
HAL Id: hal-04638468
https://hal.science/hal-04638468v1

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining Fault Simulation and Beam Data for CNN
Error Rate Estimation on RISC-V Commercial

Platforms
Fernando Fernandes dos Santos, Marcello Traiola, Angeliki Kritikakou

To cite this version:
Fernando Fernandes dos Santos, Marcello Traiola, Angeliki Kritikakou. Combining Fault Simulation
and Beam Data for CNN Error Rate Estimation on RISC-V Commercial Platforms. IOLTS 2024 -
30th IEEE International Symposium on On-Line Testing and Robust System Design, INRIA/IRISA
Rennes, Jul 2024, Rennes, France. pp.1-8. �hal-04638468�

https://hal.science/hal-04638468v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Combining Fault Simulation and Beam Data for
CNN Error Rate Estimation on RISC-V

Commercial Platforms
Fernando Fernandes dos Santos, Marcello Traiola, and Angeliki Kritikakou
Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France

Abstract—Thanks to the RISC-V open-source Instruction Set
Architecture, researchers and developers can efficiently propose
new solutions at a low cost and low power consumption. RISC-
V-based architectures can then be customized to run Machine
Learning (ML) algorithms efficiently and inserted in safety and
mission-critical domains, where the execution must be reliable.
However, a fault in the hardware resources can compromise
the system’s ability to operate correctly. Thus, it is necessary
to characterize the ML applications’ vulnerabilities on RISC-
V processors and how errors in those operations impact the
Convolutional Neural Network (CNN) misclassification rate. In
this research paper, we assess the error rate induced by neutrons
on the basic operations of a CNN running on a RISC-V-based
processor (GAP8) and how each operation contributes to the
entire CNN error rate. Our findings indicate that memory
errors are the primary contributors to the system’s error rate.
Furthermore, we present a case study demonstrating how the
CNN microbenchmarks can be used to estimate the error rate
of an entire CNN. By combining data from fault simulation and
beam experiments, our error rate estimation led to a result that
closely matches those obtained solely from beam experiments.

I. INTRODUCTION

Recent advances in ML algorithms, such as quantization,
reduced precision training, and weight pruning, enabled tiny
CNN models to be adopted in low-power consumption pro-
cessors and accelerators, such as TPUs, tiny ARM CPUs,
and RISC-V SoCs. Compared to other architectures, RISC-V
processors have the advantage of implementing an open-source
Instruction Set Architecture (ISA), allowing designers to pro-
pose new customized architectures with smaller non-recurring
engineering costs. RISC-V processors are today adopted in
several domains, including end-user applications [1], High-
Performance Computing (HPC) [2], and safety-critical applica-
tions [3], [4]. Such a market trend became a promising option
for CNN-based safety-critical applications where power con-
sumption, real-time execution, and reliability are mandatory.

Researchers have been focused on improving CNN’s per-
formance and power consumption on recent RISC-V archi-
tectures [5], [6]. However, for RISC-V processors to be
employed on safety-critical applications, their reliability must
be thoroughly characterized to define how faults can impact
the system’s correct functioning. Faults that disrupt a sys-
tem’s operation can be generated by different events, such
as environmental perturbations, ionizing radiation, software

Contact e-mail:{fernando.fernandes-dos-santos, marcello.traiola, ange-
liki.kritikakou}@inria.fr

errors, process, temperature, or voltage variations [7], [8].
Ionizing radiation is particularly dangerous for safety-critical
applications as it leads to very high error rates [9]. Terrestrial
neutrons can perturb the state of a transistor or change memory
cells’ values, leading to soft errors. Note that the device is not
permanently damaged (a new operation or memory write will
replace the faulty value), but the error may propagate to the
output and possibly lead to critical errors.

To evaluate a device radiation-induced error rate, researchers
perform radiation experiments with CPUs [10], GPUs [11]–
[13], FPGAs [14], [15], and Tensor Processing Units [16]. The
error rate of soft RISC-V processors synthesized on FPGAs,
or ASICs, has been measured when exposed to heavy ions and
neutrons [17]–[20]. In this paper, we enrich the state of the
art by not only evaluating the error rate of an ASIC RISC-V
processor but also performing a detailed reliability evaluation
of the most basic CNNs operations on a Parallel Ultra Low
Power (PULP) RISC-V System on Chip (SoC), GAP8 from
GreenWaves [5] (Section IV). Moreover, we perform fault
simulation and correlate the results with beam experiments’
results (Section V). We first estimate the error probability
of each operation as the product of its hardware cross-
section – obtained from the beam experiments – and the fault
propagation probability (or Architectural Vulnerability Factor,
AVF) – obtained from fault simulation (Section V-A). Finally,
we estimate the cross-section of the whole code running
on the device by summing all operations’ error probabilities
(Section V-B).

GAP8 includes an 8-cluster core that supports standard
RISC-V instructions and a set of Single Instruction Multiple
Data (SIMD) instructions. SIMD instructions are extremely
interesting for CNNs as they can improve performance without
an excessive increase in power consumption. We expose the
GAP8 to a neutron beam and measure its error rate while run-
ning the main CNNs operations (Convolution, Fully connected
Linear, and MaxPooling). As CNNs are both computationally-
and memory-demanding and GAP8 does not have memory
error protection, we evaluate the error rate and criticality of
the main GAP8’s memories. We discuss how memory errors
can impact the error rate of the main CNN operations.

II. RADIATION EFFECTS ON RISC-V DEVICES

Terrestrial high-energy neutrons that interact with the hard-
ware may generate soft errors in the system. The striking

2

TABLE I: Characteristics for the evaluated codes on GAP8
RISCV (memory and CNN).

SoC usage Cycles [KB] Mem size
Linear 8 Cores+Vector 2.2 1024x16 bytes

Maxpool 8 Cores+Vector 3.8 112x112 bytes
Convolution 8 Cores+Vector 22.8 112x112+5x5 bytes

Mem. L1 1 Core – 62KB
Mem. L2 1 Core – 448KB

CNN 8 Cores+Vector 1013.9 293KB

particle can generate single or multiple-bit flips on a memory
resource, such as caches, registers, or buffers, or even corrupt
the value of a functional unit inside a processing core. If the
incorrect value is used as part of the algorithm computation,
the error will be propagated through the code running on the
device. At the application level, the incorrect value may lead to
the following outcomes: No effect on the program output:
the fault is masked, and the program output is unaffected.
Silent Data Corruption (SDC): the program finishes, but the
output is incorrect, and no error flags are raised. Detected Un-
recoverable Error (DUE): the system stops working, forcing
it to be rebooted or power cycled. A DUE can result from
uncorrectable memory events, crashes, or errors generating an
infinite loop (program hangs).

Prior works have studied the reliability of RISC-V cores
synthesized on FPGAs with neutrons and heavy ions ex-
periments [17]–[19]. As many RISC-V processors share an
open-source concept, developers can modify the architecture
to apply Full or Partial Modular Redundancy to increase the
processor reliability and evaluate the hardened architecture on
beam experiments [17], [21]. Commercial RISC-V processor’s
error rate and criticality have been characterized on a neutron
beam experiment to determine the impact of neutron-induced
faults on a set of applications [18], [20], [22]. However, none
of the prior works have focused the analysis on common CNN
layers and used this information to estimate the cross-section
of a CNN. In this paper, we propose three main contributions:
• we evaluate the most basic CNN operations running on an

ASIC commercial multicore RISC-V platform (GAP8) on a
neutron beam and extract the realistic cross-section;

• we measure the memory cross-section and fault model of
the main GAP8 memories and correlate the results with the
cross-section observed on CNN operations.

• we perform fault simulation and combine the results with
data from neutron beam experiments for the basic CNN
operations and memory. By combining data from both
neutron beam and fault simulations, we are able to estimate
the cross-section with reasonable accuracy.

III. METRICS AND EVALUATION METHODOLOGY

In this Section, we describe the beam experiments method-
ology for measuring GAP8 RISC-V SoC’s cross-section, the
codes we evaluate, and the metrics we use to support the
evaluation in the results section.

A. Device under test and evaluated codes

Device Under Test: For the beam experiments, we consider
a commercial RISC-V SoC named GAP8. GAP8 is a multicore

1 / * * Memory t e s t code * * /
2 while no memory error is observed {
3 / * * S e t a l l t h e memory wi th AAAAAAAA* * /
4 for i in every 4 bytes of the memory {
5 M [i] ⇐ 0xAAAAAAAA
6 }
7 sleep for 1s
8 / * * Compare t h e memory v a l u e s * * /
9 errors ⇐ 0

10 for i in every 4 bytes of the memory {
11 errors + = (M [i] ! = 0xAAAAAAAA)
12 }
13 / * * I f t h e r e i s e r r o r (s)
14 r e t u r n t o t h e h o s t and l o g * * /
15 if errors ! = 0
16 break & log on the host
17 }
18

Fig. 1: Behavioral algorithm for L1 and L2 memory test.

RISC-V platform from GreenWaves technologies based on
PULP architecture. GAP8 is built with 55nm TSMC 55LP
CMOS technology, and it consists of a cluster of 8 RISC-V
cores connected by a Logarithmic Interconnect and a RISC-V
Fabric Controler (FC) processor to manage the cluster. The
FC core operates at 250MHz, while each cluster core operates
at 175MHz. The FC core also has 16KB of data and 1KB of
instruction cache. Both the FC and the cluster can access an
L1 memory of 64KB and an L2 memory of 512 KB. Both L1
and L2 are scratchpad memories, i.e., the programmer must
allocate and manage the memories. None of the SoC memories
have an Error Correction Code (ECC) nor protection against
Single Events Upsets. GAP8 supports integer and fixed-point
arithmetic. During our experiments, we set the voltage and
frequencies of GAP8 SoC to the maximum optimal values
according to the GAP8 manual (1.2 volts with 250MHz for
the FC and 175MHz for the cluster). This configuration set
has a power consumption of 75mW [5].

Evaluated codes: We focus our analysis on the reliability
of the core operations of CNNs. We perform 3 types of
experiments, one of which is to characterize the memories, the
CNN’s most common operations, and a full CNN inference.
1) Memory microbenchmark:

As CNNs are known for being resource-demanding in
terms of memory and computational resources, and as GAP8’s
main memories do not have ECC, we investigate the GAP8’s
memory cross-section and correlate it with the results for
CNN operations. We design a microbenchmark to measure L1
and L2 memories cross-section. Figure 1 depicts a behavioral
code for the memory microbenchmark. The code consists of
a loop that runs while no memory errors are observed (line
2). The L1 or L2 memories of GAP8 are populated with a
specific pattern (chunks of 4 bytes with 0xAA) (lines 4 to
6). After the writing, the code sleeps for 1s (line 7). Finally,
the microbenchmark reads all the memory values and logs
on the host if there are errors (lines 9 to 16).The memory
microbenchmarks are designed to use as much memory as
possible, utilizing 87.5% of L1 memory and 96.8% of L2
memory. Despite our attempts, we could not allocate 100%
of the memories for these benchmarks as they kept crashing.

3

SDC?

Beam room

JTAG/USB

Setup
Server

Neutron beam

USB

GAP8 RISCV

RISCV
kernel

SDK
thread

Start

Yes No

Timeout
thread

Logging barrier

Verify
hangs

Start main process

Inside GAP8

USB replicator

Software watchdog

Fig. 2: ChipIR setup overview. The GAP8 is exposed to the neutron beam. The communication is performed through JTAG/USB
by a USB replicator. Outside the beam room, a software watchdog server monitors the events inside the SoC.

However, the memory cross-section is calculated per byte, so
this limitation does not impact the results.
2) Common CNN operations:
Convolution layer is the main operation performed on a
CNN. The selected code consists of a 5× 5 filter convoluted
into a matrix of 112 × 112. The Convolution layers also
have the characteristics to be the most resource-demanding
procedure of a CNN. Consequently, convolution layers have
been demonstrated to be one of the most critical parts of
CNNs [23]–[25]. As discussed in Section IV, the convolution
operation has the highest error rate.
Fully connected Linear layer is the class of algorithm that
performs the last step of the inference on a CNN. The standard
fully connected neural networks receive input and, based on
the neuron’s activation, produce an inference that is reduced
to a smaller set of values. In our experiments, the Linear layer
operates over an input of 1024 bytes and produces 16 values,
which correspond to probability values in a real CNN.
MaxPooling layer is a specific ML algorithm explicitly created
to avoid over-fitting on CNNs. MaxPooling is placed after
a certain number of layers to reduce the amount of data
by filtering the values based on a filter block. We selected
a MaxPooling layer that applies a 2 × 2 filter to a matrix
of size 112 × 112. For each 2 × 2 block, only the highest
value is propagated. As proposed by prior works [23]–[25],
MaxPooling is expected to mask at least 75% of the faults.
3) 5-layer CNN:

As part of our study, we chose a 5-layer CNN as the base-
line, in addition to the basic operations of CNN. We selected
this CNN to classify handwritten digits (MNIST dataset) as
a representative example of embedded machine learning. The
CNN we chose is a quantized (16-bit integer) version of LeNet
CNN [26], which comprises two convolutional layers, two
MaxPooling layers, and a Linear layer.

B. Physical Fault Injection With Neutron Beam

In order to effectively evaluate the reliability of GAP8,
we expose it to a neutron beam and measure its cross-
section. Similar to [5], [20], we use the GreenWaves Software
Development Toolkit (SDK) to build and run the experiments.
Our experiments are performed at the ChipIR facility of the
Rutherford Appleton Laboratory, UK. The available neutron

flux was about 3.5× 106n/(cm2/s), ∼8 orders of magnitude
higher than the terrestrial flux at sea level [27]. The facility
delivers a beam of neutrons with a spectrum of energies that
resembles the atmospheric neutron one [28]. As a metric to
characterize the error rate, we calculate the cross-section by
dividing the number of observed errors (#errors) by the
received particle fluence (η), i.e., Equation 1. The fluence is
obtained by multiplying the average neutron flux of the test
facility (neutrons/(cm2 · s) by the effective code execution
time in seconds.

σ[cm2] =
#errors

η
(1)

The cross-section (cm2) represents the circuit area that will
generate an output error (SDC or DUE) if hit by a particle. The
higher the number of computation resources, the higher the
cross-section, and the higher the probability of an impinging
particle generating an error.

Figure 2 shows an overview of the experiments. We cre-
ated a software watchdog consisting of Python scripts that
run on the setup server computer outside the beam room.
The watchdog controls GAP8 by monitoring, executing the
programs, logging events, and recovering from device hangs.
The program is killed and relaunched if it stops responding in
a predefined interval. We set each code timeout individually
depending on the code execution time, up to 3× the expected
execution time. The code inside GAP8 executes the same
kernel for a predetermined number of iterations. We set the
maximum number of internal SoC iterations to 65KB for a
good tradeoff between time wasted with communication and
proper kernel executions. After each iteration inside the SoC,
the output of the kernel is compared with a constant golden
value. If there is a mismatch between both outputs, the main
process will log the useful information and restart again. It is
worth noting that only errors happening on the kernel output
are considered for the error rate analysis.

C. Fault Simulation With GVSoC

The GVSoC is an event-based simulator that simulates all
PULP platform instruction set [29]. The GVSoC allows the
simulation of the same codes we evaluated under a neutron
beam with the exact input sizes and without modifications.
We have modified the GVSoC simulator in order to be able

4

TABLE II: Memory SDC Cross Section observed on the
neutron beam experiments. L1 and L2 memories are evaluated.

Total cross-section Byte cross-section
L1 8.13× 10−9 ± 7.4× 10−10 1.28× 10−13 ± 1.2× 10−14

L2 4.21× 10−8 ± 3.9× 10−9 9.18× 10−14 ± 8.6× 10−15

to simulate faults at the instruction output (Inst) and in
memory addresses (Mem). The fault simulation has 4 steps:
Application profiling, fault site selection, fault simulation, and
post-injection.

Application profiling: We have modified the GVSoC simu-
lator to enable generating tracing for each instruction executed
and memory address written. During the profiling stage for in-
struction injection, we store information such as the instruction
label, the core where the instruction is executed, and the output
register. For memory fault injection, we record each written
memory address during the simulation. After the profiling is
finished, the traces will be saved in a file for the fault site
selection.

Fault site selection: After extracting profiling data, we
choose a subset of fault sites to simulate. These sites are
randomly selected from the traces using a uniform distribution
of fault sites. For each fault model (Inst and Mem), we
simulated 10,000 for the MNIST CNN, 20,000 in total.

Fault simulation: For instruction output injection, we mod-
ify the output register with a fault mask. The fault mask is
generated based on the findings from [30]. Specifically, for
95% of the faults, only one bit in the instruction output is
modified by the fault mask, while for the remaining 5%,
random bits of the register are flipped. For memory fault
injection, we select the target address and then perform SBU/2-
MCUs based on the results presented in Section IV. This
means that SBUs and 2-MCUs will be injected with the same
percentages (and distances for MCUs) observed in the beam
experiments for each memory level.

Post injection: After simulating faults on GVSoC, we
classify them into SDCs, DUEs, and masked.

The GVSoC fault simulations allow the extraction of the
Architectural Vulnerability Factor (AVF) for the CNN opera-
tions and the full CNN. The AVF is the probability of a fault
propagating to the code output once injected in an instruction
output or memory address [31].

IV. CNN BASIC COMPONENTS CROSS-SECTION

We start our analysis by presenting the cross-section ob-
served on the memory and basic CNN Operations microbench-
marks. It paves the way for the evaluation of the CNN-
based operation codes. We then compare the cross-section of
various CNN operations. All results (CNN common operations
and memory benchmark) are reported with 95% confidence
intervals considering a Poisson distribution.

A. Memory cross-section

Table II shows the L1 and L2 microbenchmarks SDC cross
sections observed on the beam experiments. We present the
total cross-section that considers the cross-section of the entire

76.36%

12.58%

11.06%

65.30%

21.32%

13.38%

L1 L2

Single Bit Upset 2-Multiple Cell Upsets ≥3-Multiple Cell Upsets

Fig. 3: Distribution of observed Single-Bit Upsets (SBUs) and
Multiple-Cell Upsets (MCUs) on L1 and L2 microbenchmarks.

evaluated memory (based on the memory sizes from Table I)
and the cross-section per byte.

The memory cross-section per byte is similar to values
measured in prior works with similar technologies [32], [33].
Although L1 and L2 are similar memories, the L2 cross-
section per byte is 29% smaller than the L1 cross-section. L1
and L2 are differently organized on the SoC and, consequently,
have different latencies and bus connections. More precisely,
L1 is a shared memory among the cores in the cluster, while
L2 is a larger memory divided into 4 blocks.

Figure 3 depicts the Single-Bit Upsets (SBUs) and Multiple-
Cell Upsets (MCUs) for both L1 and L2 memories. The
results show that the SBUs on L1 and L2 memories are
the most common events observed in the experiments, i.e.,
76.4% and 65.3%, respectively. Contrarily, MCUs have a lower
occurrence when compared to SBUs. For L1, 12.6% for 2
MCUs and 11.1% for 3 or more MCUs. For L2, 21.3% for 2
MCUs and 13.4% for 3 or more MCUs.

We observe different MCU patterns for the two GAP8 levels
of memory. In 0.9% of the cases for L1 memory, we observe
large MCUs with 10 to 18 bits. In 1.1% of the cases for L2,
the MCUs have 7 or 9 bits. The maximum size of observed
MCU was 18 for L1 and 9 for L2. GAP8 uses a tightly coupled
data memory to increase performance and save energy, and, as
observed in prior works, the MCUs can be spatially random
SRAM memories depending on the cell organization and the
access type [32]. A single particle can corrupt many bits of a
memory array. Note that no adjacent bits (Multiple Bit Upset,
MBU) were observed in a word. As most modern memories
have bit-interleaving, the occurrence of MBUs is rare.

While less frequent, MCUs are much harder to be masked
on computation and can increase the fault propagation prob-
ability by at least 50% [34]. Additionally, it has been shown
that the patterns of the MCUs can range in the number of
bits flipped [32], [35]. That is, the same particle may modify
the value of 16 bits in the memory. Based on the high cross-
section and high criticality observed on the GAP8’s memory
reliability analysis, we expect memory errors to significantly
impact the overall code cross-section (details in Section V).
In the next section, we show how the code’s cross-section
changes based on the code’s memory usage.

5

C
ro

ss
 S

e
ct

io
n

 [
𝐜𝐦

𝟐
]

0.0E+00

1.0E-09

2.0E-09

3.0E-09

4.0E-09

5.0E-09

Convolution Linear MaxPooling

SDC DUE

Fig. 4: Experimentally measured Silent Data Corruption (SDC)
and Detectable Unrecoverable Errors (DUE) Cross Sections.

B. CNN operations cross-section

Figure 4 depicts the experimentally measured SDC and
DUE cross sections. The y-axis shows the cross-section, and
the x-axis shows the type of operation (Convolution, Linear,
& MaxPooling).

The SDC rate results show that the higher the memory
resource usage, the higher the SDC rate. As the Convolutional
layer is the most resource-demanding, it has the highest error
rate. The same happens for Linear and MaxPooling operations.
MaxPooling layers also can mask most of the faults, as 75%
of the values are discarded as expected (details Section III).

On the contrary, the DUE cross-sections are much lower
than the SDC ones. The SDC cross-section is on average
2.1 × 10−9, while the DUE cross-section is on average
3.4× 10−10. DUEs are caused mainly by events unrelated to
arithmetic calculations, e.g., illegal instructions, hangs due to a
fault-induced infinity loop, fault-induced deadlocks, incorrect
addresses for jump and branch instructions, and illegal mem-
ory accesses. Not surprisingly, the highest DUE cross section
is the MaxPooling operations (5.1×10−10), which consists of
multiple max instructions on memory blocks of the input.

V. CROSS-SECTION ESTIMATION

In this section, we show how we estimate the entire CNN
SDC cross-section with reasonable accuracy by combining the
simulation results with the results from beam experiments.

A. AVF

The cross-section of the microbenchmarks was obtained us-
ing synthetic versions of the CNN main operations. Although
the kernels used are the same as those utilized in actual CNNs,
they are not applied to the entire CNN. Additionally, the CNN
operations cross-section represents the probability of a fault in
the hardware impact on CNN basic operation output. In order
to estimate the cross-section of an entire CNN, we need to
compute the probability of a fault in one of the CNN layers
propagating to the output (i.e., the AVF of the layer). We then
computed the AVF for each layer of the 5-layer CNN used in
our evaluations (Convolution 1 and 2, MaxPooling 1 and 2,
and Linear) and presented the result in Table III.

TABLE III: AVF for each layer per fault model, and the entire
CNN. Note that the AVF of each layer was obtained as part
of the entire CNN. We injected a single fault at layeri and
then propagated it throughout the entire CNN until its output.

AVF SDC AVF DUE Op. %Inst Mem Inst Mem
Convolution 1 3.56% 2.82% 11.52% 0.30% 1.08%

Maxpool 1 0.17% 0.44% 4.53% 0.46% 49.10%
Convolution 2 27.69% 16.21% 0.03% 0.01% 46.41%

Maxpool 2 0.08% 0.16% 0.01% 0.01% 2.73%
Linear 0.05% 0.14% 0.03% 0.06% 0.68%

Full CNN 51.29% 16.94% 100%

Table III displays the AVF of each layer during a complete
inference of the CNN. The table also includes the memory
usage of each layer, including input, output, filters, and bias,
as a reference. To calculate the AVF, we injected 10,000 faults
for each fault model, i.e., Inst and Mem.

The SDC AVF is directly proportional to the size of the
layer and the operation being performed. That is, Convolutions
1 and 2 have the highest SDC AVF. As seen in the results of the
synthetic microbenchmarks cross-section (Fig. 4), MaxPooling
and Linear have the highest masking factor, which leads to
SDC AVFs ranging from 0.05% to 0.16%.

The DUE AVF is predominantly high on the first layer of the
CNN. All the memory allocation and data move instructions
execute before the first layer. On GAP8, L1 and L2 memories
are scratchpad memories, meaning the program must manage
all data. As a result, many instructions are highly sensitive to
faults and can lead to DUEs. Although on a lower scale, a
similar behavior happens on the Linear layer. Memory deallo-
cation occurs after the Linear layer, increasing the chances of
DUEs occurring after the last layer. Finally, for MaxPooling 1,
a large portion of addresses are being accessed as it operates
over a large portion of the memory, many DUEs are expected
to occur on the MaxPooling 1.

B. Cross-section Estimation

The cross-section of a complex code running on a device
could be estimated by summing each system component error
probability (component hardware cross-section) and the fault
propagation probability (AVF). Knowing the AVF and cross-
section of every resource used for computation, in principle,
would allow a perfect estimation of the cross-section of a
code. However, in complex systems, the number of resources
to be evaluated, even in a small RISCV core like GAP8,
is considerably high. Consequently, it would be infeasible to
measure each resource cross-section and AVF given that the
devices today integrate many resources on a single chip.

According to recent research [36]–[39], a reasonable esti-
mate of a complex system’s error rate can be obtained by
analyzing the error rate contributions of its main functional
units and memories. However, characterizing many functional
units can be daunting, so we simplified the estimation process
by focusing on the most basic operations of CNNs, i.e., Convo-
lution, MaxPooling, and Linear. As presented in Sections IV
and V-A, we have determined the hardware fault probability
(CNN operation cross-section) and propagation for each of

6

these operations (CNN operation AVF). Using this informa-
tion, we estimate a complete code’s cross-section (σ̂[cm2]) by
summing the expected contribution of each CNN operation
error probability P (Eopi

) and each CNN operation memory
error probability P (EMEMopi

), as shown in Equation 2.

σ̂[cm2] =

n∑
i=1

P (Eopi) +

m∑
i=1

P (EMEMopi
) (2)

The contributions to the cross-section, such as P (Eopi
) and

P (EMEMopi
), depend on various factors, such as the number

of resources used for computation, the probability of generat-
ing a fault (the resource cross-section) and the likelihood of
that fault affecting the computation (AVF). This relationship
is formalized in Equation 3.

P (Eopi) = S̄opi ·AV Fopi · σopi (3)

Where S̄opi denotes the % of operations of a particular layer,
AV Fopi represents the AVF of the layer, and σopi is the cross-
section of the microbenchmark. It should be noted that the
same approach is taken to calculate P (EMEMopi

), with the
only difference being that S̄opi is replaced by Membytesize ,
and AV Fopi

corresponds to the memory injections AVF, and
σopi

is the memory byte cross-section.
Figure 5 shows the estimated cross-section considering

the contributions from the Memory (only the right side of
Equation 2), CNN operations (only the left side of Equation 2),
and on CNN Operations + Memory (the whole Equation 2).

The SDC cross-section estimated from the memory contri-
bution is 20.1% higher than the measured beam cross-section.
This outcome is expected given that the memory has a high
SDC cross-section, as detailed in Section IV, and the AVF of
injections on memory in the main CNN layers is also high. In
contrast, predictions based on CNN operations yield a SDC
cross-section that is 89% of the measured beam cross-section.
Compared to the memory demands of CNN, the functional
units occupy less space, resulting in a smaller SDC cross-
section. Ultimately, when the CNN operations and memory
contributions are considered, the estimated cross-section is
30.7% higher than that measured with the beam.

We compared the SDCs that caused misclassification in the
beam experiments and fault simulations. The results show that
2.27% of the SDCs caused misclassification in the beam exper-
iments, while 1.84% caused misclassification in the GVSoC FI
simulations. The GVSoC FI misclassification rate was 18.9%
less than the beam experiment results. The misclassification
rate depends on various factors, like the type of faults and
how they affect the CNN weights and layer outputs. Recent
research has shown that the fault space increases as the size
of the CNN increases [40]. Although it may not be practical
to simulate all necessary faults, our estimation with GVSoC
FI, using a reduced number of faults (10,000 per fault model),
generated a misclassification rate reasonably close to the one
obtained from the beam experiments.

The CNN op+Memory, CNN Op, and Memory estimations
resulted in DUE cross-sections that are 3.27×, 3.49×, and
61.66× lower than the beam DUE cross-section, respectively.
It is important to note that DUE sources can extend beyond

0.0E+00 3.0E-09 6.0E-09 9.0E-09 1.2E-08 1.5E-08

Beam

CNN Op+Mem

CNN Op

Memory

Cross-section [𝑐𝑚2]

SDC DUE

Estimate

ChipIr

Fig. 5: Comparison of estimated cross-sections with observa-
tions from neutron beam experiments

faults injected in instruction output and memory values. In
the fault injection analysis, 95% of the DUEs were attributed
to invalid memory accesses in the CNN model. In contrast,
in the beam experiments, most DUEs resulted from system
hangs (i.e., the device stopped responding). Such events pose
a significant challenge to simulate in GVSoC, an event-based
simulator with a constrained level of detail. This discrepancy
in simulation accuracy for DUEs has also been highlighted
in recent studies on CPUs [37], [38] and GPUs [36], with
observed differences reaching up to 62× for CPUs [37] and
600× for GPUs [36].

VI. CONCLUSIONS

We have discussed how faults affect the core operations of
CNNs on a commercial RISC-V SoC when exposed to a beam
of neutrons. We evaluated the cross-section of the main memo-
ries of GAP8 RISC-V to investigate the impact of unprotected
memories on the code’s reliability. After evaluating the CNN
operations and memories, we used an instruction set simulator
to perform fault simulations.

To combine the data from the beam experiments and the
fault simulation, we proposed an approximation method to
estimate the cross-section of an entire CNN. Our results
showed that our approximation method is reasonably close
to the expected cross-section even when using the CNN
layers as basic blocks in the estimation calculation. As a
future direction, we will measure the cross-section of more
deep neural networks to measure how much our idea can be
generalized.

ACKNOWLEDGMENT

This project received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No 899546 with the
support of the Brittany Region and partially funded by RAD-
NEXT [41] under grant No 101008126. It is funded by ANR
FASY (ANR-21-CE25-0008-01) and ANR RE-TRUSTING
(ANR-21-CE24-0015-02). ChipIR provided beam time (DOI
10.5286/ISIS.E.RB2220502). We acknowledge the researchers
who helped with neutron experiments, Drs. Christopher Frost,
Maria Kastriotou, and Carlo Cazzaniga.

7

REFERENCES

[1] L. Lu, M. Zhang, and D. He, “Design and implementation of a smart
home system based on the risc-v processor,” in 2020 IEEE 2nd Interna-
tional Conference on Civil Aviation Safety and Information Technology
(ICCASIT, 2020, pp. 300–304.

[2] F. Ficarelli, A. Bartolini, E. Parisi, F. Beneventi, F. Barchi, D. Gregori,
F. Magugliani, M. Cicala, C. Gianfreda, D. Cesarini, A. Acquaviva, and
L. Benini, “Meet monte cimone: Exploring risc-v high performance
compute clusters,” in Proceedings of the 19th ACM International
Conference on Computing Frontiers, ser. CF ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 207–208.
[Online]. Available: https://doi.org/10.1145/3528416.3530869

[3] D. A. Santos, L. M. Luza, C. A. Zeferino, L. Dilillo, and D. R. Melo,
“A low-cost fault-tolerant risc-v processor for space systems,” in 2020
15th Design Technology of Integrated Systems in Nanoscale Era (DTIS),
2020, pp. 1–5.

[4] A. Ruospo, R. Cantoro, E. Sanchez, P. D. Schiavone, A. Garofalo, and
L. Benini, “On-line testing for autonomous systems driven by risc-v
processor design verification,” in 2019 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), 2019, pp. 1–6.

[5] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018
IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2018, pp. 1–4.

[6] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini,
“Pulp-nn: accelerating quantized neural networks on parallel ultra-
low-power risc-v processors,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 378, no. 2164, p. 20190155, 2020. [Online]. Available:
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0155

[7] J. C. Laprie, “Dependable computing and fault tolerance : Concepts
and terminology,” in Fault-Tolerant Computing, 1995, Highlights from
Twenty-Five Years., Twenty-Fifth International Symposium on, Jun 1995,
pp. 2–.

[8] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in VLSI Test Symposium, 1999. Proceedings.
17th IEEE, 1999, pp. 86–94.

[9] R. Baumann, “Soft errors in advanced computer systems,” 2005 IEEE
Design Test of Computers, 2005.

[10] G. P. Dávila, D. Oliveira, P. Navaux, and P. Rech, “Identifying the most
reliable collaborative workload distribution in heterogeneous devices,” in
2019 Design, Automation Test in Europe Conference Exhibition (DATE),
2019, pp. 1325–1330.

[11] D. A. G. Goncalves de Oliveira, L. L. Pilla, T. Santini, and P. Rech,
“Evaluation and mitigation of radiation-induced soft errors in graphics
processing units,” IEEE Transactions on Computers, vol. 65, no. 3, pp.
791–804, 2016.

[12] J. M. Badia, G. Leon, J. A. Belloch, M. Garcia-Valderas, A. Lindoso, and
L. Entrena, “Comparison of parallel implementation strategies in gpu-
accelerated system-on-chip under proton irradiation,” IEEE Transactions
on Nuclear Science, pp. 1–1, 2021.

[13] K. Ito, Y. Zhang, H. Itsuji, T. Uezono, T. Toba, and M. Hashimoto,
“Analyzing due errors on gpus with neutron irradiation test and fault
injection to control flow,” IEEE Transactions on Nuclear Science,
vol. 68, no. 8, pp. 1668–1674, 2021.

[14] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
induced multi-bit upsets in sram-based fpgas,” IEEE Transactions on
Nuclear Science, vol. 52, no. 6, pp. 2455–2461, 2005.

[15] F. M. Lins, L. A. Tambara, F. L. Kastensmidt, and P. Rech, “Register
file criticality and compiler optimization effects on embedded micro-
processor reliability,” IEEE Transactions on Nuclear Science, vol. 64,
no. 8, pp. 2179–2187, 2017.

[16] R. L. Rech Junior, S. Malde, C. Cazzaniga, M. Kastriotou, M. Letiche,
C. Frost, and P. Rech, “High energy and thermal neutron sensitivity of
google tensor processing units,” IEEE Transactions on Nuclear Science,
vol. 69, no. 3, pp. 567–575, 2022.

[17] A. E. Wilson and M. Wirthlin, “Neutron radiation testing of fault tolerant
risc-v soft processor on xilinx sram-based fpgas,” in 2019 IEEE Space
Computing Conference (SCC), 2019, pp. 25–32.

[18] A. B. de Oliveira, L. A. Tambara, F. Benevenuti, L. A. C. Benites,
N. Added, V. A. P. Aguiar, N. H. Medina, M. A. G. Silveira, and F. L.
Kastensmidt, “Evaluating soft core risc-v processor in sram-based fpga
under radiation effects,” IEEE Transactions on Nuclear Science, vol. 67,
no. 7, pp. 1503–1510, 2020.

[19] D. A. Santos, L. M. Luza, M. Kastriotou, C. Cazzaniga, C. A. Zeferino,
D. R. Melo, and L. Dilillo, “Characterization of a risc-v system-on-
chip under neutron radiation,” in 2021 16th International Conference
on Design Technology of Integrated Systems in Nanoscale Era (DTIS),
2021, pp. 1–6.

[20] F. F. Dos Santos, A. Kritikakou, and O. Sentieys, “Experimental evalu-
ation of neutron-induced errors on a multicore risc-v platform,” in 2022
IEEE 28th International Symposium on On-Line Testing and Robust
System Design (IOLTS), 2022, pp. 1–7.

[21] A. E. Wilson, M. Wirthlin, and N. G. Baker, “Neutron radiation testing
of risc-v tmr soft processors on sram-based fpgas,” IEEE Transactions
on Nuclear Science, pp. 1–1, 2023.

[22] L. A. Tambara, J. Andersson, Á. B. de Oliveira, F. Abouzeid, M. Hjorth,
and P. Roche, “Radiation evaluation of leon5ft/noel-vft demonstrator on
stm 28nm-fdsoi technology,” in 2023 European Data Handling & Data
Processing Conference (EDHPC). IEEE, 2023, pp. 1–6.

[23] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’17. New York, NY,
USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3126908.3126964

[24] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[25] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brunhaver,
“How reduced data precision and degree of parallelism impact the reli-
ability of convolutional neural networks on fpgas,” IEEE Transactions
on Nuclear Science, vol. 68, no. 5, pp. 865–872, 2021.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[27] JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” JEDEC
Standard, Tech. Rep. JESD89A, 2006.

[28] C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning
of a fast neutron beamline for chip irradiation,” Journal of Physics:
Conference Series, vol. 1021, p. 012037, may 2018. [Online]. Available:
https://doi.org/10.1088/1742-6596/1021/1/012037

[29] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and D. Rossi,
“Gvsoc: a highly configurable, fast and accurate full-platform simulator
for risc-v based iot processors,” in 2021 IEEE 39th International
Conference on Computer Design (ICCD). IEEE, 2021, pp. 409–416.

[30] A. Kritikakou, O. Sentieys, G. Hubert, Y. Helen, J.-F. Coulon, and
P. Deroux-Dauphin, “Flodam: cross-layer reliability analysis flow for
complex hardware designs,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 819–824.

[31] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. IEEE, 2003, pp. 29–40.

[32] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in 2011 International Reliability Physics Symposium, 2011, pp.
5B.4.1–5B.4.7.

[33] Xilinx, “Device reliability report second half 2021 (ug116),” June 2021.
[Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/
documents/user guides/ug116.pdf

[34] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas, and
D. Gizopoulos, “Multi-bit upsets vulnerability analysis of modern mi-
croprocessors,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 119–130.

[35] J. Suh, M. Annavaram, and M. Dubois, “Macau: A markov model for
reliability evaluations of caches under single-bit and multi-bit upsets,”
in IEEE International Symposium on High-Performance Comp Archi-
tecture, 2012, pp. 1–12.

[36] F. F. dos Santos, S. K. S. Hari, P. M. Basso, L. Carro, and P. Rech, “De-
mystifying gpu reliability: comparing and combining beam experiments,
fault simulation, and profiling,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 289–298.

[37] P. R. Bodmann, G. Papadimitriou, R. L. R. Junior, D. Gizopoulos, and
P. Rech, “Soft error effects on arm microprocessors: Early estimations
versus chip measurements,” IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2358–2369, 2021.

https://doi.org/10.1145/3528416.3530869
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0155
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1088/1742-6596/1021/1/012037
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug116.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug116.pdf

8

[38] P. Bodmann, G. Papadimitriou, D. Gizopoulos, and P. Rech, “The
impact of soc integration and os deployment on the reliability of arm
processors,” in 2021 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2021, pp. 223–225.

[39] K. Ito, H. Itsuji, T. Uezono, T. Toba, M. Itoh, and M. Hashimoto, “Con-
structing application-level gpu error rate model with neutron irradiation
experiment,” in 2022 22nd European Conference on Radiation and Its
Effects on Components and Systems (RADECS), 2022, pp. 1–6.

[40] J. Guerrero, M. S. Reorda, and J. Aribido, “Assessing convolutional
neural networks reliability through statistical fault injections,” in 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2023, pp. 1–6.

[41] R. G. Alı́a, A. Coronetti, K. Bilko, M. Cecchetto, G. Datzmann, S. Fiore,
and S. Girard, “Heavy ion energy deposition and see intercomparison
within the radnext irradiation facility network,” IEEE Transactions on
Nuclear Science, pp. 1–1, 2023.

	Introduction
	Radiation effects on RISC-V devices
	Metrics and Evaluation Methodology
	Device under test and evaluated codes
	Physical Fault Injection With Neutron Beam
	Fault Simulation With GVSoC

	CNN Basic Components Cross-section
	Memory cross-section
	CNN operations cross-section

	Cross-section Estimation
	AVF
	Cross-section Estimation

	Conclusions
	References

