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ABSTRACT
Unsupervised Multiple Domain Translation is the task of transform-
ing data from one domain to other domains without having paired
data to train the systems. Typically, methods based on Generative
Adversarial Networks (GANs) are used to address this task. How-
ever, our proposal exclusively relies on a modified version of a Vari-
ational Autoencoder. This modification consists of the use of two
latent variables disentangled in a controlled way by design. One of
this latent variables is imposed to depend exclusively on the domain,
while the other one must depend on the rest of the variability factors
of the data. Additionally, the conditions imposed over the domain
latent variable allow for better control and understanding of the la-
tent space. We empirically demonstrate that our approach works on
different vision datasets improving the performance of other well
known methods. Finally, we prove that, indeed, one of the latent
variables stores all the information related to the domain and the
other one hardly contains any domain information.

Index Terms— multiple domain translation, controlled disen-
tanglement, variational autoencoder

1. INTRODUCTION

Domain translation involves the process of converting data from one
domain to another while preserving the underlying information or
structure. Multiple domain translation is a generalization of the
previous task that implies translating between more than two do-
mains simultaneously. In addition, when we do not use data pairs
in the source and target domains to design and train the systems,
they are said to be unsupervised. Typically, models based on Gen-
erative Adversarial Networks (GAN) [1] are used to solve the do-
main translation problem [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. How-
ever, GANs are usually complex to train and tune. Moreover, they
present potential problems such as mode collapse [1]. In this pa-
per we present a method to solve the unsupervised multiple domain
translation task using only a Variational Autoencoder (VAE) based
model [13]. Thus, we avoid the problems derived from using GANs.
To the best of our knowledge, there are no other works using only a
VAE to solve this task.
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Specifically, in this paper, we propose to use a VAE that has
two independent latent spaces. One of them should contain infor-
mation only about the domain, while the other one should contain
information about everything that is not the domain, which we call
style. Equivalently, this means that we try to disentangle the infor-
mation corresponding to the domain and the style. Thus, to mod-
ify the domain and keep only the style, we will modify the latent
space corresponding to the domain and leave the one corresponding
to the style intact. To achieve this, we impose during training that
the latent distribution corresponding to the domain must be close to
a target distribution that depends on the domain. Specifically, we lo-
cate these distributions in different regions of the space according to
the domain. In this way, we perform a transformation of the latent
variable by bringing it to the region of the space corresponding to
the target domain. In this work, we impose for efficiency that these
transformations are linear and, more specifically, rotations. Thus,
to translate from one domain to another we perform a rotation in
the latent space, as schematized in figure 1, and then decode once
this rotation has been performed. The fact of imposing that these
transformations are linear also allows us to have a better control and
understanding of the latent space. Other transformations could be
explored, but this is beyond the scope of this paper.

 Domain 1

 Domain 2Domain 3

Fig. 1: Scheme of how the translation is performed in a two-
dimensional latent space with three domains. In this case, the input
belongs to domain 1 and is translated to domain 2 by rotating the
latent variable the same angle that separates the regions of the prior
distributions of these two domains.

We could summarize the main contributions of this work in the
following points:

• We design a VAE in which the target distribution depends
on the domain, but the encoder and decoder are common for
every domain.



• We construct a VAE with two disentangled latent variables in
which one of them depends only on the domain.

• The domain translation is performed by means of a linear
transformation latent variable corresponding to the domain.

The code to implement and perform the experiments ex-
plained in this paper is available at https://github.com/
antonioalmudevar/variational_translation.

2. RELATED WORK

Domain Translation. Different GAN-based works have achieved
excellent results for domain translation. For example, pix2pix [3]
uses Conditional GANs [14] and combines adversarial and L1 losses
to train them. However, this method requires paired datasets. Other
known methods are unsupervised, i.e., they do not require paired
datasets. One of these is CycleGAN [4], which introduces a cycle-
consistency loss, which enforces that translated images can be con-
verted back to their original domain. On the other hand, UNIT
[6] makes a shared-latent space assumption and proposes an unsu-
pervised image-to-image translation framework based on Coupled
GANs. MUNIT [7] extends the capabilities of UNIT by introducing
separate content and style latent spaces for each domain, allowing
for fine-grained control over content and style. The above proposals,
while providing impressive results, only allow translation between
two domains and not from multiple domains to multiple domains.
The main method in the literature to solve this limitation is Star-
GAN [9]. This uses a single generator and discriminator to translate
between multiple domains. During training, the authors randomly
generate a target domain label and train the model to flexibly trans-
late an input image into the target domain. StarGANv2 [11] builds
upon StarGAN by introducing a more advanced architecture and im-
proved disentanglement of content and style.

Disentanglement in VAEs. Disentangled VAEs aim to learn rep-
resentations of data where different factors of variation are sepa-
rated and interpretable. To achieve this, different approaches are
relevant. β-VAE [15] introduces a hyperparameter, β, that balances
the reconstruction loss and a KL loss, which encourages the model
to learn more disentangled representations. Additionally, Factor-
VAE [16] extends β-VAE by introducing a total correlation term in
the loss function. On the other side, InfoVAE [17] introduces an
information-theoretic framework to disentangle factors of variation
in data. Concretely, it uses mutual information between latent vari-
ables and data to encourage meaningful disentanglement. Finally, in
[18], they use classifiers that take the different latent variables as in-
put, thus making each of this variables focus on an attribute. While
all these approaches successfully disentangle various sources of vari-
ability, they do not provide the ability to specify the characteristics
we wish to separate in advance. Determining which dimensions cor-
respond to specific factors must be conducted after training these
models [19, 20, 21].

Conditional VAEs. In [22] the Conditional VAE (CVAE) is pre-
sented, which is a variant of VAE in which the encoder, decoder,
and prior distribution of the latent space depend on a condition. In
this work, the authors suggest two alternatives: one is to make use
of a neural network that takes the condition as input to define the
prior distribution. The other is to simplify the problem by main-
taining a consistent prior distribution regardless of the condition. In
the present work, as we explain below, we make the encoder and
the decoder do not depend on the condition . In addition, we define
the condition-dependent prior without using a neural network, which
allows us to perform domain translation in a very efficient way.

3. PROPOSED APPROACH

3.1. Variational Autoencoder

In the classical version of the Variational Autoencoder [13], the aim
is to generate new data that closely resembles the input data from a
dataset. To achieve this goal, a latent variable z is used, which can
be considered to contain relevant information from the input x. To
facilitate this process, authors propose the use of an encoder qϕ(z|x),
a decoder pθ(x|z), and a prior pθ(z). This prior is usually defined as
N (0, I), which implies that pθ(z) is equivalent to p(z). The ELBO
to maximize in this case is:

LV AE = Eqϕ(z|x) [pθ(x|z)]−DKL (qϕ(z|x)||p(z)) (1)

Once the model has been trained to maximize this ELBO, one or
more samples from p(z) are drawn and passed through the decoder
to obtain pθ(x|z), enabling the generation of new samples.

3.2. Conditional Variational Autoencoder

In [22], the authors suggest conditioning data generation on specific
conditions denoted as c. Typically, these conditions align with the
class of the input x in a labeled dataset. In this case we have an
encoder qϕ(z|x, c), a decoder pθ(x|z, c) and a prior pθ(z|c). In the
original proposal, this prior is proposed to be a neural network that
takes the conditions c as input. Different architectures for this net-
works can be used [23]. However, in the majority of applications
the relaxation pθ(z|c) = p(z) = N (0, I) is used [24, 25, 26]. The
ELBO in the CVAE is:

LCV AE = Eqϕ(z|x,c) [pθ(x|z, c)]−DKL (qϕ(z|x, c)||pθ(z|c))
(2)

3.3. Conditioning only the Prior Distribution

One of the novelties we propose in this work is to condition the prior
distribution, but not the encoder and decoder. Moreover, instead of
using a neural network to condition this prior, we propose to define it
by imposing conditions that will allow us to perform domain trans-
lation, as explained in the next two sections. In this case, therefore,
we have an encoder qϕ(z|x), a decoder pθ(x|z) and a prior p(z|c)
and the ELBO is:

LCPV AE = Eqϕ(z|x) [pθ(x|z)]−DKL (qϕ(z|x)||p(z|c)) (3)

3.4. Disentanglement of Labeled and Unlabeled information

The second fundamental novelty that we incorporate in this work
is to include two conditionally independent latent variables with
respect to the class c. One of those, denoted zl, models the in-
formation corresponding to the known information depends on
the class. The other one corresponds to all the information that
is unlabeled and we denote zu. Moreover, since they are condi-
tionally independent, we have that p(zl, zu|c) = p(zl|c)p(zu|c).
Also, having imposed that zu does not depend on c, then it re-
mains that p(zl, zu|c) = p(zl|c)p(zu). Finally, we impose that
qϕ(zl, zu|x) = qϕ(zl|x)qϕ(zu|x). Under these conditions, we are
left with ELBO being:

LCDV AE = Eqϕ(zl,zu|x) [pθ(x|zl, zu)]
−DKL (qϕ(zl|x)||p(zl|c))
−DKL (qϕ(zu|x)||p(zu))

(4)
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Fig. 2: Scheme of how an input image x whose class is c is translated to class t. The original input is first encoded obtaining p(zl) and
qϕ(zu). Then, the mean of qϕ(zl) is multiplied by TT

c and Tt to obtain the mean of qϕ(z̃l). Finally, a sample from this last distribution and
another from qϕ(zu) are decoded to obtain the translated version of the input. In this figure the input class c is 9 and the target class t is 5.

It’s worth noting that during training, we maximize a modified ver-
sion of the ELBO, in which both KL divergence terms are multiplied
by a β factor. In addition, multiple labeled latent variables could be
defined, each conditionally independent of the others, in order to
modify multiple input attributes. However, this is beyond the scope
of the present work.

Following the prevalent approach in VAEs, we define qϕ(zl|x) =
N (µl

ϕ, diag(σl
ϕ)) and qϕ(zu|x) = N (µu

ϕ, diag(σu
ϕ)). This formu-

lation ensures that zl and zu exhibit conditional independence with
respect to x.

3.5. Defining prior distributions

The last novelty is the way we define the priors, explained in the
previous section. Defining these priors properly will allow us to
perform domain translation. To do so, the first step is to define a
vector µ0. We do this randomly so that each of its elements follows
a U(0, 1) distribution. Subsequently, we define a rotation matrix Tc

for each class c = 1, 2, . . . , C. Each of these rotation matrices Tc

is the normalized version of the Q matrix of a QR factorization of
a random matrix in which each element follows a uniform distribu-
tion U(0, 1). Finally, we define µc = Tc · µ0, p(zl|c) = N (µc, I),
c = 1, 2, . . . , C and p(zu) = N (0, I). We should note that µ0 =
T−1
c · µc = TT

c · µc, since Tc is a rotation matrix and therefore
orthogonal.

3.6. Translating the domain

Once the model is trained, we can perform the domain translation.
For this, we have an input x, its class c, and a target class t. First, we
obtain zl ∼ qϕ(zl|x) and zu ∼ qϕ(zu|x). Subsequently, we obtain
the rotated version of zl as z̃l = Tt · z̃0, where z̃0 = TT

c ·zl. Finally,
we obtain the translated version of the input as x̃ ∼ pθ(x|z̃l, zu). We
show the scheme of the proposed method and the graphical model of
this domain translation in figures 2 and 3, respectively.

4. RESULTS

4.1. Datasets and Experiments Description

To test the performance of our proposal we used three datasets. The
well-known MNIST [27] and SVHN [28] and, in addition, Cars3D
[29]. The latter contains images of 199 cars rendered at 24 equis-
paced angles. We randomly chose 796 images for the test and the

Fig. 3: Graphical model of the translation method. Dashed lines
correspond to the encoding processes qϕ(zl|x) and qϕ(zu|x). Solid
lines correspond to the decoding process in which the target class t
is used to modify the latent variable zl before getting pθ(x|zl, zu).

remaining 3980 for the train. As for the architectures, we use convo-
lutional layers with a kernel size of 3 and stride of 2. In Table 1 we
show the number of channels, layers, and dimensions of the latent
variables for each dataset. To train all of them, we used the Adam
Optimizer with a batch size of 128 and a learning rate of 0.001 for
100 epochs for MNIST and 500 epochs for SVHN and Cars3D. In
all cases, β = 0.001 in the modified ELBO that must be maximized.

Table 1: Architecure details for each dataset where d(zl) and d(zu)
are the dimensions for zl and zu, respectively.

d(zl) d(zu) Channels
MNIST 512 512 {16,32,64,128}
SVHN 1024 1024 {32,64,128,256}
Cars3D 1024 1024 {128,128,256,256,512,512}

4.2. Domain Translation Results

In the following, we show visually the results provided by our
method for each of the datasets. In Figure 4, we randomly select
some test samples from the MNIST dataset and compare the out-
comes generated by our system with those produced by StarGAN
[9], which is the most representative baseline for the task of the
present work. In it, we see that the numbers generated by our system
are much more realistic, and also that the background is less noisy,
as in the original images. Likewise, in Figure 5 we show the results
for SVHN. In this case, we see that the style and the color of the
digit as well as the background are preserved. In addition, in the



(a) Ours (b) StarGAN [9]

Fig. 4: Comparison between our method and StarGAN for MNIST

Fig. 5: Results for SVHN

Fig. 6: Results for Cars3D

cases where extra digits appear in the images, these are maintained,
modifying only the middle one, which is the one that corresponds
to the label during training. Finally, in Figure 6, we present the out-
comes for the Cars3D dataset. Here, we observe that the model and
color of the car remain consistent, with only the car’s angle being
modified. However, in the second-row car, the model fails to gener-
ate the correct profile, possibly because it belongs to an uncommon
car style in the dataset. For the last two datasets, we refrain from
showing results obtained with StarGAN, as the generated images
are not realistic.

4.3. Verifying the Disentanglement

Finally, to assess if all the relevant information to identify the class
is modeled by zl and if zu is independent of class information, we
build two classifiers, both with a linear layer followed by a softmax.
The first one, Cl, takes as input zl ∼ qϕ(zl|x) and the second one,
Cu, takes as input zu ∼ qϕ(zu|x). Both aim to determine the class
to which x belongs. The accuracy of Cl is expected to be very high,

whereas that of Cu should be nearly equivalent to random classifi-
cation. In table 2 we show the results of the experiment. We see
that, indeed, the accuracy is very high in all cases in Cl. However,
although the accuracy in Cu is very low, it is not equivalent to a
completely random classification for the first two datasets (it should
be around 10% in both cases). This may be due either to the fact that
in zu there is still information about the class, or that there is some
correlation between class and style in these datasets. In the Cars3D
dataset, we have certainty that this correlation does not exist since
all the cars appear at all the angles. Here, the results are similar to a
random classification. Therefore, we could think that there is some
correlation between class and style in the MNIST and SVHN sam-
ples, although it is difficult to verify and remains beyond the scope
of this paper.

Table 2: Accuracy (%) for Cl and Cu in the different datasets

MNIST SVHN CARS3D
Cl 99.29 90.78 95.58
Cu 25.29 19.68 3.88

5. CONCLUSION

In this paper, we have presented a method to solve the unsupervised
multiple-domain translation task using exclusively a modified Varia-
tional Autoencoder. This model incorporates two distinct latent vari-
ables. One is intentionally designed to be influenced by the domain,
while the other is meant to capture dependencies related to all fac-
tors except the domain. Another peculiarity of our proposal is that,
although one of the latent variables depends on the domain, the en-
coder and decoder are common to all domains. Therefore, we only
need to make transformations in the latent variable to perform do-
main translation. We define these transformations ourselves and im-
pose that they are linear. This, in addition to simplifying the domain
translation, allows us to have control and understanding over the la-
tent space. Concretely, we design this latent space such that to carry
out the domain translation we must perform a rotation of the domain
latent variable, while the other latent variable must remain intact so
that properties not associated with the domain are not modified.

We have verified that our proposal satisfactorily solves the ob-
jective task for different datasets outperforming other well-known
works which, in addition, have higher complexity. Finally, we have
verified that the two latent variables have a high degree of disentan-
glement, so that the one associated with the domain contains all the
relevant information about the domain, while the other one hardly
contains any information about the domain.
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