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Electroencephalography (EEG) is a non-invasive technique for recording the brain’s elec-
trical activity, known for its high temporal resolution. It identifies different frequency bands
(δ [0.5-4 Hz], θ [4-8 Hz], α [8-13 Hz], β [13-30 Hz], lower γ [30-80 Hz], and upper γ [80-150
Hz]), each corresponding to specific brain activities and mental states, for instance, the δ band
signals are dominant during deep sleep stage.
Machine learning has leveraged EEG for tasks such as sleep stage classification, seizure predic-
tion, brain-computer interface (BCI) applications, emotion recognition, and mental workload
classification. This approach typically begins with extracting features, especially from the fre-
quency domain, like power spectral density (PSD) metrics for each frequency band. Research
has also delved into time-frequency and time-scale analysis using wavelet transforms, and spa-
tial domain features that reveal interactions between different brain regions, offering insights
into brain region activities. Techniques like common spatial pattern filtering are used to high-
light these patterns before the data is analyzed using classifiers such as linear discriminant
analysis (LDA), minimum distance to mean (MDM), and random forest (RF).
The brain’s network structure can effectively be modeled by graph G = {V , E ,W}, with ver-
tices V representing electrodes and edges E denoting electrode interactions, encapsulated in
the weight matrix W. This matrix quantifies the interaction strength between electrode pairs.
Recently, functional brain networks, representing EEG-based brain activity, have attracted
considerable interest for their potential to reveal brain function dynamics through graph rep-
resentations. These networks are characterized using various similarity metrics like Pearson
correlation, phase locking value (PLV), and phase lag index (PLI), which quantify the statisti-
cal relationships between EEG signals. Such analyses often incorporate thresholding to address
volume conduction problem.
In this work, we consider multivariate EEG signals of t seconds recorded by N electrodes,
positioned on the scalp of a subject, at a sampling frequency Fs, and stacked in a matrix
X ∈ RN×(tFs), the aim is to predict a class from a set of possible classes of mental workload
corresponding to different difficulty levels of tasks (easy, medium and difficult). Our approach
consists of two main steps: (1) functional network construction, (2) classification based on
graph neural network (GNN).

Functional network construction. Graph structure, specifically edge weights, is de-
termined through the learning of the graph Laplacian from EEG data, adhering to structural
constraints such as sparsity levels and connectivity. This process aligns with a maximum a
posteriori (MAP) parameter estimation for a Gaussian-Markov Random Field (GMRF) model,
whose precision matrix is the graph Laplacian [1]. By noting C the covariance matrix of the
EEG signals, it can be formulated as



L̃ = argmin
L

Tr(LS)− log det(L)

subject to L ∈ L(A)

where,

L(A) =

{
L

∣∣∣∣∣L ⪰ 0,
(L)ef ≤ 0 if (A)ef = 1

(L)ef = 0 if (A)ef = 0
for e ̸= f

}
,

and S = C+H with H a regularization matrix defined as:

H =
√

α||C||F · [I− 11T ]

α is the regularization parameter, 1 denotes a column vector of ones, and I the identity matrix.
L̃ is the learned positive semi-definite (L ⪰ 0) graph Laplacian (i.e estimated precision matrix),
A corresponds to the connectivity matrix. A non-zero diagonal element (L̃)ef denotes a positive
partial correlation between the electrodes e and f . The weight matrix W (i.e. the edge
attributes) is then derived from the learned Laplacian by zeroing the diagonal entries, and
computing the opposite of the off-diagonal elements. To finalize the graph creation, we compute
the relative power spectral density (PSD) features across different frequency bands for each
node. Consequently, the feature vectors of the nodes will comprise the 3-dimensional positions
of the electrodes concatenated with the relative PSD values of the six frequency bands.

Classification. Spatial Graph Neural Networks (GNNs) are a class of neural networks
that derive node embeddings through a message-passing mechanism, which involves aggregating
messages from a node and its neighbors. These networks can also incorporate edge attributes,
allowing for layers that learn not only from the features of individual nodes but also from
the connections between nodes as depicted by the edges. The chosen architecture for our
application is a GNN, emphasizing its capability to leverage both node characteristics and the
network structure. It consists of three consecutive graph convolutional layers to progressively
refine the node embeddings, with each layer’s output activated by a ReLU function for non-
linearity. Following the convolutional layers, a global max pooling operation aggregates the
node embeddings to produce a graph-level representation, which is then passed through a
dropout layer for regularization and a linear layer to produce the final class predictions. The
optimizer chosen for the task is Adam, paired with a categorical cross-entropy loss function.

Dataset and performance. The framework is assessed on a mental workload classification
task using a public EEG dataset [2], with 15 participants performing tasks of varying complexity
across two sessions. Signals were captured using 61 electrodes. The data were segmented into
overlapping 2-second windows, with a 1-second overlap. On average, this framework outper-
forms traditional machine learning approach applied on this dataset by computing covariance
matrices of the filtered signals and using them with a Riemannian Minimum Distance to Mean
(MDM) classifier. Furthermore, its performance is comparable to that of the Common Spa-
tial Pattern technique when combined with a one-versus-rest strategy for managing non-binary
classification problems.

[1] H. Egilmez et al, “Graph learning from data under structural and laplacian constraints,”
IEEE Journal of Selected Topics in Signal Processing, vol. PP, 11 2016.
[2] M. Hinss et al “An eeg dataset for cross-session mental workload estimation: passive bci
competition of the neuroergonomics conference 2021,” 2021.


