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We discuss the mathematical modelling of two of the main mechanisms that pushed forward the emergence
of multicellularity: phenotype divergence in cell differentiation and between-cell cooperation. In line
with the atavistic theory of cancer, this disease being specific of multicellular animals, we set special
emphasis on how both mechanisms appear to be reversed, however not totally impaired, rather hijacked,
in tumour cell populations. Two settings are considered: the completely innovating, tinkering, situation
of the emergence of multicellularity in the evolution of species, which we assume to be constrained by
external pressure on the cell populations, and the completely planned—in the body plan—situation of
the physiological construction of a developing multicellular animal from the zygote, or of bet hedging
in tumours, assumed to be of clonal formation, although the body plan is largely—but not completely—
lost in its constituting cells. We show how cancer impacts these two settings and we sketch mathematical
models for them. We present here our contribution to the question at stake with a background from biology,
from mathematics and from philosophy of science.

Keywords: differentiation; cooperation; multicellularity; cancer disease; structured population models;
philosophy of science.

1. Biological and evolutionary-developmental background
1.1 Being or not teleological: the two settings considered

Although this may seem completely trivial to state, let us emphasize that for us there is no such thing
as teleology, i.e. orientation in a given direction or towards a given goal, in the general evolution of
multicellular animals, which is constituted of a succession of haphazard strategic choices of adaptation
to changing environments in existing evolutionary units, at one stage of evolution towards an identified
next one. Such adaptations, often resulting in branchings of clades, as solutions to existential problems,
imposed by external constraints as stresses (Nedelcu, 2020; Wagner et al., 2019) induced by changes
in the environment, are by no means unique, admitting that evolution proceeds by trials and errors, and
by tinkering (Jacob, 1977) from available material to solve such problems. We proposed in Alvarez
et al. (2022) a mathematical scheme to model the phenotypic divergence that may be a basis for such
environmental stress-induced evolutionary steps.

Conversely, teleology is of course present in the embryonic development of multicellular animals,
which, according to Haeckel’s formula ‘Ontogeny recapitulates phylogeny’ (Gould, 1977; Haeckel,
1866), follows in each species the evolutionary choices made at each branching step of the evolution
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of species, leading from the fecundated egg (most frequent form of elementary material evolutionary
unit in multicellular animals (Wolpert & Szathmary 2002), those who are subject to cancer (Aktipis
et al., 2015; Nedelcu, 2020) to adult animals with their completely differentiated cell types, following
the body plan (Davidson et al., 1995; Miiller et al., 2004) characteristic of the species. From this holistic
point of view, evolution of species is nothing but evolution of the body plan, evolution of genes and of
gene regulatory networks being completely dependent upon this master regulator. We suggest here that
understanding the cooperation principles that have been optimized (noting that an optimization problem
may have diverse solutions) at each developmental step may benefit from a close look at the mechanisms
of the evolutionary steps that have determined the species body plan, and we sketch mathematical ways
to achieve this task.

One of the main difficulties in understanding and representing the design of the body plan is how
to introduce mechanisms of coherence (for signals) and cohesion (for tissues) that make a multicellular
organism stable and functional, with compatibility and cooperation between tissues and organs, and
we are aware of the fact that such complete understanding still lies ahead of us. However, localized
absence of coherence between tissues of an organism by lack of control on differentiations is precisely
the main characteristic of cancer, the second and in our opinion resulting from the first one, being absence
of control on proliferation (Bertolaso, 2016). We propose that evolution of cooperation between cells,
which has been identified in tumours (Cleary et al., 2014; Polyak & Marusyk, 2014; Tabassum & Polyak,
2015), is a reactivation of mechanisms present in the body plan that are still present, although chaotic,
uncontrolled and doomed to fail at the level of the organism, in tumour cells, may rely on elementary
evolutionary mechanisms that have been designed in the evolutionary past of their body plan, so that this
point should be better understood to efficiently represent cooperation in tumours.

1.2 The atavistic theory of cancer

Recently popularized by physicists Paul Davies and Charles Lineweaver, together with oncologist Mark
Vincent, the atavistic theory of cancer (Davies & Lineweaver, 2011; Lineweaver et al., 2021; Lineweaver
& Davies, 2020; Lineweaver et al., 2014; Vincent, 2011) had in fact been envisioned already in 1996
by oncologist Lucien Israel (Israel, 1996), and likely as early as 1914 by biologist Theodor Boveri
(Boveri, 1914), although none of these scientists seem to have been initially aware of the works of their
predecessors. It helps us understand tumour progression and intratumoral organization from a long-term
evolutionary viewpoint. Briefly, it relies on the ideas that 1) all cancer cells are multicellular animal cells,
results of a billion year-old evolution from unicellular organisms and as such keep in their genomes
powerful remnants of the organismic defence and construction mechanisms borne in their body plans
(even if this term is not used by Davies and Lineweaver, they only mention their genomes); 2) tumours are
results of a regression in the development of the organism, corresponding to early, incoherent versions of
‘an ancient genetic toolkit of pre-programmed behaviors’, which we may freely identify as an unachieved
evolutionary version of the species body plan, and which they name ‘Metazoa 1.0°. The atavistic theory
thus clearly states that a tumour is not just the result of some aberrant stochastic mutation in somatic
cells (the somatic mutation theory, SMT, recently reviewed and compared to the atavistic theory in
(Lineweaver & Davies, 2020)), but that it rather follows predictable paths in such regression towards a
poorly organized, incoherent population of cells, nevertheless constituted of animal cells that are highly
plastic (and thus resistant to external therapeutic pressure by anticancer drugs), as they have the power
to differentiate and de-differentiate, and also to loosely cooperate between them in tumours. The works
of David Goode and colleagues (Trigos et al., 2023, 2017, 2018) have evidenced in cancer samples
silencing of genes of multicellularity and compatibility between expression of genes of multicellularity
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and of unicellularity, resulting in escaping organismic control on cell differentiation (in other words,
developing cell plasticity) and on proliferation, tending to a widely autonomic behaviour, which is a
characteristic of cells in tumour tissues.

The atavistic theory of cancer is little by little, as more evidence in the study of ancient genes becomes
known and published (Trigos et al., 2023, 2017, 2018), gaining recognition among theorists of cancer
biology, however still quite limited in the field of oncology, where people question its amenability to
produce innovations in the therapeutics of cancer. Innovating theories may take a long time to reverse
the argument of ‘authority of tradition’ (Bayle, 1682). The present situation may remind us, mutatis
mutandis, of the way geographers received in 1912 with much skepticism Alfred Wegener’s theory of
continental drift (Wagner et al., 2019), until it was completely justified fifty years later by the theory
of plate tectonics and progressively admitted by all geophysicists. A limitation to a wider acceptance
of the atavistic theory is the present lack of sufficient evidence susceptible to convince biologists and
philosophers of cancer, who prefer to keep on the ‘safe’ side of science under development and, at least
temporarily, reject it as not sufficiently relying on facts. Indeed, when it is mentioned in recent texts
of philosophy of science—by authors who nevertheless must be commended for at least mentioning
it—the atavistic theory of cancer is not always correctly summed up, sometimes even presented in an
off-hand way with arguments against it that show but partial understanding, as in Pradeu ef al. (2023),
fortunately neatly improved in Daignan-Fornier & Pradeu (2024). A mere hypothesis, really? At least a
uniting one in understanding cancer, fully compatible with the holistic point of view on evolution that
we have mentioned above.

1.3 Why and how does multicellularity fail in cancer?

Cancer is thus, taking the atavistic theory of cancer for granted—although it tells us nothing about
the very origin of the disease—the progressive result of a failed maintenance of the teleological (or
teleonomical, if one wants to explicitly exclude any intentionality, which is our position) construction
of an animal. It may be described as essentially ‘a deunification of the individual’ (Pradeu, 2019). In
the perspective of evolved multicellularity, it is tempting to describe—an epistemological position we
assume—such material construction at the level of genes and gene regulatory networks, initially not from
the zygote, but from nonclonal colonies of cells (i.e. before the invention of the egg (Weismann, 1892)
and of the body plan contained in it) in three successive steps.

At the first step, the colony level exists only genes of the cell division cycle and cell death, likely
by quorum sensing. At the second step are introduced genes coding for transcription factors and
(unregulated) differentiation. At the third step appear genes coding for epigenetic regulations, the top
level of fine local regulations, that are themselves subject to central regulations in higher-level animals
such as bilaterians. Such hierarchy is remarkably found, in a reverse order, in the evolution in malignancy
found in fresh blood samples of patients with acute myelogenous leukaemia (Hirsch et al., 2016), which
induces us to propose a scenario for cancer progression as relying firstly on epigenetic gene alterations
(which includes differentiation control), secondly on alterations in differentiation and only very late on
alterations in cell cycle regulations, which are the strongest basis of proliferation. Unfortunately so far,
with the remarkable and recent exception of the successes of immunotherapy, cancer therapies target
mainly this strength (Lineweaver et al., 2021).

Let us in the sequel consider the question of the dynamic behaviour, in an already constituted
multicellular organism, of cancer cell lines as compared to healthy cell lines. As regards adaptation
to changes in environmental pressure, for healthy and for cancer animal cell lines, representative cells
of both types of lines that conserve in their genome for a very long past, at the time scale of Darwinian
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evolution, the same atavistic programme of the species body plan, the adaptive scenario is the same. It
is indeed deterministic, however with easy bet hedging (resorting to atavistic adaptive varied scenarios
that are normally repressed, fixed by cohesion rules, in cohesive multicellular animals) and very fast
adaptation due to their high plasticity, in the case of cancer cells.

In the case of healthy cells, differentiation is strictly controlled for the sake of organismic cohesion, so
that short-time, i.e. cell life-time, adaptation by non-genetic (epigenetic) ways is weak and slow (which
is the same at short term). No time is left for genetic fixation of adaptive traits in healthy cells (which
is not the case at the billion-year time scale of Darwinian evolution), so that healthy cell lines may be
considered as evolutionary stable in an organism life-time perspective.

In the case of the very plastic cancer cells—due to poor control on their differentiation, in our and in
Marta Bertolaso’s view (Bertolaso, 2016), one main cause of cancer—adaptation is on the contrary fast
in a life-time perspective, and so is mutational genetic fixation due to poor control on cell cycle gating.
Indeed, in the cancer case, added to the deterministic and atavistic basis of the body plan with added
bet hedging, may come stochasticity (e.g. due to error-prone DNA polymerases, mutatis mutandis as
shown in starving bacteria (Kivisaar, 2003)), and poor control on the quality of DNA in the cell division
cycle checkpoints, inducing the high mutation rate observed in cancer lines as compared with healthy
cell lines.

What are the respective parts of determinism and stochasticity in the evolutionary capacities of cancer
cell lines remains to be determined. In this respect, it is noteworthy that according to Marta Bertolaso,
poor control on differentiation and on proliferation in a parallel way—or is it consequential? Indeed,
cellular stress resulting from alterations of control on differentiation might be a cause of poor control on
proliferation as mentioned above about bacteria (Kivisaar, 2003)—are the two main traits of cancer cells.

In other words, both the epigenetic deterministic scenario of the body plan relying on differentiations
in isogenic cells, however poorly controlled and inefficient in producing cohesion, and the genetic
stochastic scenario of Darwinian evolution by gene mutation, however with a tremendously enhanced
speed of ‘economic’ genetic fixation at a cell lifetime scale, after first and costly—in terms of the
energetic cell machinery—epigenetic adaptation, are concerned in the dynamic behaviour of cancer cell
populations.

1.4 A narrative of long-term evolution and cancer; freely exposed to the fire of philosophy of science

We need not justify any given evolutionary path that led to such and such animal, and rather see paths
followed in evolution as diverse evolutionary strategies adapted to external constraints that imposed
changes on the behaviour of the actors of the evolutionary paths at stake. Let us mention here that we hold,
from our point of view, which resorts to functional, physiological and anatomical evolution, these actors,
or evolutionary units, to be the body plans (Davidson et al., 1995; Miiller et al., 2004) of multicellular
animals, and not the individual genes, nor the gene regulatory networks that are mere effectors of
evolutionary strategies, not determinants, and are only secondarily affected by them, as reflected in
observations. A paleoanthropological analogy in evolution, mutatis mutandis, of such strategies at the
level of divergence from a common ancestor in the Hominin lineage between Paranthropus and early
Homo, relying on different dietary choices, may be found in Balter et al. (2012). Such haphazard
strategical choices in long-term, Darwinian, evolution, which have become fixed in the body plan of
animal species by genetic mutations and success in species fitness, may fail in cancer, as described in
the previous section.

These firstly non determined (tinkered (Jacob, 1977)) strategies led to epigenetic modifications (aka
epimutations), later to fixed mutations of the genes coding for the epigenetic enzymes that determine
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these epigenetically defined strategies yielding functional body plans, that are the bases of physiology
and anatomy construction in multicellular animals. Cancer cannot change the body plan of an animal in
that of another animal, and it is certainly not a new form of life. However, by loss of organismic control
on differentiations, it can reverse a cohesive body plan in a given species to some intermediate, poorly
defined, unachieved form of the body plan of this species, yielding a collection of still very plastic cells,
in other words a tumour, or a Metazoan 1.0 in the words of the atavistic theory of cancer (Davies &
Lineweaver, 2011). The causes of such loss of control on differentiations are unknown, and the atavistic
theory tells us nothing about them. However they may consist of an abrupt change in the environmental
pressure on the tissue at stake, but also may be identified as due to a mutation in the genes responsible
for epigenetic control (Hirsch et al., 2016).

2. Cell differentiation and phenotype divergence
2.1 Heterogeneity and plasticity with respect to what?

Cell populations, healthy and cancer, are heterogeneous w.r.t. various continuous traits under study,
that are used to describe their biological variability, such as cell size, age in the cell division cycle,
expression of genes of drug resistance, or more functional and abstract traits determining cell population
fate such as viability, fecundity, motility, plasticity, according to the biological question at stake.
Plasticity (Clairambault, 2020, 2023) in a given trait is its capacity to change under the pressure of
external constraints, such as drugs, and it has long been recognized as as relying on epigenetic factors
(McCullough ez al., 1998). Plasticity may be considered as a speed of evolution from one trait distribution
to another one when the surrounding environment of the cell population changes, slowly or abruptly.
Such evolution may be accelerated in equations by terms of advection (especially when abrupt changes
in the environment force the cell population to adapt quickly) and diffusion (representing uncertainty in
phenotype determination).

Differentiation in cell lineages, such as the ones constituting the paths of haematopoiesis, may consist
either of simple maturation, following the same line towards a terminally differentiated cell type, such
as the different granulocytes (neutrophils, eosinophils and basophils) among white blood cells, or of
branching, e.g. in haematopoiesis from pluripotent haematopoietic stem cells to myeloid versus lymphoid
progenitors. Phenotype divergence is the biological phenomenon by which branching occurs between
precursors of terminally differentiated cell types. The first identified phenomenon relying on phenotype
divergence in evolution from unicellularity towards multicellularity was likely the separation between
germinal cells (the germen) and germen-supporting somatic cells (the soma), proposed in 1892 by August
Weismann (Wegener, 1912) and later mentioned by John Maynard Smith and Eors Szathmary as the first
step from unicellularity towards multicellularity, one of the major transitions in evolution (Maynard
Smith & Szathmary, 1995). Basis of heterogeneity in cell populations within a cohesive multicellular
individual, or within a tumour, phenotype divergence necessarily relies on phenotype plasticity, and it is
the phenomenon we here tackle to represent in phenotype-structured equations.

2.2 Long-term evolution as genetic adaptation of the body plan in animals

As mentioned in the introduction, we consider that the fundamental evolutionary unit in the great
Darwinian evolution of animals is the body plan (Davidson et al., 1995; Miiller et al., 2004), which
is virtually (as it is abstract, indeed as a plan, self-developing, written as a self-extracting archive in
genetic code, its dynamic extraction occurring continuously during the process of animal development)
present in every physiologically complete nucleated animal cell, starting from the zygote, i.e. the initial
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fecundated egg. The genes and gene regulatory networks that materially proceed from it and serve to
design and cohesively maintain the construction of the animal when it is achieved, are its observable
materialization.

Anatomically in 3D observations, physiologically by the observation of the great functions of the
organism, and genetically by investigation the genes that have been identified (e.g. by KO experiments) in
different species to correspond to anatomic structures and physiological functions, and their expression,
we may have access to material reflections of the body plan, and thus partially reconstitute its
evolution across species. This is precisely what has been investigated about the genes at the origin of
multicellularity and their correspondence with the genes that are altered in cancer by Domazet-LoSo and
Tautz (Domazet-LoSo & Tautz, 2008, 2010), and later by Trigos et al. (Trigos et al., 2023, 2017, 2018)
in David Goode’s team, giving rise and genetic arguments to the atavistic theory of cancer (Davies &
Lineweaver, 2011; Lineweaver et al., 2021; Lineweaver & Davies, 2020).

2.3 A nonlocal phenotype-structured cell population model

The reaction-diffusion-advection model proposed in Alvarez et al. (2022) to exemplify bet hedging as a
‘tumour strategy’ to diversify its phenotypes in response to deadly stress (e.g. by cytotoxic drugs), but
also to represent phenotypic divergence in evolution towards multicellularity, runs as follows.

Let D = 2 x [0, 1], where 2 := {C(x,y) < K} (a constraint between competing traits x and y)
and 6 € [0, 1]. The evolution with time ¢ of a plastic cell population of density n(z, f) structured in a
3D phenotype z = (x,y,0), where x=viability, y=fecundity, #=plasticity, with r(z) and d(z) growth and
death rates, is given by

o+ V- (V= A©)Vn) = (1) — d@p)n, ()

with (Vn — A(G)Vn) -n = 0 forallz € 9D (nis a normal vector to dD), n(0,z) = ny(z) for allz € D,

where 2 = {(x,y) € [0,1]%>: (x — 1)? + (y — 1)2 > 1}, and the diffusion matrix is
an@ 0 0
A@B) = 0 ay(@) 0 ], with a;; and a,, non-decreasing functions of 6, influencing the
0 0 as
speed at which non-genetic epimutations occur, otherwise said, it is a representation of how the internal
plasticity trait 6 affects the non-genetic instability of traits x and y, by tuning the diffusion term V -
{A(0)Vn}; the advection term

V- {V(t,9n) =V - {(V|(t,2), V,(t,2), V5(t,2))n}

represents the cellular stress exerted on the population by external evolutionary pressure, i.e. by changes
in the cell population environment, here chosen as tearing apart the cell population between competing

traits x (viability) and y (fecundity); and p(¢) = f n(t, z)dz stands for the total mass of individuals in the
D
cell population at time ¢.

The existence and uniqueness of solutions is obtained in finite time in a constructive way by using
the compactness of a sequence of numerical solutions, which are the result of the algorithms used to
discretize the model. Simulations may be obtained with instances of the functions used in the equations.
For instance, to obtain phenotypic divergence (which we take as the basis of both bet hedging in cancer
and of emergence of multicellularity in evolution), we consider over the domain D = £2 x [0, 1] an initial



PHENOTYPE DIVERGENCE AND COOPERATION IN ISOGENIC MULTICELLULARITY AND IN CANCER 7

density given by
[
nO(Z) = a]]'{f(Z)<l}e 1-/() S
with f(z) = nggéosl)‘; where z; = (0.25,0.25,0.5) and || - || is the euclidean norm. We choose the value

of a in such a way that p, = |, p1o(2) = 1. We set the growth rate and the death rate as

0 T2 — (0 92 0 T2 (0 912 1
r,y,0) =1y e 0.1=x)"—(0.9-) + Lsye 0.1=-3)7=0.9-x)7 d(x,y,@):i.

This choice of growth and death rate is meant to represent the fact that different configurations of
traits can be equally fitted, even to the point where the survival rate can be maximized in multiple ways.
We choose the diffusion matrix

0+ 11076 0 0
A@B) = 0 ©+D107° o0 |,
0 0 1076

so a higher plasticity will directly imply a higher mutation rate for the other two traits; and the advection
term, tearing apart traits x and y, is chosen as V(t,z) = 1073 (—y, —x, —(x+)), or 10730 (—y, —x, —(x+
y)) if we want plasticity 6 to impinge also on the advection term, representing in all cases the influence
of the tumour ecosystem on the tumour cell population.

The reader is sent to Alvarez et al. (2022) for more detailed explanations and illustrations showcasing
other biological strategies and theoretical results being replicated by means of numerical simulations.

2.4 What this model tackles and what it leaves unexplained

Our reaction-diffusion-advection equations give the most important part in modelling phenotype diver-
gence to the drift (advection) term representing environmental pressure from the ecosystem towards
separation of phenotypes. Plasticity is naturally already present in the reaction term of this continuous
phenotype-structured cell population model of adaptive dynamics, and the diffusion term adds to
phenotype adaptability by uncertainty in its determination. Nevertheless, the sensitivity of phenotype
adaptation and the trade-off we set between the supposed contradictory 1D phenotypes is mainly
represented by the advection term and the bounded region within which the phenotypes evolve, that
together represent constraints and offer possibilities of trade-offs between the phenotypes.

This model is clearly a mathematical abstraction that may be applied as such to every possible branch-
ing situation in the physiological development of multicellular animals or in bet hedging of phenotypes in
tumours. For instance, one could model more precisely in glioblastoma cells such branching situations
as the ‘go-or-grow’ alternative between enhancing a proliferation potential (fecundity) and a motion
potential (motility) (Hatzikirou et al., 2010), which would need to represent in the same kind of model
the biological mechanisms that account for them, and about the constraints (likely of energetic nature)
between them. This would help us design more precisely the advection term and the domain in phenotype
space within which phenotypes evolve. It would imply efficient transdisciplinary collaboration on this
subject between mathematicians and biologists of cancer, which we hope to develop in the future.
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FI1G. 1. Phenotype divergence and loss of plasticity. On these cartoon-like figures, one can follow the progressive distancing of an
initial cell population arbitrarily set at z = (0.25,0.25, 0.5), submitted to an advection gradient that tends to split the cell population
into two subpopulations migrating towards the two extreme points (0, 1) and (1, 0) of the domain £2, while the plasticity variable
6 decreases towards 0.

3. Cooperation

3.1 Tinkered cooperation in the emergence of multicellularity vs. directed cooperation in constituted
multicellular animals

Noting that the question of cooperation and of division of labour has been considered by many authors at
different stages of associations between individuals, including animal societies (Maynard Smith & Szath-
mary, 1995). To follow again the metaphor of the separation in evolution between Paranthropus and early
Homo, the situation with respect to phenotype divergence between body plans of animals is as if, mutatis
mutandis, in evolution from their common hominin ancestor, Paranthropus and early Homo, after their
genetic separation starting by fixation of initial epigenetic haphazard strategic adaptive choices (since
evolution under changes in environmental pressure proceeds by tinkering (Jacob, 1977)), had found inter-
estin developing mutualistic interactions, living in symbiosis, less and less independently of one another.
However, since the Paranthropus species eventually became extinct, likely due to climate changes
incompatible with his too specialized vegetalian diet, whereas Homo survived, having adapted his diet
to meat eating, this was actually not the case, or not in a permanent way, in the evolution of hominins.
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We are aware of the fact that this metaphor is by no means perfect, and that reversible development,
of epigenetic nature, within an isogenic individual (or a tumour) is not the same process as evolution of
species, which is based on fixed, irreversible, genetic separations by branchings between body plans
of species. Nevertheless, hypothesizing that genetic specialization is likely to begin with reversible
epigenetic phenotype divergence before being fixed by gene mutations, we hope that it sheds some light
on the processes that are at work in elementary steps in the evolution towards multicellularity and in bet
hedging in tumours.

Cooperation between populations of cells resulting from such phenotype divergence may be con-
sidered as the glue that holds together all cell subpopulations in an isogenic multicellular organism. It
may occur when mutualistic interactions are beneficial for all the interacting cell populations, provided
that none of them becomes extinct. And it may also not occur, in which case no trace of such missed
mutualism is found in the evolution of body plans. It is indeed, in our representation, the body plan
that has kept memory, in each species, in constitutive intercellular gene regulatory networks, of the
proper strategic choices w.r.t. phenotype divergences that lead to the design of an anatomically and
physiologically cohesive animal. No tinkering is present anymore in these programmed choices designed
in the body plan, and this is what we would like to represent now.

We will present two different possible approaches to the study of evolution of cooperation. The first
one takes the prisoner’s dilemma as a starting point, and considers reciprocity as a factor influencing
the strategies of both players. The possible outcomes for a long running game are studied, and finally, a
way to model a scenario with n players is described. The second modelling choice is through an integro-
differential system structured according to the probability of cooperation. In this case, reciprocity is
represented by an advective term. For a simple set of hypotheses we show that cooperation might mark
the difference between extinction or proliferation for two interacting populations.

3.2 Prisoner’s dilemma and reciprocity

According to Axelrod & Hamilton (1981), an initial intention for cooperation and the existence of
reciprocity are crucial for the evolution of cooperation, even in an environment composed of egoistic
individuals. However, one may wonder what are the conditions that guarantee this to be true; after
all, it can be expected that, if reciprocity is stronger in the absence of cooperation, then cooperation
becomes less usual. In other words: when is reciprocity a catalyst for cooperation? The following (very
simple) model tackles this question. Consider two players (that can range from cells to entire groups
of individuals, such as governments) involved in the repeated prisoner’s dilemma game. Player A will
initially cooperate with probability p, > 0 while player B will do so with probability g, > 0. We assume
both values to be strictly positive to account for the initial intention of cooperation described in Axelrod
& Hamilton (1981). Both players will modify their probabilities of cooperation at turn k + 1 (denoted as
Pyy1 and gy, respectively) by following the rule:

Pr +€11(1 = pp), if player B cooperated in turn k,
Pr41 =
D1 —€15), if not,

and

gy + &5 (1 — q;), if player A cooperated in turn k,

Gik+1 =
G (1 — £97), if not,
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where 0 < ¢; < 1fori,j € {1,2}. According to this model, both players modify their strategy by
‘learning’ from each other. A different strategy was already studied in Murase ef al. (2022), where players
could modify their strategy by imitation. We recall that the payoff matrix of the prisoner’s dilemma game

is given by
b—c —c
b 0)°

where b is the benefit and c is the cost of cooperation (b > ¢). Hence, the expected gain for players A
and B at turn k are given by

EX = (b - oOprgp + b — pgy — cpp(1 — qp) = bqy, — cpy and Ef = bp, — cqy,

respectively. Therefore, the average expected gain at turn & is given by the relation
_ -9
2

Ey Or + q1)-

Given that the probability of both players cooperating at turn k is equal to p,q,, our interest falls
then on the question: what are the conditions over the values ¢, i,j € {1,2}, such that the sequence
(Pr» ;) converges towards a non trivial limit? In such cases, when does the average expected gain can
be expected to increase?

In order to answer these questions we first explicitly give the values of p;, | and g;, | as functions
of p; and g;.. Thanks to the law of total probability, we get the relations

Prr1 = G0+ 6110 = p)) + (1 = qp (1 —€15)

= (I —epIpr +eng + (€12 — €102k = /1P 1)
Ger1 = Prqy + 61 (1 —q) + (1 — pg (1 — &)

= (1 — &3y + e3Py + (€23 — E20)Pk Gk =2 /2Py 4)-

If this sequence has a limit (p*, g*), it must satisfy the relation

P = .9,
2)
= LP*.q).

In the following proposition we will identify the possible values for (p*, ¢*) and determine their
stability.
ProrosiTiON 3.1 Consider a couple (p, q,) and the value e = ;185 — £1589,.
i) Ife < 0, then the only possible values for (p*, g*) are (0,0) and (1, 1). The first one is a stable
fixed point and the second one is an unstable fixed point.

ii) If e > 0, then the only possible values for (p*, ¢*) are (0,0) and (1, 1). The first one is an
unstable fixed point and the second one is an stable fixed point.
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iii) If e = O then (p*, ¢*) is the unique solution of
€Po + €190 = ExoP” + €114

q* — 812p>’<
e+ (61 — &1 p*

iii) and it is a stable fixed point.

Proof. Notice that the values (0,0) and (1, 1) are always a solution of (2). The stability of said fixed
points (and others we will determine) can be study by means of the eigenvalues of the Jacobian matrix.

First case: The unbalanced scenario: (g,,&,; # ¢€,8,) If this condition is satisfied, a simple
computation shows that there are not non-trivial solutions for (2). Hence, if a limit exists, it has to be
either the (0, 0) or the (1, 1). The Jacobian matrix of the system at each of these points is equal to

1—c¢ e 1—c¢ e
Jy:=J(0,0) = ( 12 1 ) and/J, :=J(1,1) = ( 1 12 )
0 & l—ep ! &y 11—y

The eigenvalues of J, are then

2— (812 + 822) — 4/ (812 + 822)2 + de

2

2 = and 29 = 2= 1t £20) +2\/ (e1p + £9)? + de

while those of J; are

2— (811 + 821) — 4/ (811 + 821)2 —4e

A=
1 2

and A} =

2— (811 + 821) + v (:911 +521)2 —4e
) .

Ife <0,then —1 < 1 — (g, + &5,) < AY < A9 < land A} > 1, hence (0,0) is stable and (1, 1) is
unstable. On the other hand, if e > 0, then A > I and —1 < 1 — (g, + &,;) < A < A} < I, hence
(0,0) is unstable and (1, 1) is stable.

Second case: The balanced scenario (g,,6,; = £[,&,,) Under this condition, it is straightforward to
notice the relation

€00Pk+1 F E119k41 = ExPr T €119y forallk €N,

hence, if a limit (p*, ¢*) exists, it satisfies

X . >k X .
=P T E1q = Py t+ E11qy = Tp-

Furthermore, directly from the relation f; (p*, ¢*) = p* we get the equality

*

* €12
e+ (€1, — & p*
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Hence, the value of (p*, ¢*) is given by the unique solution of the system

ro = eppttenqg,

3
* 812p* ( )
ey + (612 — &p*

Computing the Jacobian matrix at (p*, ¢*) gives

1—Ené 8121’—:
J* = J(p*,q*) =( q*p q « f.

p
eny  L—éng

The eigenvalues of J,, are

*

*

Given that the second eigenvalue is equal to 1, we cannot immediately give a conclusion to the
stability of (p*, g*). However, we can proceed as follows: for a fixed (py, ¢), p* is solution of the equation

r* —¢ *
p* =f,(p*, —22]7)
&1
r* — ¢ *
=1 —ep" + (r* —exp™) + (g5 — 811)P*8—22p
1

Xk rO * *\2
=r"+ (1 —(ep+¢ep) + (e — 811)8—)17 + (620 — &) (P7)
1

=f(p").

This is, p* is a fixed point of f (p). Therefore, in order to determine the stability of (p*, g*), it suffices
to study the value of

0
F@" =0 = (15 +e3) + (615 — 811);—) +2(e9n — &3)P"
1

k *

q p
=1- (8111; + e —)s

which is precisely the first eigenvalue of J*. Since A} < 1, (p*, ¢*) will be a stable fixed point if and
only if A7 > —1, or equivalently, if and only if

* *

£11€12 €1 * q p
g(p*) = + =(ey + (1 — )P =61 — + &8 — < 2.
e+ —ep* e 2o Hpr = "2 gr
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Since g(p) is a convex function over [0, 1], which satisfies g(0) = ¢, + &5, < 2 and g(1) =
€11 + &3 < 2, we conclude g(p*) < 2 for all possible values of p*. Therefore (p*, g*) is a stable fixed
point. (]

Let us discuss the results from Proposition 3.1. There are two scenarios for the unbalanced case. If
the players reaction to the lack of cooperation is stronger than the reaction to the presence of it (e < 0),
then both players will eventually adopt the no cooperation strategy, making the average expected gain
equal to 0. On the other hand, two players that are highly responsive to cooperation, and not to the lack of
it (e > 0), will eventually always cooperate, maximizing this way the average expected gain. We observe
a far more complicated outcome when the responses of both players are balanced (e = 0). Given that
(p*,q") satisfies system (3), then the average expected gain will increase if £;; < &,, and the initial
values p, and ¢ satisfy

€12P0
e+ (612 —€11)po

do >

orif &;; > &y, and

€12P0
e+ (612 — €11

qdo <

Thanks to the balance condition, 1, < &,, implies thate;, < &,;. Thisis, in a way, player A has more
shy responses than player B. According to the previously established conditions, interactions between
these two players will lead to an increase in the average expected gain only if the initial probability of
cooperation for player B is sufficiently big. An analogous interpretation can be given when &;; > &5,.
Figure 2 shows several initial configurations for (p,, g,) and their respective limiting values satisfying
the relation.

3

" €120

e+ (e _811)17*.

Assume now the presence of n players, each one with an initial probability of cooperation pf) and
reciprocity constants (g;;, €,5), fori € {1,...,n}. The previous model can be adapted in such a way that
each player modifies its strategy by taking into account the global cooperation level. This is, p}, satisfies
the relation

Py = g + e (1 —p) + (1 — gpi(1 — ep)

= (1 — )Pk + &1 q% + (61 — €Dkl

with

4 1 .
Ghi=—7 D Vo

J#

being the average probability of cooperation from the co-players of player i. As in the previous case, it can
be expected that the amount of fixed points for this recurrence, and its stability will depend on a family
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Initial cooperation probabilities Cooperatlon probabilities after a long time
S = pEo0—0—0—9
| 0to
o o o o© c 0o o0 J &6‘
&
085 o ©o © © 0 © | 08 i
D O o O o O O 9
0.6 ] 0.6
a, ¢ © o o o o0 o | a, 8
¥
O 0 o o° o 0 0 &
0.4 1 0.4
o O c O o O O |
0'213 0 c O o O O ] 0.2 §
0 o o 0 o 0 g |—qg = c12p
P O | I q (eni+(e12—en1)p)
00— O O .0 O.0 O O 0 . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
pO px

F1G. 2. Left panel: Several initial configurations of cooperation probabilities. Right panel: Limiting values of the sequences (pg, gx)
associated to initial values showcased on the previous figure.

of conditions over the values of (g;, €,5), however, for the moment being, we will not study this case
any further. An element that was not considered in these models was the effect of the average expected
gain on the relation between (py, q,) and (p,,q;, ). For example, considering variable reciprocity
coefficients that directly depend on the average expected gain would create a mutual feedback between
the cooperation probabilities and the gain, resulting this way in a far more complex, interesting and
realistic model.

3.3 A continuously structured population model for the evolution of cooperation

Take p € [0, 1] to be a continuous structure variable representing a probability of cooperation. Consider
two populations A and B, each one composed by individuals with different probabilities of cooperation
with the elements on the other population. Let n, (¢, p) and ng(t, p) be their respective population densities
of individuals with probability of cooperation equal to p at time z. The total populations at time ¢ are
given by

1

1
pA(D) = /0 ny (2, p)dp and pp(1) = /0 ng(t,p)dp,
and the mean cooperation probabilities by

0
i pra(t,p)d P and po() i Jy png(e, p)dp
20 A and g L0 7B

PA) =T ()

These choices allow to define the global expected gain for each population. For the first population
its global expected gain is defined then as

E @) = (b= o)ps(Opp(t) + b(1 — py(0)pp(t) — cpa ()1 — pp(1)) = bpp(t) — cpy (D),
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where b and c are the benefit and cost, respectively, of cooperation in the prisoner’s dilemma setting.'
Similarly, the expected gain for population B is given by

Ep(t) := bp, (1) — cpp(?).

This way, we may consider that the population densities evolve following the system of equations
dnp(1,p) + €48, ((Pp(t) — PIng(t.p)) = 8P E5(0)ny (L, p),
dnp(t,p) + e5d, ((P4() — PIng(t.p)) = 8P, Eg(0)ng(t.p). “4)

n,(0,p) = n (@), ng0,p) = n(p),

where ¢, and &g are reciprocity coefficients and g4, g5 are continuous and increasing functions of E,
and Ejp respectively, while the elements of both populations modify their probabilities of cooperation,
depending on the global probability of cooperation of their counterpart. There exists a formal link
between the discrete model given in section 3.2 and the partial differential equation system (4) or
some generalization of it. Picture two populations, each one conformed by individuals that modify their
probability of cooperation following the dynamics described by system (4) by reciprocating the mean
probability of cooperation of the opposing population. If we endow the system with appropriately chosen
growth and death rates, which may be intrinsic or may depend on the global gain, it could be expected
that, after taking the limit for a big number of individuals and a small time interval, the differential system
of equations satisfied by the densities of population will resemble (4). We intend to study in depth this
relation between the two models, discrete and continuous, in future work.

Cooperation or extinction, an easy choice From model (4), we will illustrate, for an specific choice of
g4 and gp, how cooperation may make a difference between extinction or persistence. Consider

A E (D) =ra(p) + YaDEL() = rg(p) + ¥4 (0) (bPp(t) — cpy (1)),

25 (0 Eg(1) = rp(p) + v Eg(0) = rg(p) + v5(p) (B4 (1) — chy(t)). ®)

where r, (p), rg(p) are the respective intrinsic growth rates of populations A and B and the non-negative
functions y, (p), yz(p) represent the effect of the expected gain on the growth rate of each population.
This choice of g, and gz makes system (4) bear a striking resemblance to the model studied in
Pouchol & Trélat (2018), where conditions under which there is persistence of all species are given.
Nevertheless, there are several differences: in our case the nonlocal terms are given by the mean
cooperation probabilities, the functions y, and yp are non-negative and we consider no restrictions
over the signs of r,(p) and rgz(p). Despite these differences, we do not rule out the fact that the tools
and techniques used within the cited reference may be useful for the study of problem (4) as well. For
specific choices of ¢, €5, ¥4 and yp it is possible to identify the conditions over ry, rg, b and ¢, which
guarantee that one or both populations will either go extinct or proliferate. Such conditions are stated on
the following proposition:

! For a more general model, the values of b and ¢ could be dependent on p, this is, the cost and benefit of cooperation might
depend on the probability of cooperation itself
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ProposITION 3.2 Consider ¢4, = ¢ = 0, y4,(p) = y, and yg(p) = yp, with y,, yp non negative
constants. Suppose 74 (p), rz(p), ng (p) and ng (p) to be continuous functions such that the maximum
value of r, (p) over the support of ng (p) is attained at a single point p}}, and the maximum value of r(p)
over the support of ng (p) is attained at a single point p’. Then

i) Ifry(p}) + ya(bpy — cp}y) < O, population A will go extinct.

ii) If ry(p}) + y4(bpy — cp}) > 0, there exists and interval [ satistying p} € I C [0, 1] such that
population A will blow up for all p € 1.

iii) The same is true for population B, depending on the sign of rgz(p}) + yg(bp} — cpp).

Proof. Under these hypotheses, the expression for n, (p) and ng(p) are implicitly given by the expres-
sions

13 1
ny (t,p) = n‘g (p)erA (P)t+ya [y Ea(s)ds andnB (t,p) = ng (p)e”B ®1+vB Jo EB(S)dS’

respectively. This allows to explicitly compute the values of p,(f) and pg(¢):

Jo prS (pre®dp
01 ng (p)grB(p)tdp '

Joy prS (pre®dp
Ol ng (p)erA (p)tdp

pa(t) = and pp(1) =

From here, it is not hard to prove that, under the hypotheses of Proposition 3.2, p,(#) and pg(f)
converge towards p and pj, respectively. This implies that, for all positive e there exists T > 0 such that
r(p) + va(bpg(t) — cpy () < rp(py) + Y4 (bpy — cp}) + & forall t > T. If & is chosen small enough,
then r(p) + v, (bpj(t) — cpi (1)) < O for all t > T, which gives the convergence to 0 of the population.

)4 bt —cp*
RGP ang define

Conversely, if r, (p}) + v, (bpy — cp}) > 0, we set § :=
I={pel0,1]:r,(p) > ry(py) — &}

Hence, for all p € I there exists 7 > 0 such that

r(p) + ya(bpp(t) — cpa(0) = r4(P)) — 8 + v4(bpp(t) — cps (1)) —e =8 — e,

for all + > T. Once again, by choosing ¢ small enough we obtain the strictly positive growth rate for
all values of p € I, which implies the blow up of the population for all such values of p. The proof for
population B is analogous. g

Let us illustrate the result of Proposition 3.2 with an example. Consider

1
ra(p) =rg(p) =p( —p) — E < 0.

It is straightforward to conclude that, if there is no cooperation (y,(p) = yz(p) = 0 or ng‘ ) =
ng (p) = pody(p)) then both populations will go extinct, at an exponential rate. On the other hand,
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: — — 1.7 = A B(p) — B :
consider y, (p) = yp(p) = 1, ny(p) = nyy and n(p) = ngy. Under these assumptions, we have

1, (t.p) = nfe @t JoEa®)ds 504 ng(t,p) = nBe P+ Jo En(s)ds

and consequently we get
1 ra(p)tq 1 rB(P)q
- pe p - pe p 1
pa(0) = —fol = — and pg(1) = —fol ==,
fo eaPtdp 2 fo eBdp 2
after integrating by means of a substitution. This way, the equations for n, (¢, p) and ng(t, p) are reduced
to

any(t,p) = (ra(p) + L), (2, p),

dnp(t,p) = (rp(P) + LDy (e, p),

ny(0,p) = ng, ng(0,p) = ng.

It is then evident that, as long as (b — ¢) > 1 there will be values of p for which r, (p) + (h—;c) >0

and rg(p) + (b%”) > 0, hence, the population densities n,(t,p) and ng(t,p) will be proliferating
exponentially. An interesting question left unanswered is the case r, (p}) + v, (bpy — cp}) = 0. In this
scenario, additional conditions over the parameters of the problem might be needed in the general case
in order to determine the behaviour of the solution. For the previous illustrative example, this condition
is equivalent to choosing b — ¢ = %, which leads to a solution that decreases for all p # 1/2 and
that remains constant for p = 1/2. When y,(p) and yg(p) are constant, the conditions determining
the fate, blow-up or extinction, of the population depends on the values of p maximizing the intrinsic
growth rates r,(p) and ryz(p). Furthermore, we showed that the mean cooperation probabilities of both
populations converge to said values of p, respectively. This last property reminisces of the concentration
result shown in Section 2.1 of Perthame (2006) where, for a constant death rate, the density of the
structured population converges to a Dirac delta centred around the value that maximizes the growth
rate. When said death rate is not constant, it has been already proved in Pouchol & Trélat (2018) that the
concentration phenomena still occurs, but around the value maximizing the fitness function defined as
the quotient between the growth and death rates. One could conjecture that, in our case, for non constant
choices of y, (p) and y5(p), the mean probabilities of cooperation will still converge towards the values
maximizing a conveniently defined fitness function. Additionally, if ¢4 and eg are non-zero, the long
time behaviour is not that clear, but we must remark that, for similar models containing advection terms,
the theoretical results from Guilberteau et al. (2023) and numerical evidence in Alvarez et al. (2022)
suggest that concentration phenomena around values of p depending on the drift could also be expected.
A diffusion term can be considered as well in both equations of system (4) in order to model random
instabilities of the probabilities of cooperation. This term may be a second order differential operator
and suitable boundary conditions, or an integral term with a mutation kernel. A similar model, for only
one population, excluding the advection term and depending on the population size as the non-local
term was already studied in Lorenzi & Pouchol (2020). Finally, if all three terms are considered, the
resulting model will follow the same principles as in model (1), where the diffusion term represents
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the non-genetic instability of trait p, the advection term represents the external stress exerted over each
population as in Alvarez et al. (2022) or the existence of a bias in the direction of epimutations, as in
Chisholm er al. (2016) (in our case such stress or bias is prompted by the global cooperation probability
of the other population) and the reaction term accounts for selection mechanisms.It is worth mentioning
that a particle method allowing for the numerical approximation of solutions for models accounting for
the three previously mentioned mechanisms was recently developed in Alvarez & Guilberteau (2023).

4. Conclusion

We have sketched in this short essay, relying on concepts of philosophy of science and on mathematical
models under development, the two settings of evolution in which phenotype divergence and cooperation
between phenotypes in the constitution of animal multicellularity should be considered from our point of
view. They are the billion-year Darwinian evolution of species—which we assimilate with the evolution
of body plans—and the short-term construction, in embryogenesis and development, of an isogenic
animal from the zygote to the constituted, terminally differentiated multicellular organism.

In the first case, phenotype divergence is considered to be determined by changes in the environment,
and it is represented by an advection term in a PDE, yielding different optimal adaptive strategies that
are chosen randomly in the initial body plan and resulting in (at least) two different body plans, that in
the first place should be reversible, before being fixed by stabilizing mutations.

In the second case, the body plan of a given coherent multicellular animal, that has been established in
Darwinian evolution in a deterministic machinery of embryogenesis and organism maintenance, governs
the process of development from the zygote of the animal individual on principles of compatibility and
cooperativity between physiological functions, organs and tissues, that relies on cell differentiations. Of
note, cellular stress-induced genes might evolve into developmental organizers, according to a mecha-
nism proposed in the Chlamydomonas/Volvox lineage in Konig & Nedelcu (2020). Such differentiations
are by nature theoretically reversible, relying on epigenetic enzyme activities that graft methyl or acetyl
radicals on the DNA or on the histones that constitute the genome on animal, and dedifferentiations
indeed have been shown to be experimentally possible in 2006 by Takahashi and Yamanaka (Takahashi
& Yamanaka, 2006). However, they are physiologically excluded, except in particular situations such
as wound healing, by a strict control of the expression of these epigenetic enzymes. Plasticity in cancer
cells alters such normal organismic control.

In cancer, which is a disease characteristic of multicellular animals, differentiations are (locally, in
the tissue from which it originates) out of organismic control, so that tumours, as poorly organized cell
colonies that nevertheless are made of cells bearing in each one of them the body plan of a multicellular
organism, can reactivate a process of phenotype divergence in response to a deadly insult (such as a
chemotherapy at high doses), resulting in cancer bet hedging, i.e. developing diverse transient (reversible)
phenotypes without organized control, with the goal to preserve the proliferation potential of their cells.

We are aware that the mathematical models presented here are sketches that need refinement, and
that in particular the cooperativity part should be oriented towards defining a compulsory common gain
(likely represented by, again, an advection term in a PDE) that determines the precise construction of an
individual animal organism designed by its body plan. Much still remains to be done towards this goal,
and in particular the body plan—whose effects are patent in embryogenesis and development, but is
still not properly defined as a programme—needs to be better defined in a mathematical representation.
It is likely made of an organized ensemble of gene regulatory networks, as evidenced in the works of
Eric Davidson (Davidson et al., 1995) and his colleagues, and systematically described in the diversity
of its functions in hypothetical Urmetazoa by W.E.G. Miiller and his colleagues (Miiller et al., 2004).
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A mathematical representation of the body plan, as a programme of construction of the individual and
as the evolutionary unit on which relies Darwinian evolution and the design of animal anatomy and
physiology, is a challenge that awaits philosophers, evolutionary biologists and mathematical modellers
and analysts, a challenge we have merely sketched in this short essay.
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