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Abstract
Speech resynthesis is a generic task for which we want to

synthesize audio with another audio as input, which finds appli-
cations for media monitors and journalists. Among different
tasks addressed by speech resynthesis, voice conversion pre-
serves the linguistic information while modifying the identity
of the speaker, and speech edition preserves the identity of the
speaker but some words are modified. In both cases, we need to
disentangle speaker and phonetic contents in intermediate rep-
resentations. Phonetic PosteriorGrams (PPG) are a frame-level
probabilistic representation of phonemes, and are usually con-
sidered speaker-independent. This paper presents a PPG-based
speech resynthesis system. A perceptive evaluation assesses
that it produces correct audio quality. Then, we demonstrate
that an automatic speaker verification model is not able to re-
cover the source speaker after re-synthesis with PPG, even when
the model is trained on synthetic data.
Index Terms: speech synthesis, speech edition, interpretable
speech representation, phonetic posteriorgrams, speaker recog-
nition

1. Introduction
Nowadays media monitors and journalists have to deal with
huge content streams from all over the world in different lan-
guages. In this context, SELMA project1 aims to develope a
voice-over framework which will generate a speech signal tar-
geting the voice of a specific journalist/presenter from input
translated text. One option is to use a Text-to-Speech (TTS)
system to generate the speech signal corresponding to the trans-
lated text expressed by the target voice. However, despite many
recent developements, the signal synthesized with such an ap-
proach does not necessarily correspond to what an editor wants.
Therefore, there is a need for the creation of a speech resyn-
thesis framework which enables an expert to directly modify an
existing audio file. To do so, the expert needs to control differ-
ent aspects of the speech signal generation through the use of
an interpretable representation. For instance, EditTTS [1] uses
text as a representation that permits control over the linguistic
content, and [2] uses Phonetic PosteriorGrams (PPG) as a finer
representation to edit rhythmic or phonetic contents. PPG, as
a time-vs-phoneme representation representing posterior prob-
abilities of phonetic classes at the frame level, is the representa-
tion we investigate in this paper.

PPG has the advantage of disentangling phonetic and rhyth-
mic information, and thus giving control to our expert on these
two aspects independently [2, 3]. PPG has been used for the
task of voice conversion [4] (modifying speaker). Such repre-
sentation also embeds speaker accent, thus allowing to perform

1https://selma-project.eu/

accent conversion [2] (modifying accent but not the speaker).
However, this means that some potentially unwanted source
speaker information could leak from the source audio to the
synthetic audio. Our general objective is to generate a speech
signal expressed by a target speaker by resynthesizing an audio
file from a PPG. Therefore we need to verify that the source
speaker cannot be retrieved from the resynthesized audio file.

To do so, we train speech synthesis models on PPG inputs,
following [2] and [4], as detailed in Figure 1. More precisely a
PPG2Mel network is trained to generate a target voice A from
PPG. Consequently, at inference time, when a speech signal
NK from a source speaker K passes through our pipeline, the
re-synthesized signal RA

K is converted towards the target voice
A. We then perform a subjective evaluation of the general qual-
ity of our speech, comparing it to a TTS baseline, a vocoded
only baseline and natural speech. The objective of the evalua-
tion described in Section 3, is to ensure that the synthetic speech
generated from PPG is of correct quality. As our aim is not to
design a new speech synthesis system but to use an existing one
for another task, we do not seek for any score-based comparison
with state-of-the-art approaches. However we need to ensure a
correct audio quality on the synthesized samples.

As far as we know, no study has reported yet how much
source speaker identity is captured by PPGs. Our main contri-
bution is to investigate in what extent an automatic speaker ver-
ification (ASV) system is able to retrieve the source speaker in
the resynthesize audio file. This is done by resynthesizing audio
files from different source speakers (VoxCeleb [5, 6] dataset)
using two models trained on two different target voices. Sec-
tion 4.1 details the contents of the datasets, their use and the
notations that we will use. With this synthetic dataset anno-
tated with source speakers, we are able to train ASV systems
with different setups. Section 4.2 details our protocol and Sec-
tion 4.3 shows the results we got. Contrary to voice conversion
evaluation protocol, we do not intend to check how similar the
synthetic speakers are to the two target voices, but we check
how much a ASV system can identify source speakers in the
synthetic audio, despite the target voice.

2. Related work
All the speech generation tasks are generally divided into two
steps : one feature predictor generates a mel-spectrogram from
the input, and then a vocoder turns the mel-spectrogram into
audio. Among the existing neural vocoders, WaveNet [7] and
WaveGlow [8] have been extensively used with Tacotron2, but
the recent HifiGan [9] which provides faster training and infer-
ence, is now the most used one. Also, some end-to-end systems
tend to appear, that embed both steps without relying on an in-
ternal signal-related representation of speech, such as Vits [10]

Speech generation covers a great variety of tasks (among



Figure 1: Overview of our PPG-based re-synthesis (PPG2Mel) approach. Blue box denotes speaker-specific model. N stands for natural
speech, while R stands for re-synthesized speech (see Sec. 4.1)

text-to-speech (TTS), voice conversion (VC) and speech edi-
tion). Each of them requires to retain or exclude different as-
pects of speech, such as linguistic content, speaker identity,
prosody, etc., that need to be disentangled in specific represen-
tations of speech. For example, text modality discards pitch
and pronounciation while PPG also seem to discard pitch but
are embedding the pronounciation of the sentence.

2.1. Speech generation from text

The first task that comes in mind is Text-to-Speech (TTS),
where a written sentence must be generated with a target voice.
Some systems, such as Tacotron2 [11] or FastPitch [12] have
been developped for this task in particular. The easiest case for
this task is where only one target voice is used: the voice from
the training set. Blizzard Challenge [13, 14] is a TTS chal-
lenge, where multiple teams are given one or multiple tasks and
a database, and these teams compete to provide the ”best” syn-
thetic samples for the tasks. The evaluation is done using mul-
tiple listening tests in different conditions to order the partici-
pants. Each edition of the challenge uses a different database,
which can differ on language (French, Spanish, Mandarin...) or
in contents (children book).

Handling multiple voices, or using a speaker representation
as a voice target, are harder versions of this task, which is done
by other systems. This TTS task is usually evaluated with MOS
scores, using different questions to capture the opinion of lis-
teners on some precise aspects of speech, such as naturalness
or speaker similarity to the target voice. Some research is also
done in the direction of MOS prediction from audio, for exam-
ple in VoiceMOS Challenge [15].

2.2. Speech generation from audio

Voice conversion is a speech resynthesis task, in which a target
sentence uttered by a source speaker is given, along with a target
speaker. The goal is then to generate the target sentence with the
target voice, with minimal changes to the aspects which are not
the speaker. Evaluation for this task can either be done by run-
ning a perceptive test, or by using automatic metrics. Similarly
to the Blizzard Challenge for TTS, the Voice Conversion Chal-
lenge is a recurring challenge for Voice Conversion systems.
This challenge has been run every two to three years, starting in
2016. It provided different tasks over the years to explore differ-
ent aspects of speech, such as cross-lingual Voice Conversion in
2020 [16] or Singing Voice Conversion in 2023 [17].

Accent conversion is closely related to Voice Conversion.
This task consists of changing the accent in the sentence, for
example from a non-native to a native accent, without chang-
ing the identity nor the words from the original sentence. In
FAC-via-PPG [2], it is done by using PPG as input for a speech
synthesis system, here Tacotron2, to modify the pronounciation
of the sentence .

Speech anonymization is a variant of Voice Conversion. In
this case, the goal is not to generate a specific voice, but in-

stead to not be able to identify the source speaker [18], without
interferring with linguistic or prosodic elements.

Speech edition is the last task that we will present. This
task consists of, given an audio corresponding to a sentence and
a change to do to the audio (the easiest case being replacing a
word by another), generating the same audio with the modifi-
cation taken into account. This is done by changing a part of
the input text by EditSpeech [19], and by changing content or
shifting pitch by EdiTTS [1].

These four tasks, where the criteria can differ from one task
to another (speaker similarity, keeping/removing some linguis-
tic elements...) are examples of Speech Resynthesis. Compared
to TTS, the evaluation could require to compare two audios on
some aspects of speech. This evaluation can be done through
perceptive testing or by using automatic metrics in different fea-
ture spaces.

2.3. Speaker verification and evaluation

Depending on the targeted task, an evaluation of the similar-
ity of the speakers from two samples can be necessary. As
an example, Voice Conversion aims at maximizing the sim-
ilarity of the synthetized speaker with a target speaker, but
Speech Anonymization suppresses the original speaker iden-
tity while maintaining the linguistic content. Perceptive eval-
uation is often done with a Speaker Similarity MOS, where
participants to the listening test are asked whether they think
that the two presented speakers are the same or not. Auto-
matic evaluation usually relies on Speaker Verification systems,
such as ResNet [20] and Ecapa-TDNN [21]. These systems are
trained to produce similar embeddings for audios coming from
the same speaker, and different embeddings if the speakers are
different, regardless of the linguisic contents of the audios. The
input features can be acoustic features, such as MFCC or Mel-
Spectrograms, or features extracted by a pretrained model, such
as WavLM [22].

2.4. Datasets

Datasets used for speech generation are usually audiobooks.
The most common for mono-speaker high-resource English
synthesis is LJSpeech [23]. This dataset contains 13100 audio
segments of 1 to 10 seconds, for a total of 24 hours. When we
want to learn a finite small number of voices, MAILABS [24]
provides, in its English subset, a vast amount of audio for 4
speakers, with 40 to 70 hours per speaker. This gives the abil-
ity to train one-hot speaker-encoded synthesis systems. This
dataset also contains high quantity of audio in 8 other lan-
guages, that would give the ability to train speech synthesis sys-
tems in these languages.

LibriSpeech [25] is another dataset, frequently used for
many different tasks, such as speech recognition or speaker ver-
ification. This dataset contains 960 hours of audio in total, of
2 500 different speakers.

LibriTTS [26] is a subset of LibriSpeech used for Text-to-



Figure 2: Block representation of the 4 variations of each sample of our perceptive evaluation. Blue boxes are speaker-specific models

Speech, and contains 585 hours of read audio. This gives the
possibility to learn a speech synthesis task conditionned on a
speaker representation instead of on some learnt voices.

VoxCeleb1&2 are made of more than 1 million segments
of around 7 000 different speakers. They are a common bench-
mark for the speaker verification task.

3. Phonetic PosteriorGrams and speech
synthesis

3.1. Phonetic PosteriorGrams (PPG)

Phonetic PosteriorGrams (see example Figure 3) are a frame-
level representation of speech, which gives a probability of pres-
ence of phonemes at each timeframe. This representation can be
interesting to give fine-grained control over represented speech
to users (see Figure 1), since it disentangles different high-level
features, such as pronunciation or rhythm. It also conveys more
information than one-hot encoding of phones, since the confu-
sion between two classes can be interpreted as different ways
to realize a same phoneme. But some other information might
be present in this representation, and this paper aims to look for
speaker identity information in a PPG.

Our PPG are extracted from the same model as in [2], which
is a Kaldi generalized maxout network [27] trained to mimic a
GMM-HMM model representing 5,816 sub-phone units, which
are then grouped into 40 phone classes for English speech. 100
PPG frames are extracted per second.

Figure 3: PPG example for: ”Such risks can be lessened when
the President recognizes the security problem”

3.2. Speech synthesis from PPG (PPG2Mel)

Speech generation systems traditionnaly take in input a se-
quence of characters or phonemes. PPG are a representation of

audio, pretty similar to one-hot encoding of phonemes. Thus,
traditional systems can be easily adapted with PPG as an input.
We follow a similar approach as described in [2] and [4], which
involves training a Tacotron2 system [11] using PPG as input,
rather than text.

The training should be easier compared to text input be-
cause PPG provide a frame-level representation and convey
precise timing information. The only modification made to
the Tacotron2 architecture are in the first layer of the encoder,
where the Character Embedding layer is replaced with a linear
layer that maps the 40 phone classes to a 512-sized hidden rep-
resentation.

3.3. Mel-Spectrogram to Speech

Since the PPG2Mel system generates a Mel-spectrogram, we
need to convert it back to the time domain. To achieve this,
we employ WaveGlow, a neural vocoder described in [8]. Our
vocoder was trained on the LJSpeech dataset with the default
configuration, except for the sampling rate, which we set to
16kHz – instead of 22.05kHz – to match the sampling rate of
other audio versions. We used the implementation provided by
Nvidia, available on their GitHub repository2.

3.4. Perceptive evaluation of synthetic speech

Speech reynthesis would serve no purpose if it results in a
degradation of the synthesized speech quality. Therefore, our
initial objective is to assess the quality of the speech generated
by the system detailed in Section 3.2. In order to ensure that our
speech quality remains on par with other speech synthesis meth-
ods, we compare our PPG2Mel model with samples generated
by a Tacotron2 system that was trained on textual input.

This test does not aim to compare our speech resynthesis
system to other on any aspect (naturalness, voice similarity...),
since the system we use is not the main contribution of this ar-
ticle, but is an existing system from the literature. The goal of
this test is only to make sure the provided audio is of sufficient
quality to study the eventual presence of a speaker.

Different audio versions are shown to the listeners, and are
summarized in Figure 2:

• Natural audio : Original audio from LJSpeech dataset,
resampled to 16kHz to match the other audios. This
will give us the opinion of listeners about natural audio,
which is the upper bound for our systems.

• Vocoder audio : We extracted mel-spectrograms from
original audios, and fed it to the vocoder we use. This
gives us the degradation induced by the vocoder, that our
synthesis systems will not be able to avoid.

2https://github.com/nvidia/waveglow



• TTS audio : We used a TTS system to synthesize audio
from the text given by the dataset. This will be a com-
parison point for synthetic speech using text or an audio
representation such as PPG.

• PPG2Mel audio : This is the system we want to test.

Both the PPG2Mel and TTS systems were exclusively
trained on the monospeaker LJspeech dataset. As a TTS base-
line, we employed Nvidia’s implementation of Tacotron23, ad-
justing the sampling rate to 16kHz for consistency with other
setups.

For this experiment, we employed the train/dev/test splits
from the same repository. We then further divide the test set
into three equally sized parts, according to audio duration. We
finally selected 20 random segments from each of the three parts
to have a representation of short, average and long sentences.
We conducted a Mean Opinion Score (MOS) evaluation of these
samples to assess their quality. Participants were presented with
samples from all four configurations in a randomized manner.

For our perceptive evaluation, we use the FlexEval plat-
form [28], which includes a 5-level full-point MOS evaluation
page (Bad - Poor - Fair - Good - Excellent). Users are asked to
”judge the quality of the following sample” and the Welcome
page states that ”If the overall quality of the samples are very
close, you can take into account the expressivity of the samples
for your evaluation”.

Our test was conducted during 3 weeks, and has mostly
been shared across some non-native english speakers from the
speech scientific community, about half of them are psycholin-
guistics students. Participants had to answer to 20 steps made
of the 4 different variations of one randomly-selected sample.
The first step is marked as an introduction step for people to fa-
miliarize with the test. 44 participants answered to at least two
steps, 36 of them completed the whole test and participants an-
swered to 16 steps on average. Each of the 60 samples has been
seen approximately 12 times.

3.5. Results of perceptive evaluation

Results are reported in Table 1. We exclude the introduction
steps and take into account all the other answers, including
those coming from participants who did not complete all the
steps. From these results, we can conclude that using PPG as an
input for speech synthesis does not degrade audio quality com-
pared to TTS. We also see that a large part of the degradation
in audio quality comes from the vocoder, which means that a
better training setup or the use of another vocoder could benefit
to speech quality of both TTS and PPG2Mel systems.

We are aware tht our results are below similar MOS re-
ported in the litterature. However, we notice that even the natu-
ral audio is not evaluated with good score. This states that our
participants were particularly strict during the evaluation pro-
cess compared to state of the art MOS evaluations.

Table 1: MOS Scores obtained on our experiment. Confidence
intervals at 95%

System MOS Score
Natural audio 4.35± 0.07
Vocoded audio 3.47± 0.07

TTS audio 3.11± 0.07
PPG audio 3.24± 0.07

3https://github.com/nvidia/tacotron2

4. Speaker verification experiment
Now that we confirmed the correct audio quality of the resyn-
thesis, we want to perform source speaker verification after
PPG-based speech re-synthesis. Since our goal is not voice
conversion, the synthetic samples are not required to sound like
the target speaker.

In this section, our objective is to determine whether a
Naive Automatic Speaker Verification (ASV) system, trained
on natural speech, can successfully identify the source speaker
after resynthesis (Q1). Subsequently, we employ synthetic data
to train an Informed ASV system, designed to recognize the
source speaker after resynthesis. We investigate the extent to
which this Informed ASV system can recognize the source
speaker in samples synthesized with a target voice but also
from natural speech samples in order to evaluate the mismatch
between natural and synthetic speech (Q2). The Informed ASV
is supposed to learn how to discriminate speakers in a feature
space adapted to the target voice. In case the synthesis process
completely hides the source speaker, we expect strong degrada-
tions with both Naive and Informed models. However, in case
the synthesis process only partially hides the source speaker,
we expect strong degradatation for the Naive system, and lower
degradation for the Informed one. Finally, we investigate how
much both Naive and Informed systems are able to link the tar-
get speaker identity from natural samples and samples synthe-
sized with its target voice (Q3).

4.1. Data and notations

This experiment is realized upon 3 different datasets. The first
one is the English section of M-AILABS 4, a read speech cor-
pus based on LibriVox. We used two speakers, E. Klett, de-
noted Speaker A (female), and E. Miller, denoted Speaker B
(male), as described in Table 2, row 1. Each of these speakers
provided 30 to 45 hours of speech data, which we divided into
training, validation, and test sets. Throughout this experiment,
those two speakers consistently served as the target speakers.
This means that all synthetic samples used in this experiment
were converted to one of these two voices. We trained two
mono-speaker PPG2MelA and PPG2MelB models, one for each
speaker A and B (Fig. 1).

LibriSpeech-test-clean [25] subset is our speaker verifica-
tion enrollment and test sets. It contains 40 gender-balanced
speakers (≃ 8 min speech), denoted Speaker 1 to 40, as shown
in Table 2, row 2. These speakers are the source speakers we
want to recognize with ASV systems before/after resynthesis.

We create two synthetic versions of this subset, using
PPG2MelA and PPG2MelB , shown in row 3 of Table 2.

Finally, VoxCeleb1&2 [5, 6] datasets are used to train ASV
models (row 4 of Table 2).

The two mono-speaker PPG2MelA and PPG2MelB models
are used to convert all samples from VoxCeleb towards a target
speaker, randomly chosen among A and B (row 5 of Table 2.
The speaker labels for training remain the same as in the origi-
nal dataset, even if they now have a different voice.

Natural samples are denoted Nsource, where source is
within {A,B, 1−40}. Synthetic samples are denoted Rtarget

source,
where source is as previously mentionned and target is either
A or B depending on the PPG2Mel model used. We will not
mention the speakers of VoxCeleb datasets.

4https://www.caito.de/2019/01/03/
the-m-ailabs-speech-dataset/



Table 2: Description of the notations of the different speakers from the datasets we used. Original speakers are noted in a circle above
the head. The mask in front of a speaker means that the sample has been synthetized using the voice indicated on the mask. K and K′

are different.

Dataset Number of speakers Notation Details

M-AILABS 4 A is E. Klett, B is E. Miller

LibriSpeech 40 K,K′ ∈ J1, 40K,K ̸= K′

Synthetic LibriSpeech-test 40 K,K′ ∈ J1, 40K,K ̸= K′

A,B as described in M-AILABS

VoxCeleb1&2 7363 Only used for training naive model

Synthetic VoxCeleb1&2 7363 Only used for training Informed ASV
Synthesized using speakers A and B from M-AILABS.

4.2. ASV models

Both Naive and Informed ASV models use an ECAPA-TDNN
[21] architecture fed with input features obtained by process-
ing the speech samples with a WavLM-large pretrained model5

and trained using an AAM loss. 256-dimension x-vectors are
extracted.

The Naive ASV model is trained on the original (natural)
VoxCeleb1&2 development data.

This model achieved 1.57% EER on VoxCeleb-o after 4
days of training on one RTX8000 GPU. The Informed ASV
model is trained on the synthetic version (target speaker A or
B) of VoxCeleb1&2 data described in the previous section. The
best version of this system is obtained after 1 day on the same
architecture and only obtains 20% of EER on the synthetic ver-
sion of the VoxCeleb-o task.

4.3. Experiments and results

Table 3 summarizes the different set up and results obtained for
the 5 speaker verification experiments. Each experiment is de-
scribed with corresponding enrollement/test pairs. Experiments
come with Equal Error Rates (EER) calculated with both Naive
and Informed ASV models. For all tests in experiments (1), (2)
and (3), the speaker reference labels are the one from speakers
1-40 while in experiments (4) and (5) the labels are A or B. For
example, in exp (3), enrollement is done with natural samples
from speakers 1-40, while test is done with synthetic samples
from speakers 1-40 converted with PPG2MelA. Target pairs are
1-1, 2-2, . . . 40-40, while impostor pairs are 1-2, 1-3, . . . 39-40.

The first experiment (1) ensures that our naive model
achieves correct results. To do so, we want to recover the
speaker from natural speech. As we could expect, the naive
model gives good results (EER=1.98%) since it is the task it
has been trained on, and the informed model introduces a strong
degradation (EER=29.44%), showing that there is a mismatch

5https://github.com/microsoft/unilm/tree/
master/wavlm

between the training data used for this model and the test data.
Experiment (2) tests naive and informed models on syn-

thetic speech. We compare samples from the speakers 1 − 40,
which were all synthetized using PPG2MelA (RA

1−40), and we
want to see if our models are able to recognize those which
come from the same source speaker. The results show that
both naive and informed ASV mocels are unable to discriminate
source speaker in the synthetic speech space (EER > 49%).
This answers to the question Q1: the naive model is not able to
recognize the source speaker after re-synthesis (EER=49.46%)
One hypothesis is that source speaker identities have been hid-
den during re-synthesis. We can see that the informed model
better recognizes speakers in the natural space (EER=29.44%,
exp. (1)) than in the synthetic space (EER=49.80%, exp. (2)).
During training, the informed model hardly converged, but it
seems that the few it learnt enables to discriminate speakers in
the natural space only (as the task is easier). The answer to the
question Q2 is: even an informed model is not able to recognize
the source speaker after re-synthesis.

Experiment (3) assesses the ability of both models to make
the link between the speakers in the natural space and the same
speakers in the synthetic space. To do so, we use natural Lib-
riSpeech dataset as our enrollment dataset and the synthetic ver-
sion of the same dataset, using PPG2MelA, as our test data. We
see that both naive and informed models are unable to recognize
the 40 source speakers after re-synthesis. We conclude that our
PPG approach is indeed able to hide source speaker identity,
even to an informed ASV. Any source speaker acoustic clues
which could help model to retrieve their identity is not detected
after re-synthesis.

Experiment (4) and (5) measure if source speakers 1 − 40
converted in A synthetic space are closer to their natural ver-
sion (resp. synthetic version converted in B) than to the nat-
ural speech of A. From experiment (4), we conclude that the
speaker identity of the samples from source speaker 1 − 40,
re-synthesized with target speaker A, does not correspond to
the identity of A, thus confirming the fact that we are not doing
voice conversion. However, the results show that re-synthesized



Table 3: Equal Error rates obtained with both Naive and Informed Speaker Verification models. For each experiment, test defini-
tions are given as enrollement/test where N and R refers to natural and resynthesised speech samples respectively. A test defined as
N1−40/N1−40 compares couples of natural samples from speakers {1−40}, for instance N1/N1 while a test defined as N1−40/R

A
1−40

compares natural speech samples from all speakers 1− 40 with resynthesised samples from other speakers among {1 − 40}, for in-
stance N1/R

A
2 .

Experiment ID (1) (2) (3) (4) (5)

Target test definition N1−40/N1−40 RA
1−40/R

A
1−40 N1−40/R

A
1−40 NA/R

A
1−40 NA/R

A
1−40

Target test definition

Impostor test definition N1−40/N1−40 RA
1−40/R

A
1−40

N1−40/R
A
1−40

NA/N1−40 NA/R
B
1−40

Impostor test definition

Naive ASV 1.98 % 49.46 % 48.02 % 45.13 % 49.81%

Informed ASV 29.44 % 49.80 % 49.00 % 33.58 % 45.52%

samples are closer to natural samples of speaker A with the in-
formed model than with the naive model. We thus confirm that
for the informed ASV, re-synthesis seems to bring synthetic and
natural identity closer.

Experiment (5) shows that synthetic samples generated
with target speakers A or B are not distinguishable by the naive
system, and both are far from speaker A. The informed sys-
tem makes a subtle difference between samples generated in
the spaces of speaker A and B. Therefore our framework is
clearly not doing voice conversion and the answer to question
Q3 is that the informed model is slighly better than the naive
one in finding the link between the target speaker identity from
natural samples and samples synthesized with its target voice.
However, these results must be handle with care as this last ex-
periment has been conducted on two target speakers only.

5. Conclusion
Our first experiment aims to ensure that the PPG2Mel model
we trained produced audio of a correct quality. The perceptual
study that we performed confirmed that we were achieving the
same quality as our TTS baseline, and that the vocoder was pro-
ducing most of the quality loss.

We trained a naive ASV system on natural speech and an in-
formed ASV system on synthetic speech to try to recover source
speaker information hidden by speech synthesis. Our experi-
ments show that even if the naive model achieves state of the
art results on natural speech, neither naive nor informed ASV
systems are able to retrieve source speaker information which
would come from the PPG. This implies that source speaker
acoustic clues are not detected by the models in re-synthetized
speech. Also, we showed that both ASV models are not able to
link target speakers from natural and synthetic samples.

These speaker identification results show that the amount of
speaker information that goes from the PPG to the synthesized
sample is small enough to permit the use of PPG in tasks such
as Voice Conversion or Speech Edition.

Future work would include using a better vocoder, and run-
ning a speaker similarity perceptive evaluation of our systems,

to compare our approach to Voice Conversion models and to the
results obtained through automatic speaker verification.

Since PPG do not convey acoustic speaker clues, we advo-
cate for their use in speech edition, as a speech controllable rep-
resentation without biasing the ouput towards source speaker.

6. Acknowledgements
This work was performed using HPC resources
from GENCI–IDRIS (Grants 2022-AD011012565 and
AD011012527). This project has also received funding from
the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement
No 101007666. This paper was partially funded by the
European Commission through the SELMA project under grant
number 957017.

7. References
[1] Jaesung Tae, Hyeongju Kim, and Taesu Kim, “EdiTTS:

Score-based Editing for Controllable Text-to-Speech,” in
Proc. Interspeech 2022, 2022, pp. 421–425.

[2] Guanlong Zhao, Shaojin Ding, and Ricardo Gutierrez-
Osuna, “Foreign Accent Conversion by Synthesizing
Speech from Phonetic Posteriorgrams,” in Proc. Inter-
speech 2019, 2019, pp. 2843–2847.

[3] Cheng-chieh Yeh, Po-chun Hsu, Ju-chieh Chou, Hung-yi
Lee, and Lin-shan Lee, “Rhythm-flexible voice conver-
sion without parallel data using cycle-gan over phoneme
posteriorgram sequences,” in 2018 IEEE Spoken Lan-
guage Technology Workshop (SLT), 2018, pp. 274–281.

[4] Roee Levy-Leshem and Raja Giryes, “Taco-vc: A sin-
gle speaker tacotron based voice conversion with limited
data,” in 2020 28th European Signal Processing Confer-
ence (EUSIPCO), 2021, pp. 391–395.

[5] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman,
“Voxceleb: a large-scale speaker identification dataset,”
Telephony, vol. 3, pp. 33–039, 2017.



[6] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2:
Deep speaker recognition,” in INTERSPEECH, 2018.
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