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Abstract—In recent years, Transformer-based auto-attention
mechanisms have been successfully applied to the analysis of a
variety of context-reliant data types, from texts to images and
beyond, including data from non-Euclidean geometries. In this
paper, we present such a mechanism, designed to classify se-
quences of Symmetric Positive Definite matrices while preserving
their Riemannian geometry throughout the analysis. We apply
our method to automatic sleep staging on timeseries of EEG-
derived covariance matrices from a standard dataset, obtaining
high levels of stage-wise performance.

Index Terms—Transformers, SPD Matrices, Structure-
Preserving, Electroencephalography, Sleep Staging

I. INTRODUCTION

When analyzing the relationship between concurrent sig-
nals, covariance matrices are a useful tool, with applications
in fields like Brain-Computer Interfaces (BCI) [1] and evo-
lutionary computation [2]. By construction, they are rich in
information, illustrating the relationship between signals while
still encoding for signal-wise information on their diagonal.
Such matrices are at least Positive Semi-Definite, and often
fully Symmetric Positive Definite (SPD). The set of n × n
SPD matrices (SPD(n)) is a non-Euclidean, Riemannian (i.e.
metric) manifold, and the regular Euclidean operations of
most Neural Network (NN)-based models seldom preserve
that geometric structure, introducing deformations such as
the “swelling effect” [3]. Structure-preserving NN-based ap-
proaches have been introduced [4], [5], deriving their layers
from one of two geodesic-defining metrics on SPD(n).
Affine invariant metrics offer the best properties, but present
computational challenges (e.g. no closed-form formula for
averaging) [6]. LogEuclidean metrics are less isotropic, but
still prevent swelling while being easier to compute [3].
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Fig. 1. The SP-MHA architecture. In parentheses are tensor dimensions at
every step, with N the batch size.

In this paper, we present a structure-preserving self-attention
mechanism applicable to sequences of SPD matrices, derived
from such a LogEuclidean metric. We embed said mecha-
nism into a Transformer-based architecture, and apply it to
a biomedical classification problem. Transformer-based tech-
nology has exploded in popularity ever since its introduction
in [7], with self-attention mechanisms being applied to very
different problems. With regards to Riemannian geometry,
innovations seem centered around the computation and ap-
plication of attention maps, specifically. For instance, Kon-
stantinidis et al. [8] combine the standard attention maps with



Fig. 2. SPDTransNet global architecture, with t = 3 feature tokens per epoch.

Grassmann and SPD manifold-valued maps, to enrich their
computer vision model’s descriptive capabilities. By contrast,
both He et al. [9] and Li et al. [10] developed architectures
to analyze 2D-manifold-valued data in 3D space, the former
achieving rotational equivariance with respect to surfaces on
the manifold and the latter developing two geodesic distances
applicable to point clouds, and building attention maps from
these distances. More generally, Kratsios et al. [11] provide
a mathematical framework to apply attention mechanisms on
a variety of constrained sets, including manifolds. While the
latter approaches share our interest in preserving geometric
information, little to no focus is given to a Transformer’s other
components. Although simple single-head attention modules
for SPD-valued data have been recently developed [12], [13],
to the best of our knowledge, our approach is the only one
utilizing full structure-preserving Transformer encoders in this
context.

II. SPD STRUCTURE-PRESERVING ATTENTION

The LogEuclidean distance (Section I) can be written as:

δLE(A,B) = ∥logmat(A)− logmat(B)∥2 (1)

with A, B ∈ SPD(n). Here, ∥X∥2 (with X ∈ Sym(n)) is the
L2 norm applied to the upper triangular of X , and logmat(·)
is the matrix logarithm, bijectively mapping SPD(n) onto
Sym(n), the vector space of n × n symmetric matrices
(with expmat(·) being its inverse). Euclidean operations on
Sym(n) are thus equivalent to LogEuclidean (and therefore
Riemannian) operations on the corresponding SPD matrices.

Let Bn = {ei,j}0<i≤j ⊂ Rn×n be the the canonical basis
of Sym(n), with (ei,j)i,j = (ei,j)j,i = 1, and all other
coefficients at 0. Let the triangular number d(n) = n(n+1)

2
be the dimension of Sym(n). Any matrix M of Sym(n) can
be written in the basis Bn as a vector of coordinates in Rd(n).

In accordance with convention surrounding Transformer-
based architectures, we refer to these vectors as “tokens”.
In this paper, any token of Rd(n) is thus equivalent to a
matrix in SPD(n), and linear combinations of such tokens
would equate to a LogEuclidean weighted sum in SPD(n),
preserving their underlying manifold structure.

A. Structure-Preserving Multihead Attention (SP-MHA)

In the original Linear Multihead Attention (L-MHA) com-
ponent of Transformers [7], the input tokens in the Q, K and
V tensors are processed in parallel in h attention heads, then

recombined through concatenation. There is no guarantee that
any underlying SPD structure in our tokens would survive this
concatenation. Echoing the similar concerns, Li et al. [10]
decided to forego having multiple heads. Likewise, Pan et
al. [12] and Qin et al. [13] restricted themselves to single-
head SPD-valued attention modules. By contrast, we design
our Multihead Attention block to retain the parallel attention
maps computation of the original L-MHA without sacrificing
our data’s structure.

Let d(m) be the dimension of input tokens. As seen in
Figure 1, our SP-MHA block does the following:

MHASP (Q,K, V ) = C

(
sm

(
LQ(Q) · LK(K)T√

d(m)/h

))
· V

(2)
with LQ(·) and LK(·) banks of h linear maps from Rd(m) to
R

d(m)
h , sm(·) the softmax function, and C(·) the weighted

linear combination of the h post-softmax attention maps.
Here, the computation of attention maps (small-dashed black
rectangle in Figure 1) remains identical to L-MHA. However,
their application to V (large-dashed red rectangle in the figure)
only requires a matrix multiplication, i.e. linear combinations
of V’s tokens weighted by the combined attention map. As
such, the SP-MHA block does not compromise our tokens’
vector space geometry.

B. Triangular linear maps

Let Sym(n) and Sym(m) have the canonical bases Bn and
Bm, respectively. Let Ln,m(·) be a linear map from Sym(n)
to Sym(m), represented by the matrix W in Rd(m)×d(n) with
respect to the bases (implemented in code through a fully
connected NN layer between tokenized matrices). We shall
refer to such a map as a “triangular” linear map.

Let A∗, B∗ be in SPD(n), mapped to A,B ∈ Sym(n)
through logmat(·). As Ln,m(·) is a continuous linear map:

∥Ln,m(A)− Ln,m(B)∥2 ≤ ∥W∥∗ · ∥A−B∥2 (3)

δLE(LR
n,m(A∗),LR

n,m(B∗)) ≤ ∥W∥∗ · δLE(A
∗, B∗) (4)

with ∥·∥∗ the matrix norm induced by the norm ∥·∥2, and
LR
n,m(·) = expmat ◦Ln,m ◦ logmat(·) mapping SPD(n) onto

SPD(m). By definition of δLE (Equation 1), Equations 3
and 4 are strictly identical. Hence, applying Ln,m(·) on
our tokens is equivalent to applying LR

n,m(·) on matrices in
SPD(n). The output tokens exhibit the Riemannian structure



of SPD(m), and relations of proximity are preserved. There-
fore, so is the overall structure of our data.

Note that while other SPD-to-SPD NN-based mappings
have been proposed [4], [14], they rely on full-rank weight
tensors, whereas LR

n,m(·) does not require special constraints.

III. APPLICATION TO EEG SLEEP STAGING

The study of sleep most often requires the analysis of elec-
trophysiological - including electroencephalographic (EEG) -
signals, subdivided into fixed-length windows (“epochs”) and
manually labeled with the appropriate sleep stages, inferred
from properties of the signal in and around each epoch [15].

As seen in a recent survey by Phan et al. [16], state-
of-the-art automatic sleep staging models typically use two-
step architectures - given a sequence of epochs, epoch-wise
features are extracted before being compared at the sequence-
wise level, utilizing this contextual information to improve
classification. Since epochs often contain markers indicative
of multiple stages, two-step architectures tend to subdivide
them further, extracting features from subwindows using con-
volutional NNs [17], [18] and/or recurrent NNs [19]–[21]
- the latter utilizing RNNs for both steps. Multiple authors
have adapted this context-inclusive approach to Transformer-
based architectures [22]–[24], with auto-attention mechanisms
at both the intra- and inter-epoch levels, taking advantage of
the high performance they offer when applied to sequence-
based data.

A. The stakes of automatic sleep staging

According to the aforementioned survey [16], current sleep
staging models have attained a sufficient performance level
to replace manual staging in some contexts. However, we
have found that class-wise performance was often lacking,
particularly with regards to the N1 sleep stage [15], universally
difficult to classify. Most EEG datasets are heavily imbalanced,
with the N1 stage often underrepresented (Section IV) -
models optimized for high overall accuracy may thus sacrifice
N1 classification if it improves global performance. To account
for this, recent approaches [24], [26] elected to primarily
evaluate their performance through the macro-averaged F1
(MF1) score, a class-wise balanced metric widely used in
the literature. They also rebalance their training sets through
oversampling, so that all stages within have the same num-
ber of classification targets. While the survey states that a
sequence-to-sequence classification scheme (classifying each
epoch in the input sequence) might lead to better performance,
having multilabel inputs is nonsensical for this rebalancing -
hence their use of a sequence-to-epoch scheme (classifying
one epoch per sequence).

Beyond sleep staging, EEG signals are also utilized in BCI
(Section I), where they are often analyzed through the lens of
functional connectivity - the activation correlations between
different brain regions [27]. Automatic sleep staging through
functional connectivity was first investigated by Jia et al. [25],
using epoch-wise graph learning to estimate said connectivity
and sequence-wise spatio-temporal graph NNs to compare

them. By contrast, Seraphim et al. [24] estimate it through
covariance matrices, as is commonly done in BCI [1]. Their
two-step model uses standard Transformer encoders at each
step, reminiscent of [23]. Each input epoch is described as a
multichannel timeseries of SPD matrices, which are then tok-
enized bijectively. However, their approach does not guarantee
the preservation of their data’s SPD structure, as they operate
a channel-wise concatenation of their tokens, in addition to
the concatenations found within their encoders (Section II-A).
Hence, we propose a Transformer-based model capable of
analyzing EEG-derived functional connectivity through SPD
matrices without sacrificing the SPD structure of our data
throughout the analysis.

B. Our preprocessing

To estimate functional connectivity from EEG signals, we
apply the same preprocessing pipeline as [24]1. We first select
n EEG signals. Each signal is then filtered along C frequency
bands, divided into epochs, and further subdivided into S
subwindows per epoch. A covariance matrix is computed per
channel and subwindow, resulting in S×C covariance matrices
in SPD(n) for each epoch. We then augment our matrices
with signal-derived information before whitening them1, lead-
ing to more uniformly distributed matrices in SPD(n + 1).
Said whitening requires the computation of average covariance
matrices per recording and channel, which was done in [24] by
computing the covariances over the entire recording. Instead,
we average all relevant matrices using the standard affine
invariant metric [6], improving performance.

C. The SPDTransNet model

As can be seen in Figure 2, our SPDTransNet model takes
as input a sequence of L epochs, composed of a central epoch
to classify and surrounding epochs to provide context. Given
ℓ the context size, we have L = 2 · ℓ+ 1.

Our preprocessing yields S × C matrices of SPD(n + 1)
per epoch (Section III-B). Each of these matrices is mapped
onto Sym(n+1) through logmat(·) and tokenized (Section II).
Each input token of Rd(n+1) thus encodes the covariance of
each signal pair, along with signal-specific information (the
variance and augmentation features).

These tokens are linearly mapped onto Rd(m) (with m >
n + 1, as we have found that larger tokens improve perfor-
mance). The S × C grid of tokens is then arranged into a
sequence, with the S tokens in the channel 1 followed by the
S tokens in channel 2, etc.

At the intra-epoch level, a first positional encoding is
applied to the tokens, which pass through the first Transformer
encoder. The S ×C output tokens are then uniformly divided
into t groups, with each group averaged into a single feature
token. The L sets of t epoch-wise feature tokens are then
regrouped at the inter-epoch level, and passed through another
positional encoding and Transformer encoder pair. Finally, the
feature tokens corresponding to the central epoch (of index

1More details at github.com/MathieuSeraphim/SPDTransNet.



Model MF1 Macro Acc. N1 F1 Valid. metric Token dim. d(m) # Feat. Tokens t
1 SPDTransNet, L = 13 81.06 ± 3.49 84.87 ± 2.47 60.39 ± 6.77 MF1 351 (m = 26) 7
2 SPDTransNet, L = 21 81.24 ± 3.29 84.40 ± 2.61 60.50 ± 6.18 MF1 351 (m = 26) 10
3 SPDTransNet, L = 29 80.83 ± 3.40 84.29 ± 2.65 60.35 ± 6.01 N1 F1 351 (m = 26) 5
4 Classic MHA 80.82 ± 3.40 84.60 ± 2.95 60.16 ± 7.20 MF1 351 (m = 26) 10
5 DeepSleepNet [17] 78.14 ± 4.12 80.05 ± 3.47 53.52 ± 8.24 N/A N/A N/A
6 IITNet [18] 78.48 ± 3.15 81.88 ± 2.89 56.01 ± 6.54 N/A N/A N/A
7 GraphSleepNet [25] 75.58 ± 3.75 79.75 ± 3.41 50.80 ± 8.06 N/A N/A N/A
8 Dequidt et al. [26] 81.04 ± 3.26 82.59 ± 3.45 58.42 ± 6.09 N/A N/A N/A
9 Seraphim et al. [24] 79.78 ± 4.56 81.76 ± 4.61 58.43 ± 6.41 MF1 Concatenation 1

TABLE I
RESULTS OBTAINED FROM BOTH OUR MODEL AND THE RE-TRAINED LITERATURE. BEST RESULTS ARE IN BOLD.

ℓ+1 in Figure 2) go through two FC blocks (fully connected
layers followed by ReLU activation and a dropout layer), and
are mapped onto ŷℓ+1 ∈ Rc by a final classification linear
map, with c the number of classes.

We ensure structure preservation by using the SP-MHA
block in all Transformer encoders, and choosing all linear
maps within said encoders’ Feed-Forward (FF) components [7]
to be triangular (Section II-B). The ReLU and dropout layers
in the FF blocks do not cause issue, as setting a values within
a token to 0 won’t remove the corresponding matrix from
Sym(m). Same for the positional encodings, average poolings
and in-encoder layer normalizations, which all qualify as linear
combinations.

As such, our model preserves the SPD structure of its
input up to the final classification layers, and every token
throughout the model remains equivalent to an SPD matrix
obtained through Riemannian operations (Section II).

IV. EXPERIMENTS & RESULTS

We utilize the MASS SS3 dataset [28] due to its large num-
ber of available EEG electrode-derived signals and widespread
use in the literature. It is composed of 62 full-night recordings
of healthy subjects, segmented into 30s epochs. Due to its
nature, it is unbalanced, with the largest and smallest of its
c = 5 classes (stages N2 and N1) composed of 50.24%
and 8.16% of the dataset, respectively. Out of 20 available
electrodes, we selected the n = 8 electrodes F3, F4, C3, C4,
T3, T4, O1 and O2, providing us with a good coverage of the
brain while limiting redundancies. As in [24], we filter our
signals to obtain C = 7 channels, and subdivide each epoch
into S = 30 one-second windows1, yielding us 30×7 matrices
in SPD(9) after preprocessing (Section III-B).

To maximize class-wise performance, we operate a hyper-
parameter research per configuration, followed by a 31-fold
cross-validation. As do [24], [26] (Section III-A), we rebalance
all training sets and maximize the MF1 score. To explore
the importance of the context length ℓ (Section III-C) within
our model, we ran hyperparameter researches with ℓ = 6, 10
or 14 (i.e. L = 13, 21 or 29), with hyperparameter research
configuration unchanged between them.

Our hyperparameter researches use the Optuna tool [29],
with 5 simultaneous runs and 50 total runs per configuration.
Hyperparameters include1 the token size d(m), set by the
first linear map (Section III-C) and chosen in {351, 378}

(i.e. m ∈ {26, 27})2; the h parameter of each Transformer
encoder, in {3, 9}2; and the number of epoch feature tokens
t (Section III-C), chosen among {1, 3, 5, 7, 10} - with in
particular t = 1 akin to describing each epoch with a single
token, and t = 7 corresponding to one token being preserved
per channel. We train all folds on the hyperparameters giving
the best validation MF1, as well as those with the best F1
score for the N1 stage. Out of those two sets, the results from
the set yielding the best average test MF1 is presented in lines
1 to 3 of Table I, with the corresponding hyperparameter set,
d(m) and t in the final three columns.

We obtain the best MF1 and N1 F1 scores for L = 21,
whereas the best macro-averaged accuracy is obtained for L =
13. For all values of L, we outperform the state-of-the-art on
the considered metrics (except for the MF1 score for L = 29).
Moreover, all three configurations have around a two-point
lead in both macro accuracy and N1 F1 score. While our model
favors the smaller token size of d(m) = 351 for all values of
L, it seems that having a large number of tokens to describe
each epoch (at least t = 5) is necessary for best performance.
Overall, L = 21 seems to be a good compromise to capture
enough contextual information without burdening our model
with irrelevant data. We also investigate the impact of our
strict structural preservation by replacing the SP-MHA block
of SPDTransNet model with the classic L-MHA (Section 2),
all other things being equal (with L = 21). Results for this
configuration are displayed in line 4 of the table.

We compare ourselves to five models: DeepSleepNet [17],
often used as a benchmark, with a pre-trained epoch-wise
global feature map submodel followed by a sequence-to-
sequence RNN; IITNet [18], the source of our 31 folds,
extracting multiple features per epoch through CNNs and
comparing them through sequence-wise RNNs; GraphSleep-
Net [25], expliciting epoch-wise functional connectivity
through graph learning; Dequidt et al. [26], utilizing a single-
step pretrained visual CNN, who both maximize MF1 perfor-
mance and rebalance training sets; and Seraphim et al. [24],
with a similar approach to ours, though utilizing an alternative
whitening (Section III-B) and lacking in structural preservation
(cf. line 4 of Table I). These models were re-trained using
our methodology - except for oversampling in DeepSleep-
Net’s sequence-to-sequence submodel - using their published

2Since d(m)
h

must be an integer, potential values for those are limited.



hyperparameters. Finally, as test sets vary between models
due to recording-wise border effects, we trim test set borders
to enforce uniformity. These results, averaged over all folds,
are displayed in lines 5 to 9 of Table I. As we can see,
SPDTransNet outperforms all tested State-of-the-Art models,
though our lead on Dequidt et al. is minor.

Furthermore, comparing our best results (line 2) to those of
lines 4 and 9 indicate that the structural preservation of our
SP-MHA improves our model’s performance, with or without
the influence of our new whitening (Section III-B).

V. CONCLUSION

We presented SP-MHA, a novel, structure-preserving Mul-
tihead Attention bloc, and integrated it into our SPDTransNet
model, designed to analyze SPD matrix sequences. We proved
said model’s capabilities through automatic EEG sleep staging,
obtaining a high level of per-stage performance relative to the
literature. Beyond this two-step analysis, SPDTransNet can be
easily adapted to a variety of problems, for instance by using
only a single encoder step and/or implementing a sequence-
to-sequence classification scheme.
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