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Abstract

In this paper, we propose a fast method for crack detection in 3D computed tomography (CT) images. Our approach combines
the Maximal Hessian Entry filter and a Deep-First Search algorithm-based technique to strike a balance between computational
complexity and accuracy. Experimental results demonstrate the effectiveness of our approach in detecting the crack structure with
predefined misclassification probability.

Keywords:
Deep-First Search algorithm, Hessian-based filter, crack detection, classification, model free.

1. Introduction

Concrete is the traditional material of choice for construct-
ing buildings, bridges, and road infrastructure, underscoring the
critical importance of safety in their design, monitoring, and
maintenance. In the pursuit of enhancing safety, numerous stud-
ies have been conducted to understand the structure of concrete
[9], testing it under some specific types of loadings.

A modern visualizing technique is high resolution CT
grayscale imaging, which shows cracks as a collection of con-
nected voxels carrying low gray values. Due to the nature of
cracks, which typically form a flat surface within the material,
the crack segmentation can be done by applying several classical
methods [17, 8, 6], or implementing some Machine Learning
algorithms [3, 4, 15]. They usually perform well, classifying
crack voxels as anomalies with high performance [2]. However,
in real-world scenarios, the complexity of concrete including
cracks, air pores, stones, or steel fibers often necessitates the
enhancement of classical segmentation techniques, leading to
increased computational demands. Furthermore, the shortage
of training data due to the high costs of stress tests and CT
imaging complicates the training of machine learning models.
One approach to address this challenge involves creating a large
collection of semi-synthetic 3D CT images [12, 11] which simu-
lates real material and crack behavior based on minimum-weight
surfaces in bounded Voronoi diagrams. However, for extremely
large input 3D images that modern CT scanning is able to pro-
duce (e.g. of size 100002 × 2000), runtimes of crack detection
algorithms become a major concern.

In order to overcome this problem, a statistical approach can
be employed to pre-identify anomaly regions, reducing unnec-
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essary computations. Therefore, one might need a stochastic
model for concrete, for instance, for objects such as air pores
based on Boolean model [5, 1] or cracks using Brownian mo-
tion [12, 11]. However, due to the highly complex geometries
of objects in real-world CT images, in this paper we apply a
model-free approach, which involve applying a relatively simple
crack segmentation method, followed by the examination of
subregion geometry. The Deep-First Search algorithm (DFS)
is identified as a promising solution for this task. Originating
from the work of French mathematician C. Trémaux, DFS has
been widely adopted in graph theory [10, 16] and connectivity
problems [7], enabling the detection of connected components
or object labeling within binary images. By focusing on sur-
face examination within smaller images and using natural crack
elongation, DFS can effectively identify crack regions within a
reasonable timeframe. Moreover, the framework [13] proposed
for crack detection in real 3D CT images requires the computa-
tions of geometric properties for each subregion belonging to
the partition of the original input image. In this context, DFS
reduces the amount of computations by excluding crack-free
image regions.

This paper presents a two-phase procedure involving crack
segmentation and a DFS-based algorithm for crack detection.
Section 2 outlines a simple yet effective filter designed in [13] to
generate a binary image with high sensitivity, preserving crack
structure while accommodating a certain level of noise. Subse-
quently, Section 3 provides insights into the implementation of
the DFS algorithm to swiftly detect cracks in smaller regions.
Additionally, Section 4 shows the numerical experiments with
methods from Section 2 and 3 employed for both semi-synthetic
and real CT images, provided by the Technical University of
Kaiserslautern and Fraunhofer ITWM. Finally, Section 5 offers
a summary of the key findings and identifies potential challenges
for future research. The whole procedure is described in Dia-
gram 1.
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Figure 1: 6-step process diagram for crack localization in 3D concrete images

2. Crack segmentation

In order to use the DFS algorithm for crack detection in a 3D
grayscale image, one first needs to apply certain fast image
segmentation methods. In this paper, we utilize a Hessian-
based filter called Maximal Hessian Entry filter [13]. Let
I = {I(p) ∈ [0, 1], p ∈ W ⊂ Z3} be an input 3D gray scale image.
For a prespecified value of σ > 0, let G be the 3-dimensional
Gaussian kernel, G(p;σ) = (2πσ2)−3/2 exp{− ∥p∥22 /(2σ

2)} with
scale parameter σ > 0, where ∥ · ∥2 is the Euclidean norm
in R3. The Hessian matrix H(p;σ) of the image I at a voxel
p = (p1, p2, p3) ∈ W is given by

H(p;σ) =
(
Hi, j(p;σ)

)3
i, j=1
,

where Hi, j(p;σ) := σI(p) ∗ ∂2

∂pi∂p j
G(p;σ), i, j = 1, 2, 3 and ∗

denotes the usual convolution operation. Let

Lσ(I) =
{

Lσ(I, p) = max
i, j=1,2,3

(
Hi, j(p;σ), 0

)
, p ∈ W

}
.

Denote by µ(Lσ(I)) and sd(Lσ(I)) the sample mean and the
sample standard deviation of all gray values within Lσ(I). For
a threshold Tσ(I) = µ(Lσ(I)) + 3sd(Lσ(I)), one can obtain a
binarized image L∗σ(I) as follows:

L∗σ(I) = {L∗σ(I, p) = 1{Lσ(I, p) ≥ Tσ(I)}, p ∈ W}.

Let S be a finite range of values of the smoothing parameter σ.
The final outcome of the Maximal Hessian Entry filter applied
to image I is computed by

LS(I) = {LS(I, p) = max
σ∈S

L∗σ(I, p), p ∈ W}.

The performance comparison between this and other classical
crack segmentation methods has been investigated in [2] and
[13]. It is worth noting that the structure of cracks in the input
image I is well preserved in the filtered image LS(I) with a
certain level of noise, for both semi-synthetic images I1, I2, I3
and real CT images I4, I5 provided by Technical University of
Kaiserslautern and Fraunhofer ITWM, see Figure 2. It allows
the geometric detection of local structures in concrete (such as
air pores, steel fibers, and cracks) by means of the following
DFS algorithm.

(a) I1 (b) I2 (c) I3 (d) I4 (e) I5

Figure 2: First row: Slices of input gray scale images I j, j = 1, . . . , 5. Second
row: Corresponding slices of binary images LS(I j), j = 1, . . . , 5 computed using
the Maximal Hessian Entry filter.

3. DFS-based algorithm in crack detection

In this section, we present a method employing the DFS
algorithm to identify crack-containing regions within 3D binary
images. Given the elongated flat 2D structure of cracks, it
becomes evident that if cracks exist within a sufficiently small
cubic subregion W̃, they are likely to intersect its boundary ∂W̃,
see Figure 3. Hence, determining whether a small region W̃
contains a crack depends on our ability to detect cracks on one
of the facets. Therefore, our detection procedure will be applied
to 2D surface W̃ instead of 3D volume W, which significantly
reduces the computational cost.

(a) 1003 region (b) 2003 region (c) 3003 region (d) LS(I4)

(e) 1003 region (f) 2003 region (g) 3003 region (h) LS(I5)

Figure 3: 3D visualization of subregions W̃ of different size of binary images
LS(I4) and LS(I5).

The DFS algorithm is commonly employed for detecting
connected components or labeling objects within 2D binary
images. Its implementation requires the construction of a graph
G = (V, E) over the image domain, where V represents the set
of pixels, and E is the set of the edges between vertices in V
with respect to 4-connectivity neighborhood relation. Since the
complexity of the DFS algorithm is O(#V + #E). Here and in
what follows, #A is the cardinality of a finite set A, performing
DFS consequently over a sufficiently large collection of 2D
images is challenging in terms of run time, which is one of our
primary concerns.

To address this limitation, a novel approach involves construct-
ing a modified image graph with a reduced number of vertices,
leveraging prior knowledge from the binary image, particularly
the identification of pixels representing cracks. Consider a bi-
nary image J = {J(p) ∈ {0, 1}, p ∈ W}, W = [0, a]× [0, b]∩Z2.
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For any mesh size ∆ ∈ N, the following procedure is proposed
to obtain such a graph:

1. Define the lattice graph G∆ = (V∆, E∆), where V∆ =W∩
∆Z2 represents the set of vertices and E∆ = {(e1, e2) |
e1, e2 ∈ V∆, ∥e1 − e2∥2 = ∆} denotes the collection of edges,
with ∥ · ∥2 being the Euclidean norm in R2.

2. Identify the set H = {p ∈ V∆ | J(p) = 1}, representing
foreground pixels within J and belonging to V∆.

3. Define the set K = {p1 ∈ V∆ \ H | ∥p1 − p∥∞ = 1, p ∈ H},
finding all neighbors of H in the graph, where ∥ · ∥∞ denotes
the maximum norm in R2.

4. Remove all edges from E that do not have vertices in K,
resulting in EK = {(e1, e2) ∈ E | e1, e2 ∈ K}.

5. Define the new graph G∗ = (K, EK).

In context of crack detection we put J = {LS(I, p) : p ∈ W}
whereW is a facet of ∂W̃ ∩ Z2. Foreground pixels correspond
to a crack phase.

As illustrated in Figure 4, appropriate settings for ∆ in the
above procedure result in a less complex graph G∗ with lower car-
dinalities of both sets of vertices K and edges EK . Consequently,
any computation performed over such a simplified graph offers
advantages in terms of computational cost. Moreover, in the
presence of cracks on one of the surfaces, the graph is capable
of localizing them, as shown in (b), and (c).

(a) The 2002 binary im-
age L1

S

(b) The graph G∗1
with ∆ = 3

(c) The graph G∗1
with ∆ = 5

(d) The 2002 binary
image L2

S

(e) The graph G∗2
with ∆ = 3

(f) The graph G∗2
with ∆ = 5

Figure 4: 2D binary images J with obtained graph G∗ by our procedure.

However, when ∆ is large compared to the crack width, de-
noted by w, it is likely that our procedure is unable to find the
set H, as now #V∆ will be small. This prevents any attempt to
capture the pixels belonging to cracks, resulting in a graph with
numerous small connected components that bound the pixels
belonging to air pores, see Figure 4, (e), (f). Therefore, it is
necessary to control the probability of missing anomaly pixels
using this grid lattice. For simplicity, one can consider a crack as
a convex body C. Let C0 be an intersection of C with a facet of
a small region W̃ = [a, b]3, a < b. One needs to give an upper
bound for the probability P{C0 ∩ ∆Zd = ∅}.

To this end, we use the following

Theorem 1. ([14, Theorem 4]) For every ϵ > 0, there exist
constants c̄ and w̄ such that if C0 is a planar convex body with
area |C0| > c̄ and mean width w0 < w̄, then

P{ρ(C0) ∩ ∆Z2 = ∅} <
∆2

4
·

1 + ϵ
|C0|
,

where ρ(C0) is congruent to C0 under a random isometry ρ of
R2.

This suggests that, if one seeks to control the probability of
missing a crack C0 at level α, then the maximum mesh size
∆max(α) can be chosen from inequality ∆

2

4 ·
1+ϵ
|C0 |
≤ α resulting in

∆max(α) =

2√α|C0|

1 + ϵ

 . (1)

Suppose we have derived G∗ = (K, EK) with a suitable selec-
tion for ∆. As illustrated in (b) and (c) of Figure 4, G∗ contains
connected components, including noise, air pores, or cracks. To
distinguish a crack from other artifacts, count vertices in each
component. Notably, connected components linked to cracks are
expected to have a cardinality higher than a global threshold τ,
thereby serving as a crucial indicator for the presence of cracks
within a region.

To detect cracks in a large 3D CT image I, one first needs
to subdivide the computed 3D binary image LS(I) into smaller
subimages J, then the crack localization can be performed in
each J by the DFS algorithm. It is worth noting that the size of
a subimage J should not be too small. Otherwise, small parts of
cracks can be easily misclassified as noise. For each subimage
J, crack classification depends on how we choose a facet of ∂W̃
to start our procedure. It is reasonable to begin with a facet
showing the highest foreground area, as it may have a chance to
contain a crack.

The procedure can be summarized as follows:

1. Given a 3D grayscale image I, perform the Maximal Hes-
sian Entry filter, obtaining the binary image LS(I).

2. For D = {1, . . . , g}3, define the partition of the image LS(I)
as follows:

W =
⋃
q∈D

W(q),

where all cubic grids W(q) = [aq, bq]3 ∩ Z3 are of equal
size. This results in a collection of cubic subimages Aq =

{LS(I, p), p ∈ W(q)}.
3. For any 3D binary image Aq, let A∗q be the 2D slice of Aq

along a facetWq of ∂[aq, bq]3 with the maximal number
of foreground pixels.

4. For each binary subimage A∗q, q ∈ D and a prespecified
value of ∆ ∈ N, compute the graph G∗q = (K, EK).

5. Run the DFS algorithm over the graph G∗q, obtaining the
set Mq = {Mi

q, i = 1, . . . ,m} of connected components of
G∗q, where m is the total number of components. Here Mi

q

is a set of vertices of the ith connected component of G∗q.
6. Aq is classified as homogeneous region if Mi

q
⋂
∂A∗q =

∅, i = 1, . . . ,m
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7. Given a threshold τ > 0, the 3D subimage Aq is identified
as containing a crack if

max
i=1,...,m

#Mi
q > τ.

4. Numerical results

In this section, we apply the above crack detection method to
five 2503 semi-synthetic 3D CT images (cf. Figure 5) as well as
two 5003 and 6003 real CT 3D images of concrete (cf. Figure
6).

4.1. Semi-synthetic images

The effectiveness of this method can be assessed using stan-
dard metrics such as precision (P), recall (R), and F1-score (F1),
defined as follows:

P =
T P

T P + FP
, R =

T P
T P + FN

, F1 =
2PR

P + R
.

Here, T P (true positive) and FP (false positive) represent the
numbers of subimages Aq correctly and falsely detected as crack
containing regions, respectively. Similarly, T N (true negative)
and FN (false negative) denote the numbers of Aq correctly
and falsely detected as material, respectively. The performance
metrics of our method are summarized in Table 1.

(a) Image I6 (b) Image I7 (c) Image I8 (d) Image I9 (e) Image I10

Figure 5: 2D slices of five semi-synthetic 2503 CT input images.

Consider the set of five 2503 semi-synthetic input images with
constant crack width w = 3, denoted as I6 − I10 in Figure 5,
with S = {1, 3, 5, 10} and the parameter value g = 5. We set the
global threshold τ = 50/∆ + 1, where the value τ corresponds to
the number of vertices on one edge of the lattice graph.

For a 503 subimage Aq, assume that a crack Aq intersected
with ∂[aq, bq]3 has a rectangular shape of size 50 × w. Since
we would like to control the false negative rate at level α,
the maximal mesh size ∆max(α) from (1) with ϵ = 0.1 yields
∆max(0.01) = 2 and ∆max(0.05) = 5.

The recall metric in Table 1 shows that our method controls
the false negative rate at level α with the mesh size ∆ = ∆max(α).
The low precision in Table 1 can be explained by the presence of
a large number of tiny thin cracks in images I6 − I10. However,
our results demonstrate that the method achieves an F1-score
that typically ranges between 60% and 80%, indicating a robust
balance between precision and recall.

It is evident that setting τ to match the length of the edge
of cubic lattice results in a strategy that prioritizes capturing
mid-long cracks, leading to high sensitivity. This approach effec-
tively reduces the occurrence of false negatives, a critical aspect

Table 1: Precision, Recall, and F1-score of our crack detection method applied
to the semi-synthetic input images I6 − I10.

Precision Recall F1-score

∆ = 2 Image I6 0.6666667 1.0000000 0.8000000
Image I7 0.4864865 0.9230769 0.6371681
Image I8 0.4505495 1.0000000 0.6212121
Image I9 0.5263158 0.9677419 0.6818182
Image I10 0.6212121 1.0000000 0.7663551

∆ = 5 Image I6 0.5671642 1.0000000 0.7238095
Image I7 0.4666667 0.9722222 0.6306306
Image I8 0.4509804 1.0000000 0.6216216
Image I9 0.4189189 1.0000000 0.5904762
Image I10 0.5774648 1.0000000 0.7321429

in concrete crack detection, by rarely overlooking anomaly re-
gions. However, the pursuit of high sensitivity comes at the
expense of precision, as it tends to generate a notable number
of false positives. Consequently, while this method focuses on
pre-identifying large-scale issues and filtering out noise with
minimal computational resources, it lacks the precision required
to indicate the exact locations of cracks.

4.2. Real CT images

In images I4 and I5 from Figure 6, the crack width is not
constant. In order to derive the binary image LS(I j), j = 4, 5, we
use a multiscale approach in the Maximal Hessian Entry filter
with S = {1, 3, 5, 10}. Since the size of the input images is large
enough, set ∆ = 3; 5, g = 5; 6; 10; 12, and the corresponding
global threshold τ equal to the number of voxels on an edge of
∂[aq, bq]3. The results corresponding to I4 and I5 are shown in
Figure 7.

(a) 5003 input image I4 (b) 6003 input image I5

Figure 6: 2D slices of two 3D CT input images of concrete.

As the grid lattice gets denser (i.e. the mesh size ∆ decreases),
it is very likely that our method also captures lots of voxels that
apparently do not belong to cracks (high level of false positives).
Therefore, the reduction of noise for small ∆ is not significant.
However, for higher values of ∆, (∆ ≥ 5), as presented in (e) and
(f) in Figure 7, the ratio of FP falls.

These results demonstrate the potential of our method to ef-
fectively reduce the amount of noise, eliminating artifacts such
as air pores in noisy concrete CT images. By pre-identifying
the area of a CT image, further statistical inference on their
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(a) Image I4 (b) Image LS(I4) (c) g = 10,∆ = 3 (d) g = 5,∆ = 3 (e) g = 10,∆ = 5 (f) g = 5,∆ = 5

(g) Image I5 (h) Image LS(I5) (i) g = 12,∆ = 3 (j) g = 6,∆ = 3 (k) g = 12,∆ = 5 (l) g = 6,∆ = 5

Figure 7: The input images I4, I5 and the crack detection results produced by our method.

complement will enhance the quality of subsequent exact crack
segmentation.

4.3. Run time

The above numerical experiments were conducted on a desk-
top PC equipped with an Intel(R) Core(TM) i9-10900K CPU
running at 3.70 GHz and 128 GB RAM. The procedure com-
prises two main steps: crack segmentation and the implementa-
tion of the DFS algorithm to identify inhomogeneous regions.
The highest computational cost is associated with the maximum
value of g and the minimum value of ∆. For the 6003 input image
I5 in Figure 6, the crack pre-segmentation runtime is approx-
imately 22 seconds, while executing the DFS algorithm with
(g,∆) = (12, 3) takes around 9 seconds. For other pairs (g,∆), in-
cluding (12, 5), (6, 3), and (6, 5), the runtimes are 7 seconds, 4.5
seconds, and 3.6 seconds, respectively. In terms of complexity,
our method requires O(#W) arithmetic operations, where #W
represents the total number of voxels of the input image. To ad-
dress the computational demands posed by very large-scale real
images, we suggest implementing parallel computing, which is
well supported by the above algorithms.

5. Conclusions

This paper presents a fast and efficient approach to pre-
localize cracks in large CT 3D images of concrete, offering
a significant add-on value in computational challenges asso-
ciated with large-scale input images. It aims to balance the
trade-off between the complexity of traditional crack segmen-
tation methods and their effectiveness. The key feature lies in
the combination of the Maximal Hessian Entry filter and a DFS-
based approach with significantly reduced complexity, being
able to deal with large-scale images (eg. 100002 × 2000 voxels)
within a reasonable time frame.

The numerical experiments show that our method captures the
structure of cracks well and avoids misclassification of anomaly

regions, which is crucial in materials science applications. Addi-
tionally, its ability to be combined with slower statistical meth-
ods for exact crack segmentation is evident. By significantly
reducing the image space to be scanned for a crack, our approach
enhances the overall quality of crack segmentation for large 3D
CT images under acceptable run times.

Last but not least, our approach quantifies the error probability
of missing a crack with a given mean width.
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