA ≥ 0 for all A. The support of D, denoted suppD, is the set of

A ∈ X such that aA , 0.
We say that a divisor D =

∑
A∈X aAA on a R-curve X is real if it is invariant under σ, i.e. if

∑
A∈X aAA =∑

A∈X aAσ(A). We say that D =
∑
A∈X aAA is totally real if the support of D is contained in X(R), i.e. if

aA = 0 for all A ∈ X \X(R). We are particularly interested in totally real effective divisors, i.e. divisors with
nonnegative integer coefficients whose support is included in X(R).

Given a divisor D =
∑
A∈X aAA, we write DR =

∑
A∈X(R)aAA and DC =

∑
A∈X\X(R)aAA. Then D is totally

real if and only if D =DR.

2.2. Convex geometry. We refer to [Roc70,Bar02] for the basics of convex geometry, which we briefly recall
in this section.

Given a finite dimensional vector space V , we call C ⊂ V a convex cone if R≥0 ·C ⊂ C and C+C ⊂ C. Given
B ⊂ V , we denote by cone(B) the smallest convex cone containing B, called the conic hull of B. We say that a
convex cone C is closed if it is closed as a subset of V with the Euclidean topology. We say that C is pointed
if C ∩ −C = {0}. In this paper, we will mostly work with convex cones inside R2 = R[X]2, the real vector
space of quadratic forms restricted to a totally real projective curve X ⊂ Pn.

A face of a convex cone C is a convex subset F ⊂ C such that, for all a,b ∈ C, a + b ∈ F implies a ∈ F and
b ∈ F. The dimension of a face F, denoted by dimF, is the dimension of the smallest vector subspaceW ⊂ V
containing F, called the linear span of F. Faces of dimension one are called extreme rays of C. A closed
pointed convex cone is equal to the conic hull (or convex hull) of its extreme rays, see e.g. [Roc70, Th. 18.5].

The relative interior of a face F, denoted riF, is the interior of F when regarded as a subset of its linear
span, equipped with the Euclidean topology. If, given two faces F1,F2 ⊂ C, there exists a ∈ riF1 ∩ riF2, then
F1 = F2 (see [Roc70, Th. 18.1.2]).
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Given a real vector space V , we denote by V ∗ ≔ homR(V ,R) the dual space of R-linear functions. If
C ⊂ V is a convex cone, C∨ ≔ {L ∈ V ∗ : L(V ) ⊂ R≥0 } is the dual cone to C. A face F ⊂ C is called exposed if
F = L−1(0)∩C for some L ∈ C∨.

Conic duality states that, given a closed convex cone C, we have (C∨)∨ = C.

2.3. Nonnegative forms and the moment problem. We refer to [BPT12, BSV16, Sch17] for the study of
cones of nonnegative forms and their dual cones.

In the following, we consider a totally real projective subvariety X ⊂ Pn. If k = 2d is even, every q ∈ R2d =
R[X]2d has a well-defined sign on every A ∈ X(R). We write q(A) ≥ 0 (resp. q(A) ≤ 0) if the sign of q at A is 0
or positive (resp. negative). If the form q is such that q(A) ≥ 0 for all A ∈ X(R), we say that q is nonnegative.
We define:

PX,2d ≔
{
q ∈ R2d | ∀A ∈ X(R) q(A) ≥ 0

}
=
{
q ∈ R2d | q is nonnegative

}

ΣX,2d ≔



r∑

i=1

p2i ∈ R2d | r ∈N, p1, . . . pr ∈ Rd



The elements of ΣX,2d are called sums of squares forms. Clearly, every sum of squares is nonnegative, i.e.
ΣX,2d ⊂ PX,2d . When clear from the context, we will write P ≔ PX,2d and Σ ≔ ΣX,2d . P and Σ are full
dimensional, closed, pointed convex cones in the vector space R2d , see [BSV16].

The dual convex cone P∨ can be characterized as follows. Denote by X̂(R) ⊂ Rn+1 the affine cone over
X(R) ⊂ Pn(R), and by Sn the unit sphere in Rn+1. For every x ∈ X̂(R), denote by evx ∈ R∗2d the point
evaluation at x, i.e. evx(q)≔ q(x) for q ∈ R2d . Then:

P∨ = P∨X,2d = cone
(
evA : A ∈ X̂(R)

)

see [BSV16]. We will often replace X̂(R) by X(R), writing evA for A ∈ X(R), identifying A with any of
its affine representatives in X̂(R)∩Sn. The moment problem is the problem of determining, given L ∈ R∗2d ,
whether L ∈ P∨ or L < P∨.

If L ∈ P∨, we define the Carathéodory number of L as:

CX,2d (L)≔min
{
r ∈N | ∃x1, . . . xr ∈ X̂(R) s.t. L ∈ cone(evx1 , . . . ,evxr )

}

and the Carathéodory number of P∨ as

CX,2d ≔max
{
CX,2d (L) : L ∈ P∨

}

Themain goal of this article is to study in detail the convex cones PX,2d , P
∨
X,2d , to determine the Carathéodory

number CX,2d when X ⊂ Pn is a totally real elliptic normal curve, and finally to apply these results to solve
the moment problem on affine plane cubics.

3. The convex cone of nonnegative forms on projective curves

In the following, X ⊂ Pn is a smooth, irreducible, totally real projective curve. We want to study the
convex cone PX,2d ⊂ R2d = R[X]2d of nonnegative forms on X(R) of degree 2d. We can restrict to the case
d = 1, since R[X]2d � R[νn,d(X)]2, where νn,d(X) denotes the d-th Veronese embedding of X ⊂ Pn.

We then fix P = PX,2. Our goal is to understand the relationship between faces F ⊂ P and totally real
effective divisors D ∈DivX. Recall that, given any divisor D ∈Div(X), we can uniquely write D =DR +DC,
where suppDR ⊂ X(R) and suppDC ⊂ X \X(R), and a divisor D is totally real if and only if D =DR.

3.1. Bivariate forms. Before developing the general theory, we describe the special case of P1. For a bivari-
ate form q ∈ R[x0,x1]2d , we denote divq its divisor of zeroes and write divq = (divq)R + (divq)C, where the
support of (divq)R and (divq)C is included in P1(R) and P1 \P1(R) respectively.

Example 3.1.1 (see also [Sch21, Prop. 1.4.4]). Let P = PP1,2d be the convex cone of nonnegative bivariate
homogeneous polynomials, or bivariate forms, of degree 2d. Every nonnegative q ∈ P has all zeroes with
even multiplicity on P1(R) (otherwise q changes sign). We therefore have (divq)R = 2D, for some totally
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real effective divisor D of degree ≤ d. We can determine the faces of P by specifying real zeroes on P1, as
follows: given a totally real effective divisor D of degree ≤ d, we define

FD ≔ {q ∈ P | divq ≥ 2D }
These are faces of P. By divisibility properties of univariate polynomials, every divisor D imposes 2degD
conditions in the 2d +1 dimensional space of bivariate forms R[x0,x1]2d . More precisely, we have dimFD =
2(d −degD) + 1, as we show in the following.

• If D = 0 is the empty divisor, then FD = P, and we want to show that dimP = 2d + 1. Therefore we
only need to show that P has nonempty interior. But this is clear, as e.g. the form x2d0 +x2d1 is strictly
positive on P1(R), and it can be perturbed in any direction while remaining strictly positive.

• If D = A for some A ∈ P1(R), then FD = FA consists on nonnegative forms vanishing on A. This
imposes two conditions on form of degree 2d, and FD is full dimensional in its 2(d − 1) + 1 linear
span given by VD ≔ {q ∈ R[x0,x1]2d : multA(q) ≥ 2 }. For instance, if A = (a : b), then the form
(bx0 − ax1)2(x2d−20 + x2d−21 ) lies in the relative interior of FD , as it vanishes exactly with multiplicity
2 at A on all P1(R): div((bx0 − ax1)2(x2d−20 + x2d−21 ))R = 2A.

• In general, if D is a totally real effective divisor with degD ≤ d, then FD is full dimensional in
VD = {q ∈ R[x0,x1]2d : divq ≥ 2D }, which is a 2(d −degD) + 1 dimensional vector space. A point in
the relative interior of FD can be constructed as follows. If D = A1+ . . .+Ak for points Ai = (ai : bi ) ∈
P1(R), set f =

∏k
i=1(bix0 − aix1)2. Then f (x2d−2k0 + x2d−2k1 ) lies in the relative interior of FD ⊂ VD .

All the faces of P are of the form FD for some totally real effective divisor D. Indeed, if F ⊂ P is a face, then
pick q ∈ riF, and write (divq)R = 2D. It is then possible to show that q ∈ riFD , and therefore F = FD from
[Roc70, Cor. 18.1.2] (see also Lemma 3.2.1).

In the next sections, we will generalize Example 3.1.1 to arbitrary totally real projective curves X ⊂ Pn.

3.2. Faces and divisors. Let X ⊂ Pn be a smooth, irreducible, totally real projective curve. For 0 , q ∈C[X]
we consider the divisor of q, see e.g. [Sha13, p. 152], denoted divq. This divisor encodes the intersection
points (with multiplicity) of X inside Pn with the hypersurface defined by any Q ∈C[x] such that Q+I(X) =
q in C[X]: divq =

∑
A∈XmultA(Q)A. We have deg(divq) =

∑
A∈XmultA(Q) = degq ·degX.

We now consider q ∈ P ⊂ R2 = R[X]2. Since q does not change sign on X(R), it does not change sign on
any connected component of X(R). Therefore, if q has a zero at A ∈ X(R), the multiplicity of q at A is even.
This implies that (divq)R = 2D for some effective totally real divisor D.

We now show that any non-zero face F ⊂ P determines a unique totally real effective divisor D on X ⊂ Pn.

Lemma 3.2.1. Let {0} , F ⊂ P be a face. Then there exists a unique totally real effective divisor D ⊂Div(X) such
that, for all q in the relative interior of F, (divq)R = 2D.

Proof. For A ∈ X(R), let µA =min{multA(q) : q ∈ F }/2. Note that, since F , ∅, we have µA , 0 only for finitely
many A ∈ X(R) (any quadratic form q ∈ C[X], q , 0, only vanishes at finitely many points on X). We show
that, for all q ∈ F and A ∈ X(R), multA(q) > 2µA implies q < riF. So we define the totally real effective divisor
D ≔

∑
A∈X(R)µAA. The following argument then shows (divq)R = 2D for all q ∈ riF as claimed.

Consider the vector space VA = {q ∈ R2 : multA(q) ≥ 2µA }. By definition, F ⊂ VA. We construct a linear
functional L : VA → R as follows. Consider a local parameter t at A ∈ X(R), and expand q ∈ VA locally
around A so that q = aqt

2µA + . . . , where the dots represent higher order terms in t. We define L(q) = aq.
Since every q ∈ F is nonnegative on X(R) we conclude L(q) ≥ 0 for all q ∈ F, i.e. L ∈ F∨ ⊂ V ∗A. By definition
of µA, there exists a form g ∈ F with multA(g) = 2µA, which implies L(g) > 0. So L defines a supporting
hyperplane to F containing any q ∈ F with multA(q) > 2µA, showing q < riF. �

Since the divisor (divq)R is equal for all q ∈ riF by Lemma 3.2.1 we can make the following definition.

Definition 3.2.2. Given a face { {0} } , F ⊂ P, we define the face divisor of F as the unique totally real divisor
div(F) such that (divq)R = 2div(F) for all q ∈ riF.

We therefore have a way tomove from faces to divisors. We can also move naturally in the other direction,
as follows.
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Definition 3.2.3. Given a totally real effective divisor D, we define

FD ≔ {q ∈ P : div(q) ≥ 2D}
the face of P consisting of quadratic forms vanishing on X(R) with at least twice the multiplicity given by
D. We call FD the face associated to the divisor D.

Lemma 3.2.4. FD is a face of P.

Proof. Since VD = {q ∈ R[X] : div(q) ≥ 2D} is a linear space, we conclude that FD is a convex cone contained
in P. To show that it is a face, pick q1,q2 ∈ P with q1+q2 ∈ FD . So we have multA(q1+q2) ≥multA(2D) for all
A ∈ X(R). Since q1 and q2 are nonnegative onX(R), the valuation νA(q1+q2) is equal to min{νA(q1),νA(q2)} so
that we also get multA(q1) ≥multA(2D) and multA(q2) ≥multA(2D) for all A ∈ X(R). Therefore q1,q2 ∈ FD ,
showing that FD is a face. �

Denote by F the set of faces of P and by Div≥0(X(R)) the set of totally real effective divisors. We define

Φ : F \ {{0} } −→Div≥0(X(R))

F 7−→ div(F)

Ψ : Div≥0(X(R)) ⊃ Im(Φ) −→ F
D 7−→ FD

Φ andΨ are, by definition, two order-reversing maps between the poset of (nonzero) faces F \{{0} } and the
face divisors Im(Φ) ⊂Div≥0(X(R)). Here, we order F by inclusion and Im(Φ) by the usual order on Div(X)
defined as such:

∑
P∈X aPP ≤

∑
P∈X bPP if aP ≤ bP for all P ∈ X.

We now show that every face can be realized as the face associated to a totally real effective divisor. In
other words, we prove that Ψ is surjective.

Theorem 3.2.5. Let X ⊂ Pn be a totally real curve and P = PX,2 the convex cone of nonnegative quadrics. For
any face F ⊂ P, F , {0} the following statements hold.

(i) F = Fdiv(F) = (Ψ ◦Φ)(F);
(ii) The linear span of F is Vdiv(F) = {q ∈ R2 : divq ≥ 2div(F) };
(iii) riF = {q ∈ P: (divq)R = 2div(F) }.

Proof. Let div(F) be the face divisor of F. For any g ∈ riF, we have (divg)R = 2div(F) by definition. We now
show that if (divg)R = 2div(F) for some g ∈ P then g lies in the relative interior of F.

Consider the vector space V = Vdiv(F) = {q ∈ R2 : (divq) ≥ 2div(F) }. Then we have Fdiv(F) ⊂ V by definition.
We now show that any g ∈ P with (divg)R = 2div(F) belongs to the interior of Fdiv(F) in V , which in particular
implies that V is the linear span of Fdiv(F). Since (divg)R = 2div(F) we have g ∈ Fdiv(F). We only need to show
that for any q ∈ V there is an ε > 0 such that g + εq ∈ P , i.e., that g + εq ≥ 0 on X(R). This follows from
compactness of X(R). We switch to the affine cone so that g and q are actual functions on X̂(R)∩Sn. For
every A ∈ suppdiv(F) let xA ∈ X̂(R) ∩ Sn be an affine representative. Since the multiplicity of g at A is
smaller or equal to the multiplicity of q at A, and since g is nonnegative, there is an open neighborhood UA
of xA in X̂(R)∩Sn and an ε > 0 such that g + εq ≥ 0 on UA. Since g(−x) = g(x) and g vanishes only at finitely
many points in X(R), there exists an ε > 0 such that g + εq ≥ 0 on U ≔

⋃
A∈suppdiv(F)(UA ∪−UA). Next, since

all the zeroes of g belong to U , we conclude that g is strictly positive on the compact set K ≔ (X̂(R)∩Sn)\U .
Since q is bounded on K and g has a strictly positive minimum of K we get g + εq > 0 on K for sufficiently
small ε > 0. Overall, we conclude that there is an ε > 0 such that g + εq is nonnegative on X(R), showing
that g is in the relative interior of F.

This also implies that any interior point of F is an interior point of Fdiv(F), and thus by [Roc70, Cor.
18.1.2] we have F = Fdiv(F). Moreover, the linear span of F is V .

Above, we have shown the inclusion riFdiv(F) ⊃ {q ∈ P: (divq)R = 2div(F) }. We now prove the reverse
inclusion as well. For f ∈ Fdiv(F) \ {q ∈ P: (divf )R = 2div(F) } there exists a real point A ∈ suppdiv(F) such
that multA(q) >multA(div(F)). Consider then L : VA→ R as in the proof of Lemma 3.2.1. By definition we
have L(f ) = 0 and L(g) > 0 for all g ∈ {q ∈ P: (divq)R = 2div(F) } ⊃ riFdiv(F), concluding the proof. �

Theorem 3.2.5 allows us to describe the duality between faces and face divisors precisely, as follows.
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Theorem 3.2.6. The functions

Φ : F \ {{0} } −→Div≥0(X(R))

F 7−→ div(F)

Ψ : Div≥0(X(R)) ⊃ Im(Φ) −→ F
D 7−→ FD

form a Galois connection between the positive dimensional faces F \{{0} }, ordered by inclusion, and the set of face
divisors Im(Φ) ⊂Div≥0(X(R)). This means that, for all F ∈ F and D ∈ ImΦ we have

div(F) ≤D ⇐⇒ F ⊇ FD .

Proof. Let F and D be such that div(F) ≤ D. By definition this implies Fdiv(F) ⊃ Fdiv(FD). From Lemma 3.2.4
we deduce that FD is a face of P, while from Theorem 3.2.5 FD = Fdiv(FD ) and F = Fdiv(F). Therefore F =
Fdiv(F) ⊃ Fdiv(FD) = FD , as we wanted.

For the converse implication, let D = div(̃F) ∈ ImΦ and F ⊃ FD = Fdiv(̃F). This implies that div(F) ≤
div(Fdiv(̃F1)) = div(̃F) =D, concluding the proof. �

Theorem 3.2.5 implies that Ψ is surjective. On the other hand, Φ is not. Characterizing the image of Φ
is difficult, and it is naturally connected to existence of nonnegative quadrics, as we now show.

Lemma 3.2.7. Let D be a totally real effective divisor. The following are equivalent:
(i) D ∈ Im(Φ), i.e. D is a face divisor;
(ii) D = div(FD);
(iii) There exists q ∈ P such that (divq)R = 2D.

Proof. For (i) =⇒ (ii), we have to prove div(F) = div(Fdiv(F)), which follows from Theorem 3.2.5. The
converse implication (ii) =⇒ (i) is trivial.

(ii) =⇒ (iii) follows by taking q ∈ riFD because we have (divq)R = 2div(FD ) = 2D for such a q. The final
implication (iii) =⇒ (ii) follows from the fact that (divq)R = 2D implies q ∈ riFD , and thusD = div(FD ). �

Studying the set ImΦ is challenging. The following example, for instance, shows that Im(Φ) is in general
not a lower set in Div≥0(X(R)), i.e. for D,D′ ∈Div≥0(X(R)), D ∈ ImΦ and D′ ≤D 6=⇒ D′ ∈ ImΦ.

Example 3.2.8. Consider the projective closure X ⊂ P2 of the affine plane quartic defined by

2(1− x21 − 2x22)(1− 2x21 − x22)− (4x21 − 1)(4x22 − 1) = 0

Its real locus consists of four disjoint ovals, symmetric with respect to the x1 and x2 axis. Setting a =√
1−
√
112/14, we can verify that X(R) intersects the quadric q = a2−x21 in the four points (±a,±

√
1− 3

√
7/14)

with multiplicity 2, and that q is nonnegative on X(R). If we denote these four points by A1, . . . ,A4 and we
define D = A1 + · · ·+A4, we therefore have that divq = (divq)R = 2D, and thus D ∈ ImΦ.

We now set D′ = A1 +A2 +A3. To show that ImΦ is not a lower set in the totally real effective divisors,
we prove that D′ < ImΦ. Equivalently, we want to show that there does not exist q′ ∈ P s.t. (divq′)R =
2D′. Let q′ ∈ R2 be a quadric such that divq′ ≥ 2D. It follows from the Cayley-Bacharach theorem (e.g.
[EGH96, Th. CB7], applied to the hypersurfaces X and q = 0 with Γ

′ = 2D′ and Γ
′′ = 2P4) that q′ vanishes

with multiplicity 2 at P4, which implies that divq′ ≥ (divq′)R ≥ 2D. Therefore, every nonnegative quadric
vanishing at P1,P2,P3 vanishes also at P4, showing that D′ = P1 +P2 +P3 < ImΦ. Thus ImΦ is not a lower set.

3.3. Dimension of faces. In this section, we use the Riemann-Roch theorem (see e.g. [Sha13]) to compute
dimensions of faces of the cone of nonnegative quadrics on X. The Riemann-Roch Theorem computes the
dimension of the Riemann-Roch spaces

L(D) = { f ∈C(X) |D +div(f ) ≥ 0 }
as a C-vector space. Writing ℓ(D) for dimC(L(D)), the Riemann-Roch Theorem states ℓ(D) = deg(D)+1−g +
ℓ(K −D), where g is the genus of X and K is a canonical divisor of X. For this computation to be reflected in
the chosen embedding X ⊂ Pn of our curve, we assume that the curve is projectively normal, which means
that the linear systems |dH | for any d ∈ N are complete, where H is a hyperplane in Pn. Concretely this
means that, for any divisorD ∈Div(X) that is linearly equivalent to the zero divisor divg of a form g ∈C[X]d ,
there exists a form h ∈C[X]d with D = divh.

We can now investigate, in the projectively normal case, the dimension of faces F ∈ F .
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Lemma 3.3.1. Let X ⊂ Pn be a totally real curve, and let {0} , F ⊂ P be a nonzero face. If X ⊂ Pn is projectively
normal and q ∈ riF, then dimF = ℓ((divq)C).

Proof. Since D = div(F) ∈ ImΦ we have D = (divq)R for any q ∈ riF by Theorem 3.2.5. As in Theorem 3.2.5
we write VD = {p ∈ R2 : divp ≥ 2D }. For any q ∈ riF consider the map:

VD −→ L((divq)C), f 7−→ f /q.

This is clearly well-defined and injective, and it is surjective since X ⊂ Pn is projectively normal. Therefore
dimVD = ℓ((divq)C). By Theorem 3.2.5 we have dimF = ℓ((divq)C). �

Thanks to Lemma 3.3.1 and Theorem 3.2.5, when we consider a totally real projectively normal curve
X ⊂ Pn, we only need to consider nonnegative quadrics with a large number of real zeroes, in order to
understand the dimension of all the small dimensional faces F ⊂ P. We make this statement precise in the
following proposition for the extreme rays, i.e. for faces of dimension one.

Proposition 3.3.2. Let X ⊂ Pn be a totally real projectively normal curve of genus g . If R≥0 · q is an extreme ray
of P, then deg((divq)R) ≥ 2degX − g . In particular, if all the real zeroes of q have multiplicity two, then q has at
least degX − g/2 real zeroes.

Proof. If R≥0 · q is an extreme ray of P, then combining Lemma 3.3.1 and Riemann’s inequality we have:

1 = ℓ((divq)C) ≥ deg((divq)C)− g +1

This implies that:
2degX −deg((divq)R) = deg((divq)C) ≤ g

concluding the proof. �

The complete description of the extreme rays of P is difficult for curves of arbitrary genus, and we leave it
for future investigation. However, in the genus one case, Proposition 3.3.2 implies that the extreme rays are
all defined by nonnegative quadrics with the maximal number of real zeroes (counted with multiplicity).
Genus one curves are already quite interesting, and we will study them in detail in Sections 4 to 6.

We conclude this section by showing an example of an extreme ray defined by a quadric with a nonmax-
imal number of real zeroes.

Example 3.3.3. Let X(R) ⊂ P2(R) be the plane sextic defined by h = x61 +x
6
2 −x60 = 0 and let q = x21 +x

2
2 −x20 ∈

R[x0,x1,x2]2 � R[X]2. The curve X is a smooth plane curve of degree 6 and hence has genus g = 10 from
the genus-degree formula. So Proposition 3.3.2 implies that any nonnegative quadric defining an extreme
ray of P has between 2degX − g = 2 and 20 real zeroes, counted with multiplicity.

The curves h and q intersect with multiplicity two in the real points A1 = (1 : 0 : 1), A2 = (1 : 0 : −1),
A3 = (1 : 1 : 0) and A4 = (1 : −1 : 0), and with multiplicity two in the complex conjugate points A5 = (0 : 1 : i)
and A6 = σ(A5) = (0 : 1 : −i). In other words, (divq)R = 2(A1 + · · ·+A4) and (divq)C = 2(A5 +σ(A5)).

We know that X(R) is connected, and q ≥ 0 on X(R), since the circle defined by q = 0 is inside X(R),
which is a TV screen curve. By Proposition 3.3.2, to show that R≥0 ·q is an extreme ray of P it is sufficient to
verify that ℓ((divq)C) = ℓ(2(A5 + σ(A5)) = 1. This can be done using the Cayley-Bacharach theorem, see e.g.
[EGH96, Th. CB7] or using any computer algebra system. Alternatively, one can directly verify that the
double vanishing at A1, . . . ,A4 imposes enough conditions to obtain a one-dimensional family of solutions.

Notice in particular that

2degX − g = 2 < deg(divq)R = 8 < 2degX = 20

showing that R≥0 · q is an extreme ray defined by a quadric with a nonmaximal number of real zeroes, and
not attaining the lower bound of the inequality in Proposition 3.3.2.

3.4. Extreme rays with only real zeroes. In this section, we study extreme rays defined by nonnegative
quadrics with the maximal number of real zeroes for arbitrary genus curves. As discussed in Section 3.3,
these are all the extreme rays in the genus one case. To do that, we will need to exploit properties of the
Jacobian of a curve X, which we briefly recall. We consider in particular the Jacobian of an R-curve X, for
which we refer the reader to [GH81,Vin93,Kum19,Man20].
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Let (X,σ) be a smooth irreducible R-curve of genus g . For every f ∈ C(X) \ {0 }, we can consider the
divisor divf of poles and zeroes. Such divisors form a normal subgroup of Div(X), and the quotient Cl(X)
is called the divisor class group. So two divisors D and D′ represent the same class [D] = [D′] ∈ Cl(X) if and
only if there exists f ∈C(X) \ {0} such that D =D′ +divf . We denote Cld (X) the subgroup of divisor classes
of degree d. Cl0 (X) is isomorphic to the Jacobian variety J = J(X) � Cg /Λ, which is a (complex) g-torus.
There is a natural action of σ on Cl0 (X) � J, which give J the structure of R-variety. As usual, we denote
J(R) the real part, i.e. the fixed points of σ. Concretely, a divisor class [D] is in Cl0(X)(R) � J(R) if the
divisor σ(D) is linearly equivalent to D, which implies [σ(D)] = [D].

We are especially interested in the 2-torsion points of J(R).

Definition 3.4.1. We denote J2 = {α ∈ J : 2α = 0 } the subgroup of J consisting of 2-torsion points, and we
denote the real 2-torsion points by J(R)2 ≔ J2∩ J(R).

It is known that the number of real 2-torsion points depends on the genus g of X(R) and on the number
of connected components r of X(R).

Lemma 3.4.2 ([GH81, § 5]). If (X,σ) is a totally real R-curve of genus g such that X(R) has r > 0 connected
components, then J(R)2 � (Z/2Z)g+r−1.

Among all the real 2-torsion points, we are interested in those that are defined by nonnegative rational
functions.

Lemma 3.4.3. Let α ∈ J(R)2 and let D be a divisor representing α. If there exists f ∈ R(X) such that f ≥ 0
on X(R) ∩ dom f and divf = 2D, then for any D′ representing α there exists f ′ ∈ R(X) such that f ′ ≥ 0 on
X(R)∩dom f ′ and divf ′ = 2D′.

Proof. Let D,D′ , f and α be as in the statement. As [D] = α = [D′], there exists g ∈R(X) such that D+divg =
D′. Therefore we can take f ′ ≔ f g2 as nonnegative rational function whose divisor is equal to 2D′. �

Definition 3.4.4. We say that α ∈ J(R)2 is positive if, for any divisor D representing α, there exist f ∈ R(X)
such that f ≥ 0 on X(R) ∩ dom f and divf = 2D (see Lemma 3.4.3). We denote the subgroup of positive
2-torsion points by J(R)+2 .

It is known that the number of positive 2-torsion points J(R)+2 depends only on the genus of X(R), and
not on the topology of X(R).

Lemma 3.4.5 ([GM77, § 5]). If (X,σ) is a totally real R-curve of genus g , then J(R)+2 � (Z/2Z)g .

Proof. Write X(R) = Y1⊔· · ·⊔Yr+1 as the disjoint union of its connected components. For all α = [D] ∈ J(X)2,
we can choose fα ∈ R(X) such that divf = 2D and f ≥ 0 on Y1. The sign of any such fα on Y2, . . . ,Yr+1 only
depends on α because for any two rational functions f and f ′ such that div(f ) = 2D and div(f ′) = 2D′ and
[D] = [D′] = α ∈ J(X) differ by a square, see the proof of Lemma 3.4.3. We can therefore define the map
J(X)2 → {±1 }r−1, which associates to every α the tuple of signs of fα on Y2, . . . ,Yr . This is a well-defined
group morphism, whose kernel is equal to J(R)+2 . The morphism is surjective (see [GM77, § 5]), and thus
Lemma 3.4.2 implies J(R)+2 � (Z/2Z)g . �

We are now ready to show how positive 2-torsion points can be used to characterize totally real divisors
that arise as intersections of nonnegative quadrics on X ⊂ Pn with the maximal number of real zeroes,
which is equal to degX.

Proposition 3.4.6. Let X ⊂ Pn be a totally real smooth irreducible projectively normal curve, with embedding
given by the divisor E. Let D ∈ Div≥0(X(R)) be an effective totally real divisor such that degD = degX and
[2D] = [2E]. Then the following are equivalent.

(i) There exists a quadric q ∈ R2 such that 2D = (divq) = (divq)R.
(ii) [D −E] ∈ J(R) is a 2-torsion point.

Moreover, q ∈ PX,2 = P if and only if [D −E] ∈ J(R)+2 .
12



Proof. For (i) =⇒ (ii), consider the rational function q/ℓ2, where ℓ is the linear form with divisor divℓ = E.
Then div(q/ℓ2) = 2D − 2E. If q ∈ P, then q/ℓ2 is nonnegative on X(R) and thus [D −E] ∈ J(R)+2 .

For (ii) =⇒ (i), as [D −E] ∈ J(R)2 there exists f ∈R(X) such that divf = 2D −2E. Therefore 2D = divf ℓ2,
and by projective normality there exists q ∈ R2 such that 2D = divq = (divq)R. Furthermore, if [D−E] ∈ J(R)+2
then f is nonnegative on X(R) and thus q ∈ P, concluding the proof. �

Theorem 3.4.7. Let X ⊂ Pn be a totally real smooth irreducible projectively normal curve, with embedding given
by the divisor E, and letD ∈Div≥0(X(R)) be a divisor of degree degD = degX with [2D] = [2E]. Denote P = PX,2
the cone of nonnegative quadrics on X(R). Then the following are equivalent:

(i) FD ⊂ P is an extreme ray of P;
(ii) [D −E] is a totally real positive 2-torsion point of the Jacobian.

Proof. Combine Proposition 3.4.6 and Theorem 3.2.5. �

Therefore, the existence of a nonnegative quadric with a maximal number of real zeroes can be read
from the positive 2-torsion points in the Jacobian. However, to be able to apply Lemma 3.4.5 to count their
number, we need to be sure that the torsion points are totally real, i.e. that their divisor classes can be
represented using only points of X(R).

Definition 3.4.8. Let X be an R-curve. We say that a real divisor class β ∈ Clk(X) is totally real if there exists
A1, . . . ,Ak ∈ X(R) such that β = [A1 + · · ·+Ak]. We denote by N (X) the smallest k such that all real divisor
classes in ClkX are totally real.

The study of the invariant N (X) has been started by Scheiderer. [Sch00, Th. 2.7] in particular shows
that N (X) < +∞ for every real curve X. While the study of the exact value invariant N (X) is still an open
research question (except in the special cases ofM-curves andM − 1 curves [Mon03,Hui01]), the fact that
N (X) < +∞ allows us to describe all extreme rays arising from forms with the maximal number of real
zeroes, at least in sufficiently high degree 2d.

Lemma 3.4.9. Let X ⊂ Pn be a totally real smooth irreducible projectively normal curve, with embedding given
by the divisor E. For every d ∈N, and for every positive 2-torsion point α ∈ J(R)+2 such that α + [dE] is totally
real, there exist qα ∈ PX,2d such that divqα = (divqα)R is totally real and R≥0 · qα is an extreme ray of PX,2d .

Proof. Let ℓ ∈ R1 be such that divℓ = E and divℓd = dE. Since α is a positive 2-torsion point, there exists
f ∈ R(X) nonnegative on X(R) such that divf = 2D and α = [D]. As α + [dE] = [D + dE] is totally real by
hypothesis, there exists a totally real divisor D′′ such that [D+dE] = [D′′]. Moreover, since the embedding is
projectively normal and [2D′′] = [2dE], there exists qα ∈ R2 such that divqα = (divqα)R = 2D′′. Finally, since
divf = div(qα /ℓ2d ), we have (up to a global sing change) qα ≥ 0 on X(R), i.e. qα ∈ PX,2d . From Theorem 3.4.7,
we conclude that R≥0 · qα is an extreme ray of PX,2d � Pνn,d (X),2. �

Corollary 3.4.10. Let X ⊂ Pn be a totally real smooth irreducible curve of genus g . For all sufficiently large d,
there are 2g distinct families of extreme rays of PX,2d defined by forms with the maximal number of real zeroes,
which are parametrized by the positive 2-torsion points J(R)+2 � (Z/2Z)g .

Proof. Recall that PX,2d � Pνn,d (X),2, and if the divisor E gives the embedding X ⊂ Pn, then dE gives the
embedding of νn,d(X). Moreover, if d is big enough, νn,d(X) is projectively normal and

d ·degX = degνn,d(X) ≥N (X),

see Definition 3.4.8. This implies that for every α ∈ J(R)+2 , the divisor class α+[dE] is totally real. Therefore,
from Lemma 3.4.9 we deduce that for all α ∈ J(R)+2 there exist (a family of) qα ∈ PX,2d such that div(qα)R =
divqα and R≥0 · qα is an extreme ray. Finally, we can conclude from Lemma 3.4.5 that J(R)+2 � (Z/2Z)g . �

Corollary 3.4.10 also highlights the difference between sums of squares and nonnegative forms. Indeed,
if the sums of squares and nonnegative cones are equal, then they have have the same extreme rays. But
sums of squares extreme rays correspond to only the zero of the Jacobian, which is a positive 2-torsion
point. If the genus is at least one, then for all sufficiently large d there are positive 2-torsion points which
correspond to non-sums of squares extreme rays, and thus we have ΣX,2d ( PX,2d . This is a particular case
of [BSV16, Th. 1.1]. For a more detailed description in the genus one case, we refer to Proposition 4.1.1 and
Theorem 4.2.3.
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4. Nonnegative forms on genus one curves

We now consider curves of genus 1. General results of Section 3 will specialize particularly nicely to this
case. We begin with the example of nonnegative quadrics on cubic plane curves, where we illustate our
results explicitly.

4.1. Plane cubics. Plane cubics are the first example of genus one curves. For their basic properties, we
refer e.g. to [Sha13, Ful89]. In this case, the analysis of PX,2 can be performed explicitly and completely.
We include this analysis here to develop an intuition for Section 4.2, where it will be generalized to elliptic
normal curves, and to provide a more accessible background for Section 6, where we focus on dual moment
problems for plane cubics.

Plane cubics are curves in P2 defined as zero locus of a form of degree three. In the following, we always
assume that our plane cubics are smooth, irreducible, and totally real. Recall that the group law of a plane
cubic X is induced by the isomorphism between the plane cubic and the Jacobian:

ϕP0 : X −→ Cl0X � JX
P −→ [P −P0]

Hereafter, we consider P0 = O to be a smooth real inflection point, so that our plane cubic has equation
(Weierstrass form):

h = x22x0 − (x1 − a1x0) (x1 − a2x0) (x1 − a3x0) = 0

with ai ∈C. X is non-singular if and only if ai ∈C’s are distinct.
Denote ⊕ and ⊖ the group operations in X. Then the point at infinity O is the identity, and

T1 = (1 : a1 : 0) ,T2 = (1 : a2 : 0) ,T3 = (1 : a3 : 0)

are the 3 nontrivial 2-torsion points for (X,⊕) (see also Definition 3.4.1).
Since we are assuming that X is totally real, then at least one of the ai is real, say a1, while a2 and a3 can

be either:

(i) Complex conjugates a2 = a3, and in this case X(R) is connected in the Euclidean topology; or
(ii) both real (and distinct, if X is smooth), and in this case X(R) has two connected components. In

such a case, we will always assume without loss of generality that a1 < a2 < a3.

These are the two possible topologies for a genus one totally real curve. In the first case, there are only two
real 2-torsion points, O and T1, while in the second case there are four. This is consistent with Lemma 3.4.2.

We focus on quadratic forms on X, and we start by analyzing the extreme rays of PX,2, which are
given by forms with the maximal possible number of real zeroes. Given a quadric q ∈ R[x0,x1,x2]2 �
R[x0,x1,x2]2/(h)2 = R[X]2, we denote divq = h · q the intersection divisor of q and h (or of q and X = V (h)),
see e.g. [Ful89]. If q is nonnegative on X(R), then q has zeroes on X(R) with even multiplicity only. By
Bézout’s theorem, there are at most three such zeroes. We then deduce from [Ful89, Problem 5.41] that,
given A1,A2,A3 ∈ X(R), there exists q ∈ R[x]2 such that divq = 2(A1 +A2 +A3) if and only A1 ⊕A2 ⊕A3 is a
2-torsion point for (X,⊕).

If X(R) is connected, then divq = 2(A1 +A2 +A3) implies that q is nonnegative. On the other hand, if
X(R) is disconnected then divq = 2(A1 +A2 +A3) does not imply that q is nonnegative. We now show that
in the disconnected case, whether q is nonnegative or not depends on the 2-torsion point A1 ⊕A2⊕A3.

If A1 ⊕ A2 ⊕ A3 = O, then there exists a linear form ℓ ∈ R[x]1 such that divℓ = A1 + A2 + A3, and thus
q = aℓ2 for some a ∈R>0. This shows that q is a sum of squares and thus nonnegative.

We now deal with the other cases. In the following, we denote ℓA1,A2
the line passing through A1,A1 ∈

X(R), and ℓA the line tangent to A ∈ X(R). Recall from the definition of the group law that the third
intersection point of ℓA1 ,A2

with X(R) is equal to ⊖A1 ⊖A2, i.e. divℓA1,A2
= A1 +A2 + (⊖A1 ⊖A2). Assume

that A1⊕A2⊕A3 = Ti for some i ∈ {1,2,3 } (recall that we have chosen indices in such a way a1 < a2 < a3). A
direct computation shows that:

divq = div
ℓ2A1,A2

ℓ2A1⊕A2,A3

ℓ2⊖A1⊖A2,A1⊕A2
ℓ2Ti

ℓOℓTi (1)
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and since X is irreducible, the two expressions agree (up to a positive constant) on X(R). Therefore, q
is nonnegative if and only if ℓOℓTi is nonnegative. For i = 2,3 it is easy to show that ℓOℓTi changes sign on
X(R), and thus q is not nonnegative. On the other hand, for i = 1 we have:

(ℓ2T1 + (a2 − a1)(a3 − a1)ℓ2O)ℓOℓT1 = x
2
2ℓ

2
O + (a2 + a3 − 2a1)ℓ2Oℓ2T1 (2)

which shows that ℓOℓT1 , and thus q, is nonnegative on X(R).
In conclusion, A1,A2,A3 define a quadric q such that divq = 2(A1 +A2 +A3) which is nonnegative if and

only if:

(i) either A1 ⊕A2 ⊕A3 =O, and in this case q = ℓ2 is a square;
(ii) or A1⊕A2⊕A3 = T , where T is the unique nontrivial real 2-torsion point such that ℓOℓT is nonneg-

ative on X(R).

These quadrics span extreme rays of P = PX,2 since they have the maximal number of real zeroes: there
are therefore two families of extreme rays defined by the two positive 2-torsion points O and T . This is
consistent with Lemma 3.4.5.

We now study other faces. In particular, recall from Theorem 3.2.5 that all the faces F ⊂ P are of the
form F = FA1+···+Ak , with A1, . . . ,Ak ∈ X(R).

If k ≥ 4, then FA1+···+Ak = {0 } by Bézout’s theorem. For k = 3, we deduce from the above discussion that
either dimFA1+A2+A3

= 1, when the Ai ’s are in special position, otherwise FA1+A2+A3
= {0 }.

For k = 2, we can consider the two additional points B1 =O⊖A1⊖A2 and B2 = T⊖A1⊖A2. Then FA1+A2+B1
and FA1+A2+B2 are extreme rays, and FA1+A2

= cone(FA1+A2+B1 ,FA1+A2+B2 ) has dimension 2. Similarly, for
k = 1 we can show that dimFA1

= 4. In conclusion, we proved the following.

Proposition 4.1.1. Let X ⊂ P2 be a smooth totally real plane cubic, and denote P = PX,2 the convex cone of non-
negative quadratic forms. Let T be the unique nontrivial 2-torsion point of (X,⊕) such that ℓOℓT is nonnegative.
Then all the proper faces of P are the following:

(i) FA for A ∈ X(R), and we have dimFA = 4;
(ii) FA1+A2

for A1,A2 ∈ X(R), and we have dimFA1+A2
= 2.

(iii) FA1+A2+B1 with A1,A2 ∈ X(R) and B1 =O ⊖A1 ⊖A2; in this case FA1+A2+B1 = R≥0 · ℓ2 is an extreme ray
of the cone of sums of squares and nonnegative quadrics.

(iv) FA1+A2+B2 with A1,A2 ∈ X(R) and B2 = T ⊖A1⊖A2; in this case FA1+A2+B1 = R≥0 ·q is an extreme ray of
the nonnegative quadrics and q is not a sum of squares.

In particular, notice that all the extreme rays of P arise from quadrics with the maximal possible number
of real zeroes, and all higher dimensional faces have the expected dimension, equal to 6 = dimR[x]2 minus
two times the number of common zeroes of the quadrics in the face. Similar elementary considerations can
be applied for higher degree nonnegative forms.

Let us also remark that Equations (1) and (2) can be combined to give explicit certificates of nonnegativ-
ity for all the extreme rays of P. Indeed, if R≥0 · q is an extreme ray of P, then Equations (1) and (2) imply
that there exists α ∈R>0 such that:

q = α
ℓ2A1,A2

ℓ2A1⊕A2 ,A3

(
x22ℓ

2
O + (a2 + a3 − 2a1)ℓ2Oℓ2T1

)

ℓ2⊖A1⊖A2,A1⊕A2
ℓ2Ti

(
ℓ2T1 + (a2 − a1)(a3 − a1)ℓ2O

) on X(R)

where X is a totally real plane cubic given by the equation in Weirstrass form

x22x0 − (x1 − a1x0) (x1 − a2x0) (x1 − a3x0) = 0

The above Artin-type certificates for extreme rays, can be combined in convex combinations to provide
explicit certificates of nonnegativity for all nonnegative quadrics q ∈ P. We also remark that such certificates
do not have the smallest possible degree: indeed, in [BSV19, Th. 1.1] is shown the existence of certificates
with a denominator of degree two and numerator of degree four. On the other hand, the certificate given
in Equation (2) is of minimal possible degree.
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4.2. Elliptic normal curves. We now show how Proposition 4.1.1 can be generalized from plane cubics to
elliptic normal curves.

Definition 4.2.1. An elliptic normal curve is a non-degenerate, smooth projective curve X ⊂ Pn of genus one
such that degX = n+1.

Recall that every elliptic normal curve is automatically projectively normal, see e.g. [Har77, Ex. IV.4.2].
Using this fact it is possible to show that the Veronese embedding of an elliptic normal curve is again an
elliptic normal curve: therefore we can restrict to the case of quadratic forms, as we did in Section 3.

As in Section 4.1, if the genus one curve X is totally real then X(R) has either one or two connected
components. It follows from this that the invariant N (X), introduced in Definition 3.4.8, is always equal to
one.

Lemma 4.2.2. Let X ⊂ Pn be a totally real elliptic normal curve. Then N (X) = 1.

Proof. If X(R) has one connected component, then X is anM −1 curve and N (X) = 1 follows from [Mon03].
If X(R) has two connected components, then X is anM-curve and N (X) = 1 follows from [Hui01]. �

Lemma 4.2.2 implies, together with the fact that elliptic normal curves are projectively normal, that the
divisor classes α + [E] as in Lemma 3.4.9 are always totally real. This implies that every positive 2-torsion
points (see Definition 3.4.4) determines a family of extreme rays, which are defined by quadrics with the
maximal number of real zeroes. As we show in the following theorem, these are the only extreme rays of
PX,2 = P, and we can furthermore describe all the faces of PX,2.

Theorem 4.2.3. Let X ⊂ Pn be a totally real elliptic normal curve, with embedding given by the divisor E. If
we denote {O,T } = J(R)+2 the positive 2-torsion points, then all the proper faces of P = PX,2 can be described as
follows:

(i) FD , where D is a totally real effective divisor of degree 1 ≤ degD ≤ n. In this case, we have dimFD =
2(n+1−degD).

(ii) FD , where D is a totally real effective divisor of degree n + 1 such that [D − E] = O ∈ J(R)+2 . In this case,
FD is an extreme ray of both Σ = ΣX,2 and P.

(iii) FD , where D is a totally real effective divisor of degree n+ 1 such that [D − E] = T ∈ J(R)+2 . In this case,
FD is an extreme ray of P, but it is not in Σ = ΣX,2.

Proof. From Theorem 3.2.5, all the faces of P are of the form FD for some totally real effective divisor D. If
degD > degX = n+1, then FD = {0 }.

From Theorem 3.4.7, if degD = n+1 then FD is an extreme ray if and only if [D−E] is a positive 2-torsion
point of the Jacobian. Moreover, since X is projectively normal and N (X) = 1 from Lemma 4.2.2, every
positive 2-torsion point determines a family of extreme rays of P (see also Corollary 3.4.10).

If [D −E] =O ∈ J(R)+2 , then there exist f ∈ R(X) such that D = E +divf , and thus by projective normality
there exists ℓ ∈ R1 = R[X]1 such that divℓ = D. Therefore divℓ2 = 2D and FD = R≥0 · ℓ2 is an extreme ray of
both Σ and P. If [D −E] = T ∈ J(R)+2 , then D is not the divisor of a linear form, and thus the extreme ray FD
is not generated by a square. This implies that FD is not contained in Σ.

We now study higher-dimensional faces. We first show that, if D is a totally real effective divisor of
degree 1 ≤ degD ≤ n, then D ∈ Im(Φ), i.e. there exists q ∈ P such that (divq)R = D (see Lemma 3.2.7).
Assume that degD = n = degX − 1. Using the isomorphism between X and its Jacobian, we can always
find A1 , A2 ∈ X(R) such that D +A1,D +A2 ∈ J(R)+2 . From Theorem 3.4.7, there exists q1,q2 ∈ P such that
divqi = (divqi )R =D+Ai . Therefore q1+q2 is nonnegative and vanishes exactly onD, i.e. (div(q1+q2))R = 2D,
showing that D ∈ ImΦ. A similar argument works for all totally real divisors of degree smaller than n.

The dimension of FD can then be deduced using Lemma 3.3.1 and the Riemann-Roch theorem, as follows.
Since D ∈ ImΦ, then Lemmas 3.2.1 and 3.2.7 imply that for all q ∈ riFD we have (divq)R = 2D. It follows
from Lemma 3.3.1 that dimFD = ℓ((divq)C) for all q ∈ riFD . Using the Riemann-Roch theorem and the fact
that 1 ≤ deg(divq)C = 2(n+1−degD), we have:

ℓ((divq)C) = deg(divq)C + ℓ(K − (divq)C) = 2(n+1−degD)

concluding the proof. �
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Theorem 4.2.3 completely describes the facial structure of the cone of nonnegative quadrics on an elliptic
normal curve. Using the fact that the Veronese embedding of an elliptic normal curve is an elliptic normal
curve, Theorem 4.2.3 also describes all faces of PX,2d � Pνn,d (X),2. This is the first complete description of the
facial structure of the nonnegative cone beyond Hilbert’s cases [Sch21]. It is therefore the first non-rational
example where such a description is shown.

We also remark that we do not explicitly see the distinction between the two possible topologies of X(R)
in Theorem 4.2.3, as the theorem applies to both the connected and disconnected case. In particular, we
are not using the real 2-torsion points of the Jacobian which are not positive. Such points exist when X(R)
is disconnected, see Lemmas 3.4.2 and 3.4.5, and they will play a key role in Section 5 for the study of
Carathéodory number of the of the dual cone P∨.

We conclude the section presenting two useful lemmas about the signature signs of quadrics on con-
nected components of elliptic normal curves, that will be needed in Section 5.

Lemma 4.2.4. Let X ⊂ Pn be a totally real elliptic normal curve whose real locus has two connected components.
If Y ⊂ X(R) is a connected component, then there exists q ∈ PY,2 \PX,2 (i.e. q is nonnegative on Y but changes
sign on X(R)) such that divq = (divq)R = 2D, with supp(D) consist of degX = n+1 distinct points of Y .

Proof. Fix A0 ∈ X(R). Let Y ⊂ X(R) be a connected component, and let A ∈ Y be the (unique) point such
that [A−A0] = α ∈ J(R)2 \ J(R)+2 (such a point exists since genus one curves are isomorphic to their Jacobian).
Therefore, it follows from [Ful89, Problem 5.41] that there exists qA ∈ R2 such that divqA = 2(n + 1)A. As
[A−A0] is not a positive 2-torsion point, qA changes sign on X(R), and we may assume that qA ∈ PY,2 \PX,2.
Moving one pair of points at a time along Y , it is possible to continuously perturb the (n+1)-tuple (A,. . . ,A)
to (A1, . . . ,An+1) ∈ Y n+1, in such a way the Ai ’s are pairwise distinct and A1 ⊕ · · · ⊕An+1 = A. Therefore there
exists q ∈ PY,2 \PX,2, perturbation of qA, such that divq = 2(A1 + · · ·+An+1), concluding the proof. �

Lemma 4.2.5. Let X ⊂ Pn be a totally real elliptic normal curve whose real locus has two connected components.
If X(R) = Y1 ⊔Y2 and B1, . . . ,Bn ∈ Y1, then there exists q ∈R2 such that:

(i) (divq)R = 2(B1 + · · ·+Bn);
(ii) q is nonnegative on Y1;
(iii) q is strictly negative on Y2.

Proof. Consider the non-positive 2-torsion points {T2,T3 } = J(R)2 \ J(R)+2 , and define Ai = Ti ⊖ B1 ⊖ · · · ⊖ Bn
for i = 2,3. Therefore there exist q2,q3 ∈ R2 such that divqi = (divqi )R = 2(B1 + · · ·+Bn +Ai ) for i = 2,3. As
T2,T3 are non-positive 2-torsion points, then q2,q3 change sign on X(R). In particular, we can assume that
q2,q3 are nonnegative on Y1 and nonpositive on Y2. We then define q = q1 + q2. Notice that:

(i) q vanishes with multiplicity two at B1, . . . ,Bn, since both q2 and q3 vanish there with multiplicity
two;

(ii) q in nonnegative on Y1, since both q2 and q3 are nonnegative on Y1;
(iii) As A2 , A3, q does not vanish at any point of X(R) except B1, . . . ,Bn, and thus q is strictly negative

on Y2.

This concludes the proof. �

5. Carathéodory numbers for genus one curves

We now investigate the Carathéodory number C = CX,2 of P∨ = P∨X,2, where X ⊂ Pn is a totally real elliptic
normal curve. We show that the Carathéodory number depends on the topology of the real locus X(R),
using a technique inspired by Hilbert’s proof on ternary quartics (see [BPSV19] for a modern exposition).

Recall from Section 2.3 that P∨ is the moment cone, i.e. the convex cone of linear functionals on R2 that
can be expressed as integration with respect to a measure supported on X(R), or equivalently the convex
hull of point evaluations on X(R). The Carathéodory number of P∨ is the minimal natural number C of
point evaluations needed to represent all the linear functionals L ∈ P∨.

Using standard conic duality, we can use Theorem 4.2.3 to describe linear functionals L ∈ ∂P∨ on the
boundary of the moment cone. Indeed, if L ∈ ∂P∨ then by conic duality there exists q ∈ P such that L(q) = 0.
More precisely, Theorem 4.2.3 implies the following corollary.
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Corollary 5.0.1. Let X ⊂ Pn be a totally real elliptic normal curve. Let {O,T } = J(R)+2 be the positive 2-torsion
points. We have

∂P∨ =



k∑

i=1

λi evAi | 1 ≤ k ≤ n, A1, . . . ,Ak ∈ X(R), λ1, . . . ,λk ∈R>0



⊔


n+1∑

i=1

λi evAi | A1, . . . ,An+1 ∈ X(R) distinct, λ1, . . . ,λn+1 ∈R>0, A1 ⊕ · · · ⊕An+1 =O


⊔


n+1∑

i=1

λi evAi | A1, . . . ,An+1 ∈ X(R) distinct, λ1, . . . ,λn+1 ∈R>0, A1 ⊕ · · · ⊕An+1 = T


5.1. Critical values and boundary points. Let X ⊂ Pn be a totally real elliptic normal curve. For Y ⊂ X(R)
a connected component of X(R), let PY,2d ⊂ R2d be the cone of nonnegative forms on Y . As Y is not
(Euclidean) dense in X(R), we have PY,2d ) PX,2d and P∨Y,2d ( P∨X,2d .

We will use the following notation:

• Z ≔ vn,2(X(R));
• If S is any set,

conek(S)≔



k∑

i=1

λi si : si ∈ S, λi ∈ R≥0



denotes the set of conic combinations of points of S which use at most k points from S.

As we have vn,2(A) � evA ∈ R∗2, then we can characterize the Carathéodory number as:

C = CX,2 =min
{
k ∈N | conek(Z) = P∨

}

Lemma 5.1.1. Let X ⊂ Pn be a totally real elliptic normal curve. Then n+1 = degX ≤ CX,2 ≤ degX +1 = n+2.

Proof. The proof is a consequence of the following standard argument, see e.g. [dK21, Th. 4.8].
Let L =

∑n+1
i=1 evAi be such that the Ai are distinct and A1 ⊕ · · · ⊕ An+1 ∈ J(R)+2 . Then L ∈ ∂(P∨) from

Corollary 5.0.1. We deduce e.g. from [Sch17, Prop. 18.12] that C(L) = n+1, and thus C ≥ n+1. Corollary 5.0.1
shows also that C(L) ≤ n + 1 for all L ∈ ∂P∨. Now, let L ∈ int(P∨). Since P∨ is pointed and closed, for all
A ∈ X(R) there exists λA ∈ R≥0 such that L − λAevA ∈ ∂P∨. By the above, C(L − λevA) ≤ n + 1 holds for all
A ∈ X(R), and thus C(L) ≤ n+2. �

An equivalent result to Lemma 5.1.1 was proven in [dK21, Th. 4.8] for general affine curves with compact
real locus, and considering forms of sufficiently high degree 2d. Lemma 5.1.1 shows that there are only two
possibilities for the Carathéodory number: In the following, we show that the exact value depends on the
topology of X(R). For the proof, we will use the following simple observation.

Lemma 5.1.2. Let A ⊂ B ⊂ RN be such that A is closed, intA , ∅ and B is convex. Then A = B if and only if
∂A ⊂ ∂B.

Proof. Clearly, if A = B then ∂A = ∂B.
For the converse implication, we show that A , B implies ∂A ( ∂B. Let x ∈ intA ⊂ intB and y ∈ B \ A.

Consider now the segment between x and y. Since B is convex, this segment is contained in B, and all
the points in the relative interior of the segment belong to the interior of B, see e.g. [Roc70, Th. 6.1]. As
A is closed, x ∈ intA and y ∈ B \ A, we can find z in the relative interior of the segment such that z ∈ ∂A.
Therefore, z ∈ ∂A∩ intB, proving that ∂A ( ∂B. �

We are now ready to determine the Carathéodory number in the case of connected curves, or more
generally for the moment cone on connected components of the real locus.

Proposition 5.1.3. Let X ⊂ Pn be a totally real elliptic normal curve, and let Y be a connected component of
X(R). Then P∨Y,2 = conen+1(vn,2(Y )), or, in other words, CY,2 = degX = n+1.
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Proof. Let Z = vn,2(Y ). Our goal is to apply Lemma 5.1.2 to conen+1(Z) ⊂ P∨Y,2, to show that they are
equal. First, notice that P∨Y,2 is convex and that conen+1(Z) is closed. Second, conen+1(Z) has nonempty
interior. Indeed, the proof of [BT15, Th. 2], which shows that the smallest typical rank (with arbitrary real
coefficients) is equal to the complex generic rank, can be generalized to the case of nonnegative coefficients
(see also [QCL16, Lem. 37]). As n + 1 is the complex generic rank (see [Lan84] and also Section 5.2), the
above implies that conen+1(Z) has nonempty interior.

Therefore, in order to apply Lemma 5.1.2 we only need to show that ∂conen+1(Z) ⊂ ∂(PY,2)∨. For
this, we proceed similarly to Hilbert’s proof that every ternary quartic is a sum of at most three squares,
see e.g. [BPSV19]. To make the analogy clearer, we identify the space R∗2 with I (X)⊥ ⊂ R[x]2 using
the apolar or Bombieri-Weil inner product 〈 · , · 〉BW , see Section 5.2 for the definition and more details.
If B = (B0, . . . ,Bn),v = (v0, . . . ,vn) ∈ Rn+1 and ℓB = B0x0 + · · · + Bnxn, then 〈ℓ2B,q〉BW = evB(q) = q(B) and
〈2ℓvℓB,q〉BW = ∂vq(B) for all q ∈R[x]2.

We can therefore consider the maps

φ : (Rn+1)n+1 −→ R[x]2

A = (A1, . . . ,An+1) 7−→
n+1∑

i=1

ℓ2Ai

ψ : Ŷ n+1 −→ I (X)⊥2 � R∗2

A = (A1, . . . ,An+1) 7−→
n∑

i=0

ℓ2Ai

By definition, ψ is the restriction of φ to the affine cone over Y . Our goal is to show that ∂cone3(Z) � ∂ Imψ
is included in ∂(PY,2)∨. The differential of φ is well-known (see e.g [BPSV19, Lem. 2.2]), and therefore, by
restriction we have:

dψA : TA(Ŷ
n+1) � TA1

Ŷ × · · · ×TAn+1 Ŷ −→ Tψ(A)(I (X)⊥2 ) � I (X)⊥2

v = (v1, . . . vn+1) 7−→ 2
n+1∑

i=1

ℓvi ℓAi

Notice that dimTA(Ŷ )n+1 = dimI (X)⊥2 = 2n + 2, and therefore dψA is a square linear map. In particular,
if ψ(A) ∈ ∂ Imψ then dψA does not have full rank. Using again the Bombieri-Weil inner product, this is
equivalent to the fact that there exists q ∈ R[x]2 \ I (X)⊥2 such that 〈ℓvi ℓAi ,q〉BW = 0 for all v. Setting vi = Ai
(this is possible since Ŷ is a cone), we have 〈ℓ2Ai ,q〉BW = q(Ai ) = 0 for all i = 1, . . . n+1. Letting vi vary in the
tangent space, we see that q double vanishes at A1, . . . ,An+1.

There are then two cases.

(i) If the Ai ’s are distinct, q (now seen as a nonzero element of R2 = R[x]2
/
I (X)2) is uniquely deter-

mined by the double vanishing at A1, . . . ,An+1, i.e. divq = (divq)R = 2(A1 + · · · +An+1). Since Y is
connected, q does not change sign on Y , and therefore we can take q nonnegative on Y . By conic
duality, this means that

∑n+1
i=1 evAi �

∑n+1
i=1 ℓ

2
Ai
∈ ∂(PY,2)∨.

(ii) If the Ai ’s are not distinct, we can always find a linear form ℓ ∈ R1 vanishing on all of them, and
we can take q = ℓ2. As in the previous point, since q = ℓ2 is nonnegative on Y we have

∑n+1
i=1 evAi �∑n+1

i=1 ℓ
2
Ai
∈ ∂(PY,2)∨.

Since the above two cases cover all the possible A such that ψ(A) ∈ ∂ Imψ � ∂conen+1(Z), we have shown
that ∂conen+1(Z) ⊂ ∂(PY,2)∨. We can therefore use Lemma 5.1.2 to conclude that conen+1(Z) = (PY,2)∨. In
other words, we have shown that CY,2 = n+1, finishing the proof. �

We are now ready to prove the main result of this section.

Theorem 5.1.4. Let X ⊂ Pn be a totally real elliptic normal curve. Then:

(i) if X(R) is connected, then CX,2 = degX = n+1;
(ii) if X(R) is disconnected, then CX,2 = degX +1 = n+2.

Moreover the set of L ∈ P∨ such that C(L) = CX,2 has nonempty interior.

Proof. Assume that X(R) is connected. Then the result follows directly from Proposition 5.1.3.
19



Now assume that X(R) is disconnected, and set Z = νn,2(X(R)). By Lemma 5.1.1 we only need to show
that C = CX,2 > n+1, or in other words that

conen+1(νn,2(X(R))) = conen+1(Z) ( PX,2 = P .

While in the proof of Proposition 5.1.3 we have shown that ∂conen+1(Z) ⊂ ∂(P∨Y,2) if X(R) is connected,
hereafter we want to show that ∂conen+1(Z) ( ∂(P∨X,2), i.e. that there exists L ∈ ∂conen+1(Z) ∩ int(P∨X,2).
This imples that conen+1(Z) ( PX,2, which is our claim. In order to prove the existence of L ∈ ∂conen+1(Z)∩
int(P∨X,2), we are going to use the fact that if X(R) is disconnected, then there exists non-positive 2-torsion
points, see Lemmas 3.4.2 and 3.4.3, through Lemma 4.2.4.

Let Y1 be a connected component of X(R), and let Z1 = vn,2(Y1). By Lemma 4.2.4, there exists q ∈
PY1,2 \PX,2 such that divq = (divq)R = 2(A1 + · · · +An+1), with Ai ∈ Y1 distinct. Let L = evA1

+ · · · + evAn+1 ∈
conen+1(Z1). We notice that L ∈ ∂(PY1,2)∨, since L(q) = 0 and q ∈ PY1,2. Furthermore, L ∈ int(P∨X,2): indeed, if
L ∈ ∂(P∨X,2), there would exists q̃ ∈ PX,2 such that L(q̃) = 0. However such a q̃ does not exist, since A1, . . . ,An+1
do not add to a positive 2-torsion point. In conclusion, we have shown that

L ∈ conen+1(Z1)∩∂(PY1,2)
∨ ∩ int(P∨X,2)

We now show that such an L cannot be represented in conen+1(Z) using points in Y2 = X(R) \Y1.
Write L =

∑n+1
i=1 evBi , and assume that B1, . . . ,Bn ∈ Y1, Bn+1 ∈ Y2 = X(R) \Y1. By Lemma 4.2.5, there exists

q̃ ∈ R2 such that:

• q̃ vanishes at B1, . . . , Bn (with multiplicity two);
• q̃ ≥ 0 on Y1;
• q̃ < 0 on Y2.

Therefore we have:

L(q̃) =



n+1∑

i=1

evAi


 (q̃) = q̃(A1) + · · ·+ q̃(An+1) ≥ 0

L(q̃) =



n+1∑

i=1

evBi


 (q̃) = q̃(B1) + · · ·+ q̃(Bn+1) = q̃(Bn+1) < 0

a contradiction. A similar argument works assuming B1, . . . ,Bk ∈ Y1 and Bk+1, . . . ,Bn+1 ∈ Y2 for all k = 0, . . . ,n.
Thus any representation of L as the sum of n + 1 point evaluations only uses points of Y1. This implies

that, in a sufficiently small neighborhood of L, conen+1(Z) coincides with conen+1(Z1). In other words, in
a sufficiently small neighborhood of L, all convex combinations of n+ 1 evaluations at points of X(R) are
convex combinations of n+1 evaluations at points of Y1 ( X(R).

Furthermore, notice that conen+1(Z1) = P∨Y1,2 by Proposition 5.1.3. As L defines a supporting hyperplane
for q ∈ ∂PY1,2, every point in a representation of L belongs to the zero locus of q on X(R). This implies that
the representation L = evA1

+ · · ·+ evAn+1 is unique in conen+1(Z1) = P∨Y1,2, and by the above it is also unique

in conen+1(Z)
1.

Therefore we see that in a sufficiently small neighborhood U of L, we have

conen+1(Z)∩U = conen+1(Z1)∩U = P∨Y1,2∩U
But (PY1,2)

∨ is convex, and thus conen+1(Z)∩U lies completely inside one half-space defined by the tangent
space TL∂conen+1(Z) ∩ U to L ∈ ∂(PY1,2)∨ ∩U = ∂conen+1(Z) ∩U . Recall also that L ∈ int(P∨X,2): there-
fore, going in the normal direction NL∂conen+1(Z) to TL∂conen+1(Z) we can find an open set included in
P∨X,2 \conen+1(Z), concluding the proof. �

As PX,2d � Pνn,d (X),2, we can extend Theorem 4.2.3 to higher degree forms.

Corollary 5.1.5. Let X ⊂ Pn be a totally real elliptic normal curve. Then:

1Another way to show that the representation of L is unique is to use the fact that the general point of the (n + 1)-secant variety
of an elliptic normal curve is contained in two distinct secant spaces, see Section 5.2 and [CC06], or equivalently that a generic L has
two distinct decompositions. See also Section 5.2 for more details.
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(i) if X(R) is connected, then CX,2d = degX = d(n+1);
(ii) if X(R) is disconnected, then CX,2d = degX +1 = d(n+1) + 1.

Proof. Apply Theorem 5.1.4 to the elliptic normal curve νn,d(X). �

5.2. Discussion: Carathéodory numbers andWaring decompositions. Wehereafter summarize the equiv-
alence between the computation of the Carathéodory numbers and the minimal rank of a certain Waring-
type decomposition.

We briefly introduce the apolar or Bombieri-Weil inner product [IK99]. LetK = C or R. The inner product
〈 · , · 〉BW on K[x]k =K[x0, . . . ,xn]k is defined on monomials xα ,xβ (and extended by linearity) as:

〈xα ,xβ〉BW ≔
1
k!
∂α x

β(0)

One can show that, if A = (A0, . . . ,Ak) ∈ Kn+1 and f ∈ K[x]k , then 〈ℓkA, f 〉BW = f (A) = evA(f ), where
evA : K[x]k →R denotes the usual point evaluation and ℓA = A0x0 + · · ·+Anxn. Now let Z ⊂ Pn be a smooth,
non-degenerate algebraic variety. If L ∈ (K[x]/I(Z))∗k � I(Z)

⊥
k ⊂K[x]k , Ai ∈ Z(K) and ai ∈K, then:

L =
r∑

i=1

ai evAi ⇐⇒ fL =
r∑

i=1

ai ℓ
k
Ai

where fL ∈ I(Z)⊥ ⊂K[Z] is the unique polynomial representing L = 〈fL, · 〉BW using the Riesz representation
theorem. If Z = Pn, such a decomposition of a form as a sum of powers of linear forms is called a Waring
decomposition of rank r over K (assuming that the Ai ’s are pairwise distinct), and the minimal such r is
called theWaring rank overK of f . More generally, when Z ⊂ Pn is a non-degenerate algebraic variety, such
a minimal r is called the Z-rank of f over K. If we write Z = vn,2d (X) for the second Veronese embedding,
the Carathéodory number CX,2d (L) correspond the nonnegative Z-rank of fL, i.e. to the Z-rank over R≥0,
see e.g. [QCL16, BS16, Ang17, ABC18]. We say that a nonnegative Z-rank r is typical if the set of forms
of nonnegative Z-rank equal to r has nonempty interior. Using this terminology, Corollary 5.1.5 can be
rephrased as follows.

Corollary 5.2.1. Let X ⊂ Pn be a totally real elliptic normal curve and denote Z = νn,2d(X). Then, for linear
functionals in the moment cone P∨X,2d :

(i) if X(R) is connected, then the maximal nonnegative Z-rank is d(n+1);
(ii) if X(R) is disconnected, then the maximal nonnegative Z-rank is d(n+1) + 1.

Furthermore, the maximal nonnegative Z-rank is always typical.

Let us also remark on another connection between our study of Carathéodory numbers and secant vari-
eties. The proof of Theorem 5.1.4 relies on the study of the boundary points of the set of linear functionals
obtained using at most n + 1 point evaluations. In particular, we study the tangent space at the boundary,
which is of a smaller dimension than the expected one. In the language of tensor decomposition, those
points define what is called Terraccini locus. For more information and precise definitions on the Terraccini
locus, we refer the reader to the recent work [ACO23] and references therein.

We finally state some lemmas that will be useful in Section 6, about the geometry of the representations
of linear functional as sum of point evaluations. The first one is a particular case of [CC06, Prop. 5.2].

Lemma 5.2.2. Let X ⊂ Pn be an elliptic normal curve, Z = vn,2d (X), and

L = evA1
+ · · ·+ evAd(n+1) ∈

(
C[x]2d

/
I(X)2d

)∗

If A1, . . . ,Ad(n+1) are distinct and A1 ⊕ · · · ⊕Ad(n+1) is not a 2-torsion point of X, then L has two distinct represen-
tations of Z-rank (over C) equal to d(n+1).

Proof. The statement is equivalent to the fact that the general point of the d(n + 1)-secant variety of Z is
contained in two distinct d(n+1)-secant spaces. We can then conclude as in the proof of [CC06, Prop. 5.2],
applied to the elliptic normal curve Z . �

We now adapt Lemma 5.2.2 to the nonnegative Z-rank: in Lemma 5.2.3 we treat the generic case, while
in Lemma 5.2.4 we consider special cases.
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Lemma 5.2.3. Let X ⊂ Pn be a totally real elliptic normal curve and Z = vn,2d(X(R)). All linear functions
L ∈ coned(n+1)(Z)\∂coned(n+1)(Z) (which is a Euclidean dense subset of coned(n+1)(Z)) admit exactly two different
representations:

L =
d(n+1)∑

i=1

ai evAi =
d(n+1)∑

i=1

bi evBi

with ai ,bi ∈R≥0 and Ai ,Bi ∈ X(R).

Proof. Let L =
∑d(n+1)
i=1 aievAi ∈ coned(n+1)(Z) \ ∂coned(n+1)(Z). Then by Lemma 5.2.2 L admits another,

unique, distinct representation L =
∑d(n+1)
i=1 bievBi , with bi ∈ C and Bi ∈ X. Our goal is to show that bi ∈ R≥0

and Bi ∈ X(R).
In the following, we denote σ( · ) the action of complex conjugation. Assume that {B1, . . . ,Bd(n+1) } ,

{σ(B1), . . . ,σ(Bd(n+1)) }. Then:

L =
d(n+1)∑

i=1

ai evAi =
d(n+1)∑

i=1

bi evBi =
d(n+1)∑

i=1

σ(bi ) evσ(Bi )

are three distinct decompositions, contradicting Lemma 5.2.2.
Therefore we have two cases: either Bi ∈ X(R), or σ(Bi ) = Bj for some j = j(i), and in such a case we

also have bi = σ(bj ). We now show that the second possibility leads to a contradiction. Pick a real linear
form ℓ vanishing at all the points {B1, . . . ,Bd(n+1) } except Bi and σ(Bi ). This imposes d(n+ 1)− 2 conditions
in the d(n+ 1)-dimensional space of linear forms on νn,d (X(R)), and thus we can furthermore assume that
ℓ(Bi )2 = −(bi +σ(bi )) = σ(ℓ(σ(Bi ))2). Therefore:

L(ℓ2) =
∑

j

ajℓ(Aj )
2 ≥ 0

L(ℓ2) = biℓ(Bi )
2 +σ(bi )ℓ(σ(Bi ))

2 = −(bi +σ(bi ))2 < 0

which is a contradiction.
Therefore Bi ∈ X(R) for all i. We now want to show that bi ∈ R≥0. For this, pick a real linear form ℓ

vanishing at all the points {B1, . . . ,Bd(n+1) } except Bi . Therefore:

0 ≤
d(n+1)∑

j=1

ajℓ(Aj )
2 = L(ℓ2) =

d(n+1)∑

j=1

bjℓ(Bj )
2 = biℓ(Bi )

2

showing that bi ∈R≥0 and concluding the proof. �

Lemma 5.2.4. Let X ⊂ Pn be a totally real elliptic normal curve and Z = vn,2d (X(R)). All linear functionals
L ∈ ∂coned(n+1)(Z) \ coned(n+1)−1(Z) admit at most two representations as in Lemma 5.2.3.

Proof. Notice that if L ∈ ∂coned(n+1)(Z) then L is a critical value of the map ψ (extended to the full real
locus X(R)) in the proof of Proposition 5.1.3. More precisely, since L is in the boundary, for every A ∈
X̂(R)d(n+1) in the preimage of L, the differential dψA is not surjective. Furthermore, since L < coned(n+1)−1(Z),
then every representation of L uses d(n + 1) atoms which add to a 2-torsion point (see again the proof of
Proposition 5.1.3).

Consider then, for every α ∈ J(R)2, the set of d(n+1)-uples which add to α:

Pα ≔ {A = (A1, . . . ,Ad(n+1)) ∈ X̂(R)d(n+1) | A1 ⊕ · · · ⊕Ad(n+1) = α }
and the restriction ψα of ψ to this subset:

ψα : Pα −→ I (X)⊥2d � R
∗
2d

A = (A1, . . . ,Ad(n+1)) 7−→
d(n+1)∑

i=1

ℓ2Ai
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As in the proof of Proposition 5.1.3, analyzing the differential of ψα we can show that, if the Ai ’s are
distinct, then the codimension of the image of dψA is one. A dimension count shows then that, if L ∈
∂coned(n+1)(Z) \ coned(n+1)−1(Z), the fiber ψ−1α (L) is finite (or empty). Since every representation of L ∈
∂coned(n+1)(Z) \ coned(n+1)−1(Z) uses distinct atoms which add to a 2-torsion point, we have shown that L
admits finitely many representations.

Finally, by semicontinuity (see e.g. [Har77, Theorem III.12.8]) we can conclude that L admits at most
two decompositions. �

In the previous lemmas, we focused on representations using d(n + 1) points, showing that they are
generically finitely many. On the other hand, when we use d(n + 1) + 1 points a generic linear functional
L admits infinitely many representations. More precisely, we can show that every linear functional in the
relative interior of P∨X,2d has a 2-dimensional family of representations using d(n+1) + 1 points.

Lemma 5.2.5. Let X ⊂ Pn be a totally real elliptic normal curve and let L ∈ intP∨X,2d . Then L has a 2-dimensional
family of representations using d(n+1) + 1 point evaluations.

Proof. Considering the Veronese reembedding νn,d(X), we can restict to the case of quadrics, i.e. d = 1. As
is in the proof of Proposition 5.1.3, consider the map

ψ : X̂(R)n+2 −→ I (X)⊥2 � R∗2

A = (A1, . . . ,An+2) 7−→
n+2∑

i=1

ℓ2Ai

and its differential

dψA : TA(X̂(R)n+2) � TA1
X̂(R)× · · · ×TAn+2X̂(R) −→ Tψ(A)(I (X)⊥2 ) � I (X)⊥2

v = (v1, . . . vn+2) 7−→ 2
n+2∑

i=1

ℓvi ℓAi

From Corollary 5.1.5, we deduce that Imψ = P∨X,2, which is a 2(n+1)-dimensional convex cone. We want to
show that, for L ∈ intP∨X,2, dimψ−1(L) has dimension two.

As in the proof of Proposition 5.1.3, we notice that dψA is not surjective if and only if there exists a
double vanishing quadratic form q ∈ R2 at A = (A1, . . . ,An+2). As degdivq = degq ·degX = 2(n+1), this can
happen if and only if the Ai ’s are not distinct and they admit a double vanishing quadraitc form through
them. Therefore, if the Ai ’s are distinct then A is a regular point of ψ, and

dimψ−1(ψ(A)) = dim X̂(R)n+2 −dimR∗2 = 2

It is then sufficient to show that every linear functional in the relative interior of P∨X,2 is the image of a

regular point of ψ. We proceed as in the proof of Lemma 5.1.1: let L ∈ intP∨X,2. For all A ∈ X̂(R)∩Sn, there
exists λ = λ(A) ∈ R>0 such that

L−λ2evA = L−λ2ℓ2A = q − ℓ2λA ∈ ∂P∨X,2
and L − ℓ2λA can be represented in a unique way as a sum of n + 1 point evaluations (see the proof of
Lemma 5.1.1). Therefore, if the n + 1 points are distinct and different from A, then L is the image of a
regular point of ψ, as desired. If the n+1 points and A are not distinct for all A ∈ X(R), then L would admit
a representation as a sum of n + 1 point evaluations using every A ∈ X(R), contradicting Lemmas 5.2.3
and 5.2.4. Thus L has a representation using n+2 distinct point evaluations, and it is the image of a regular
point of ψ, as desired. �

We note that the proof of Lemma 5.2.5 can be simplified if X(R) is connected. Indeed, in this case all the
linear functionals in the relative interior of P∨X,2 are regular values of ψ, and we can immediately conclude
that all the fibers have dimension two. On the other hand, if X(R) is disconnected then ψ has critical values
in the interior of P∨X,2, and the proof cannot be easily simplified.

We now use Lemma 5.2.5 to show that there exist representations of linear functionals in P∨X,2d whose
atoms avoid finitely many points in X(R).
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Lemma 5.2.6. Let X ⊂ Pn be a totally real elliptic normal curve and let L be in the interior of P∨X,2d . If

B = {B1, . . . ,Bm} ⊂ X̂(R)∩Sn

then there exists a representation of L using d(n+1) + 1 atoms that do not belong to B.
Proof. As in the proof of Lemma 5.2.5, we can restrict to the case d = 1. Let ψ be the map in the proof of
Lemma 5.2.5. Assume by contradiction that every representation of L ∈ intP∨X,2 ⊂ R∗2 uses evBj for some

Bj ∈ B. Then, if we let ABj (L) ⊂ (X̂(R)∩Sn)n+1 be the n+1-tuples of representing atoms of L which include
Bj , we have:

ψ−1(L) =AB1 (L)∪ · · · ∪ABm (L)
We deduce from Lemma 5.2.5 that there exists j such that dimABj (L) = 2. In particular, we have a two-
dimensional family of representations of the form:

L = λevBj +
n+1∑

i=1

γi(λ)evAi (λ)

where γi(λ) ∈ R≥0, Ai(λ) ∈ X̂(R) ∩ Sn and λ ∈ R>0. This implies that for some λ ∈ R there exists a
one-dimensional family of representations for L − λevBj using n+1 point evaluations, in contradiction to
Lemma 5.2.3. This concludes the proof. �

Remark 5.2.7. We make some remarks on the previous results.
(i) In the proof of Lemma 5.2.3, we are implicitly using the fact that, if L ∈ P∨X,2d , then the moment or

catalecticant matrixMd (L) is positive definite, see Section 6.1.
(ii) Assuming that X(R) is connected, we can deduce from Corollary 5.2.1 that the rank of the moment

or catalecticant matrixMd (L) is equal to the nonnegative Z-rank of L: in general, the rank ofMd (L)
is only a lower bound for the rank.

(iii) Given a general L, in Lemma 5.2.3 (and in Lemma 5.2.2) the atoms of the two different possible
representations form the zero locus of a form q = qL ∈ R2d on the elliptic normal curve, i.e.

divq = A1 + · · ·+Ad(n+1) +B1 + · · ·+Bd(n+1).
This shows that the set of possible atoms forms a self-associated set for the Gale transform, see
[EP00]. Therefore, given L and a representing atoms A1, . . . ,Ad(n+1), the problem of determining the
second set of representing atoms B1, . . . ,Bd(n+1) could be investigated using the geometry of the Gale
transform.

6. The moment problem for plane cubics

In this section, we consider affine genus one curves, and see how the results in Section 5 can be exploited
to solve the moment problem on such curves. In particular, we show how the topology of the real locus and
the number of points at infinity can be used to characterize the flat extension degree. In the following, affine
curves and their real loci will be denoted by X and X(R) respectively, while their projective closures will be
denoted by X and X(R).

In recent years, the case of plane curves has been particularly investigated, see [Fia11,Zal21,Zal22,Zal23,
Bha20]. For ease of presentation and comparison, we restrict ourselves to the same case. i.e. we consider a
smooth totally real affine plane cubic X(R) ⊂ R2.

6.1. Flat extensions and almost flat extensions. We now briefly introduce the relevant definitions and
notations for this section.

Let X(R) ⊂ R2 be a totally real affine plane cubic. Given

L ∈ R∗≤2d = R[X]∗≤2d =
(
R[x,y]≤d

/
I(X)≤d

)∗

we can consider the bilinear form

Md(L) : R≤d ×R≤d −→ R

(q1,q2) 7−→ L(q1q2)
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Equivalently,Md (L) is the linear map:

Md (L) : R≤d −→ R∗≤d
q 7−→ L ◦mq

where mq : R≤d → R≤2d denotes the multiplication by q ∈ R≤d . We call the matrix representingMd(L) (with
respect to any basis of R≤d ) themoment matrix of L. We refer to [Sch17] for more details. These matrices are
also known as Catalecticant matrices [IK99] (in the case X = Rn) or Hankel matrices [Mou18]. We also notice
that rankMd(L) ≤ dimR≤d = 3d.

Similarly to the homogeneous case, we denote

PX,≤2d = {q ∈ R≤2d : q(A) ≥ 0 for all A ∈ X(R) }.
Notice that, if L ∈ P∨X,≤2d , then the moment matrixMd(L) is positive semidefinite.

As R2d � R≤2d by homogenization, we also have PX,≤2d � PX,2d and P∨X,≤2d � P∨
X,2d

. To emphasize the fact

that we are working in an affine setting, hereafter we use the notations R≤2d and PX,≤2d .
We denoteM2d (X(R)) the moment cone, i.e. the convex cone of linear functionals acting on polynomials

of degree ≤ 2d which are induced by a Borel measure supported on X(R). Using the Richter-Tchakaloff
theorem [Sch17, Th. 1.24], we can describeM2d (X(R)) using only conic sums of point evaluations at X(R):

M2d (X(R)) = cone(evA : A ∈ X(R))

If X(R) is compact thenM2d (X(R)) = P∨X,2d . On the other hand, if X(R) is not compact, then M2d (X(R))
is not closed and the inclusion M2d (X(R)) ( P∨X,≤2d is proper: this is always the case for plane cubics

X(R) ⊂ R2.
We are now ready to recall the notion of flat extension.

Definition 6.1.1. A positive flat extension of L ∈ R∗≤2d is any L̃ ∈ R∗≤2d+2 such that:

(i) L̃ |R≤2d= L;
(ii) rankMd+1 (̃L) = rankMd (L);
(iii) Md+1 (̃L) is positive semidefinite.

Testing the existence of a flat extension is the standard algorithmic tool to verify if L is a moment linear
functional or not, see e.g. [CF98, Sch17,Mou18]. Our definition of flat extension is slightly different from
others present in the literature for the case of curves (see e.g. [Fia11]), in terms of how we enforce the atoms
of any representation of L to lie on X(R). We refer to Remark 6.1.4 for a comparison.

The rank of the flat extension determines the number of atoms needed to represent L as conic combina-
tion of point evaluations on X(R), see e.g. [Sch17, Th. 17.36]. Moreover, if a flat extension is found, then
the flat extension can be further extended from degree d + 1 to an arbitrary degree. Notice also that, since
L̃ |R≤2d= L, the matrixMd(L) can be identified with the matrixMd (̃L), which is a submatrix ofMd+1 (̃L).

In other words, the rank of a flat extension gives the (affine) Carathéodory number of a linear functional.
We define the Carathéodory number for the affine plane curve X as in the projective case, as follows:

CX,≤2d ≔min
{
k ∈N | conek(ν2,d (X(R))) =M2d (X(R))

}

Note that we are not allowed to use atoms at infinity, i.e. point evaluations from X(R) \X(R).
In the following, we will also need a slight generalization of Definition 6.1.1.

Definition 6.1.2. An almost flat extension of L ∈ R≤2d is any L̃ ∈ R∗≤2d+4 such that:

(i) L̃ |R≤2d= L;
(ii) rankMd+2 (̃L) ≤ rankMd (L) + 1;
(iii) Md+2 (̃L) is positive semidefinite.

Remark 6.1.3. If L̃ is a flat extension of L, then L̃ can be further extended to an almost flat extension of L.

More precisely, if L admits a flat extension L̃, then L̃ ∈ R∗≤2d+2 admits a flat extension ˜̃L ∈ R∗≤2d+4 such that:

rankMd+2 (̃̃L) = rankMd+1 (̃L) = rankMd (L).
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On the contrary, if L does not admit a flat extension, but it admits an almost flat extension L̃, we necessarily
have:

rankMd+2 (̃L) = rankMd+1 (̃L) = rankMd(L) + 1.

In Section 6.2 we show that we can characterize solutions to the moment problem on plane cubics using
almost flat extensions.

Remark 6.1.4. We compare our definitions with the ones existing in the moment literature, e.g. in [Fia11,
Th. 1.1]. The main difference is that, instead of working with all the monomials up to a certain degree and
imposing extra conditions for the representing measure to be supported on the plane curve, we directly
work in the quotient R≤2d = R[x,y]≤2d

/
I(X)≤2d . We also speak of the flat extension of a linear functional,

instead of a flat extension of the corresponding moment matrix. Concretely, a p-pure moment matrix in
[Fia11, Th. 1.1] corresponds to a positive definite moment matrix in this manuscript, and a positive, recur-
sively generated flat moment matrix extension in [Fia11, Th. 1.1] simply corresponds to our flat extension.

6.2. Themoment problem for plane cubics. We are now ready to show how to solve the moment problem,
i.e. how to characterize membership L ∈M2d (X(R)), using almost flat extensions, see Definition 6.1.2.

Proposition 6.2.1. Let X(R) ⊂ R2 be the affine real locus of a totally real plane cubic, whose projectivization X
is smooth. Given L ∈ R∗≤2d , the following are equivalent:

(i) L ∈M2d (X(R));
(ii) there exists an almost flat extension L̃ ∈ R≤2d+4.

Proof. (i) =⇒ (ii) Recall that, by homogenization, PX,≤2d � PX,2d . Therefore, given L ∈M2d (X(R)) ⊂ P∨X,≤2d ,
it follows from Corollary 5.1.5 that we can always write

L =
3d+1∑

i=1

ai evAi

where, for all i, ai ≥ 0 and Ai belongs to X(R) ⊂ P2(R), the real locus of the projective closure X of X.
From Lemma 5.2.6, we deduce that there exists a representation for which Ai ∈ X(R) (we are excluding the
finitely many points at infinity). Therefore L admits the almost flat extension L̃ =

∑3d+1
i=1 ai evAi ∈ R∗2d+4.

(i) =⇒ (ii) If L admits an almost flat extension L̃, then either rankMd+1 (̃L) = rankMd (L) or rankMd+2 (̃L) =
rankMd+1 (̃L). From the flat extension theorem, we deduce that, in both cases, L can be represented as an
atomic measure using point evaluations in X(R), which implies L ∈M2d (X(R)). �

We showed in Proposition 6.2.1 that, extending the degree by 4 and considering an almost flat extension,
it is possible to characterize whether L ∈ M2d (X(R)) or not. A natural question then arises: is it necessary
to consider almost flat extensions, or can we replace them with ordinary flat extensions? In the following,
we are going to show how the answer to this question depends on the topology of X(R) and the number of
points at infinity of the projective closure X(R).

We start showing that flat extension is sufficient when the curve is connected and has only one point at
infinity.

Theorem 6.2.2. Let X be an affine, smooth, totally real plane cubic. Assume that X(R) is connected and that the
projective closure X(R) contains only one real point at infinity. Then, given L ∈ R≤2d , the following are equivalent:

(i) L ∈M2d (X(R));
(ii) L has a positive flat extension L̃ ∈ R∗≤2d+2.

Moreover, the affine and projective Carathéodory numbers are equal: CX,≤2d = CX,2d = 3d.

Proof. For (ii) =⇒ (i), we can proceed as in Proposition 6.2.1.
For (i) =⇒ (ii), it follows from Theorem 5.1.4 that L can be written using at most 3d points from X(R).

We now show that at least one such representation has all points in the affine part X(R).
If L ∈ ∂M2d (X(R)), it follows e.g. from [Sch17, Prop. 18.12] that L has a unique representation as a sum

of point evaluations in X(R). This unique representation uses at most 3d point evaluations, and thus we
can construct a flat extension of L using such a representation.
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If L ∈ intM2d (X(R)), then Lemma 5.2.3 implies that L admits two different representations as sum of
3d point evaluations. Such distinct representations cannot share any point, and therefore the fact that
X(R) has a unique point at infinity implies that one of the two uses only points in X(R). We can therefore
construct a flat extension for L from this representation with only points in X(R).

The fact that CX,≤2d = CX,2d follows from the previous points, as the existence of representations using

points from X(R) implies that existence of representations using points from X(R) with the same number
of atoms. �

We now construct an example which illustrates that X(R) having a unique point at infinity is a necessary
assumption in Theorem 6.2.2.

Example 6.2.3. Let X̃(R) ⊂ R2 be the real locus of the affine totally real plane cubic, and assume that X̃(R)
is connected. Let L ∈ intM2d (X̃(R)) ⊂ P∨

X̃,≤2d .
We deduce from Lemma 5.2.3 that L admits exactly two distinct representations

L =
3d∑

i=1

ai evÃi =
3d∑

i=1

bi evB̃i

using 3d points form the projective closure of X̃(R). Now consider the (real) line between A1 and B1, and
apply a projective linear change of coordinates in such a way the line between Ã1 and B̃1 is sent to the line
at infinity. Let X(R) ⊂ R2 be the affine real locus of X̃(R) under this change of coordinates.

We have L ∈ intM2d (X(R)) = intM2d (X̃(R)), and as before L admits only two representations

L =
3d∑

i=1

ai evAi =
3d∑

i=1

bi evBi ∈ P
∨
X̃,≤2d = P∨X,≤2d

where Ai ,Bi denote the images of Ãi , B̃i after the change of coordinates above. Notice that both representa-
tions use a point at infinity, i.e. A1 and B1 respectively, by construction.

This shows that L ∈ intM2d (X(R)) cannot be represented using 3d evaluations at points of the affine
curve X(R), and thus L does not admit a flat extension. Therefore, we cannot remove the condition that
X(R) has a unique point at infinity from Theorem 6.2.2, to conclude that the flat extension condition is
sufficient. Notice also that the above discussion implies that CX,≤2d (L) = 3d + 1, but CX,2d = 3d, and thus
CX,2d < CX,≤2d . It is therefore not possible to compute the affine Carathéodory numbers using solely the
projective information.

We conjecture that such pathological behavior happens for all affine plane cubics with at least two real
points at infinity.

We now turn our attention to the disconnected case.

Theorem 6.2.4. Let X(R) ⊂ R2 be the affine real locus of a totally real plane cubic, whose projectivization X is
smooth. Assume that X(R) has two connected components. Then, given L ∈ R≤2d , the following are equivalent:

(i) L ∈M2d (X(R));
(ii) L has a positive almost flat extension L̃ ∈ R∗≤2d+4.

The almost flat extension condition cannot be replaced by flat extension in (ii). Moreover, the affine and projective
Carathéodory numbers are equal: CX,≤2d = CX,2d = 3d +1.

Proof. By Proposition 6.2.1, we only need to show that there exists L ∈M2d (X(R)) which does not admit a
flat extension. For this, it is sufficient to show that CX,2d (L) > 3d. By Theorem 5.1.4, such an L exists when
X(R) has two connected components. This also implies that CX,≤2d = CX,2d = 3d +1. �

We notice that the solution of the moment problem proposed in Theorem 6.2.4 with the almost flat
extension condition is muchmore complicated than the usual flat extension one, exploited in Theorem 6.2.2
and [Fia11, Zal21, Zal22, Zal23, Bha20]. However, this increased complexity cannot be avoided, as it is a
direct consequence of the higher Carathéodory number.
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