
HAL Id: hal-04638407
https://hal.science/hal-04638407

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting Linear Extensions of Modular Partial Orders
Matthieu Dien, Frederic Peschanski

To cite this version:
Matthieu Dien, Frederic Peschanski. Counting Linear Extensions of Modular Partial Orders. 2023 25th
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
Sep 2023, Nancy, France. pp.60-67, �10.1109/SYNASC61333.2023.00015�. �hal-04638407�

https://hal.science/hal-04638407
https://hal.archives-ouvertes.fr

Counting Linear Extensions of
Modular Partial Orders

1st Matthieu Dien
GREYC, CNRS UMR6072

Université de Caen
Caen, France

https://orcid.org/0000-0002-1825-0097

2nd Frederic Peschanski
LIP6, CNRS UMR7606

Sorbonne Université
Paris, France

https://orcid.org/0000-0002-4206-3283

Abstract—The counting of linear extensions is one of the
prominent problems about partial orders. Unfortunately, the
problem is computationally hard. In fact, relatively few counting
procedures have been proposed in the literature. In this paper,
we present such a counting procedure based on the modular
decomposition of posets. This allows, first, to identify the series
and parallel substructures, for which an efficient recursive
counting procedure is known. Second, we propose a way to
handle more complex prime substructures using an alternative
decomposition scheme based on two complementary rules: the
BIT-rule that can “consume” individual elements in a chain,
and the SPLIT-rule that can “break” antichains. We develop
a symbolic algorithm based on a multivariate integral formula
solving the linear extension count than can be constructed along
the decomposition. To discuss the complexity of this algorithm,
we introduce a novel parameter, the BIT-width. We show that
the algorithm is O(nw+1) where w is the BIT-width of the input
poset.

Index Terms—Partial orders, Counting linear extensions, Mod-
ular decomposition

I. INTRODUCTION

Counting the number of linear extensions is one of the
prominent problem about partial orders. There exists several
applications of the problem in various areas such as scheduling
or A.I., cf. [1] for references. It is also an important aspect
in the quantitative analysis of concurrent processes [2], [3].
Unfortunately, the problem has been shown ♯P -complete
in [4], and in practice very few counting procedures have been
proposed in the literature.

In this paper, we propose a counting procedure based on the
modular decomposition of posets [5], [6]. This idea, already
introduced in [7], allows to identify the series and parallel (SP)
substructures, for which a straightforward (and efficient) recur-
sive counting procedure is available [8]. While the approach
is not new, there are very few attempts at coping with the
so-called prime substructures of the modular decomposition
trees, the “places” that concentrate the algorithmic difficulty of
several problems about partial orders. As far as the counting of
linear extensions is concerned, the difficulty is twofold: (1) the
prime substructures can be arbirarily complex (it’s “everything
beyond SP”), and (2) the counting procedure must itself be
modular. Indeed, it is not sufficient to count the number of
linear extensions of the prime substructure in isolation, since
it may contain or be contained in other structures.

In this paper, we propose to handle the prime node using
a generic decomposition scheme based on a Poset decom-
position scheme we introduce in [2]. This so-called BITS-
decomposition is a simple graph rewriting system working on
the cover graph of posets. It is based on two complemen-
tary rewrite rules: the BIT-rule that can “consume” isolated
elements in a chain, and the SPLIT-rule that can “break”
an elementary antichain. Most interestingly, a multivariate
integral formula solving the linear extensions count can be
constructed along the decomposition. An important fact is that
if only the BIT-rule is used (or if the SPLIT-rule is used only
sporadically), then the obtained formula is of a polynomial size
(linear size if the SPLIT-rule remains unused). The challenge,
then, is to introduce this decomposition scheme and counting
procedure in the framework of the modular decomposition.

The paper is organised as follows. In Section II we describe
two decomposition schemes for posets our counting procedure
is based on: (1) the series-parallel structures, and (2) the
BITS-decomposition. The associated counting schemes are
also detailed. The modular decomposition of posets and its
use for the counting of linear extensions is developed in
Section III. The class of BIT-modular posets is then defined.
The algorithmic and complexity issues are then discussed in
Section IV. We show, for instance, that the algorithm we
propose is polynomial for a large class of sparse posets,
including for example the N-sparse posets [9] (which are BIT-
modular) and the N-extensible posets [10] (which are “quasi”
BIT-modular, i.e. BIT-modular with few splits). To further
discuss the complexity of the counting algorithm, in Section V
we introduce a novel parameter, the BIT-width. We show that
the algorithm is O(nw+1) where w is the BIT-width of the
input poset.

Related work

The problem of counting linear extensions of a general poset
has been addressed from three perspectives in the literature:
(1) results on the complexity of the problem, (2) exact solving
solutions and (3) approximate solving. In this paper we are
only concerned with exact solutions to the problem and so do
not go into the details of approximate solutions

As a starting point, the complexity of the problem as
been proved ♯P -complete in [4] and also in the case of

https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0002-4206-3283

height-2 posets and incidence posets, in [11]. In the context
of parameterized complexity, the problem has been shown
intractable w.r.t. the treewidth of the comparability graph in
[12]. However the problem is also shown FPT w.r.t. to the
treewidth of the incomparability graph.

From the algorithmic perspectives, the problem is known
to be polynomial for trees and Series-Parallel posets [8] and
mobile posets [13]. Other results exist when some parameters
are bounded: a O(nk2

) algorithm for posets of modular-width1

k [7], an O(nt+3) algorithm for posets whose comparability
graph has treewidth t [14] or an O(w · nw) algorithm for
posets of width2w. An notable alternative counting approach
is proposed in [15] which is an enumeration algorithm for
linear extensions with constant delay.

II. TWO DECOMPOSITION SCHEMES FOR PARTIAL ORDERS

In this section, we discuss the informal notion of decom-
posability of partial orders, and provides two complementary
illustrations when considering the problem of counting linear
extensions. As a reminder, a poset (or partially ordered
set) P = (X,<P) is an element set X and an ordering
relation <P over X such that ≤P=<P ∪ idX is reflexive,
transitive and antisymmetric3. It is partial in that there may
be elements x, y in X , said incomparable, such that neither
x <P y nor y <P x. The size of Poset P , denoted by
|P |, is simply the cardinal of its carrier set |X|. Without
loss of generality, and to simplify some constructions, in this
paper we consider a poset P to be implicitly completed by
two distinguished elements ⊥ (bottom) and ⊤ (top) such
that ⊥ <P x <P ⊤ for any x ∈ X . When depicting
a poset P we omit the bottom and top elements. We also
distinguish the unit poset 1 = ({x}, {(⊥, x), (x,⊤), (⊥,⊤)})
for some element x. Given a poset P = (X,<P) and a
subset Y ⊆ X , we define the restriction of P to Y as
P [Y] = (Y, {(x, y) ∈ Y 2 | x <P y}). We also define the lifted
union of two posets P = (XP , <P) and Q = (XQ, <Q) as:
P⋓Q = (XP∪XQ, {(x, y) | x <P y or x <Q y}) provided P
and Q are compatible, i.e. there is no (x, y) such that x <P y
and y <Q x. Figure 1 shows four examples of posets using
the usual diagrammatic representation (relations are oriented
donward).

A linear extension λ = (X,≺λ) of a poset P is a total
ordering over X2 such that x <P y only if x ≺λ y. The
linear extensions count ♯ℓe(P) is the number of distinct linear
extensions of the poset P .

For a given problem – in our case the linear extensions count
– the objective is to be able to construct a solution through
the decomposition into smaller sub-problems. This requires to
fulfill two complementary requirements:

• first, to identify subclasses of posets such that the problem
becomes solvable, or at least “approachable”,

1The modular-width of a poset is the maximum degree of the prime vertices
in its modular decomposition.

2The width of a poset is the length of its longest antichain.
3In the context of linear extensions, it is common to take the point of view

of strict partial orders.

• second, be able to combine (the solutions for) such
subclasses so that the problem can be solved (or “ap-
proached”) for larger classes

In this section we focus on the first requirement. From this
point of view, the series-parallel (SP) posets play a significant
role since in this class many “hard” problem can be solved
in polynomial time, the linear extensions count being no
exception.

Definition 1 (Series-Parallel posets). Let P = (XP , <P) and
Q = (XQ, <Q) two posets, assuming XP ∩ XQ = {⊤,⊥},
i.e disjointness. The series and parallel4 operators are, respec-

tively:
[
P ⊙Q = (XP ∪XQ, <P ∪ <Q ∪(XP ×XQ))
P ∥ Q = (XP ∪XQ, <P ∪ <Q)

A (finite) poset is Series-Parallel (SP) if it can be obtained
uniquely by (finite) compositions of series or parallel operators
from singleton sets. ⌟

For example, the poset P1 of Figure 1 is SP, indeed:

P1 = {a}⊙(({b} ∥ {c})⊙ (({d} ⊙ {g}) ∥ {e}) ∥ {f})⊙{h}

For this class of posets, the linear extensions count can be
solved in polynomial time, using the following formulas.

Theorem 1 (cf. [8]). ♯ℓe(P ⊙Q) = ♯ℓe(P) · ♯ℓe(Q)

and le(P ∥ Q) =
(|P |+|Q|

|P |
)
· ♯ℓe(P) · ♯ℓe(Q)

Most importantly, the algorithmic folmulas decompose as
the SP poset do, which perfectly illustrates the notion of a
recursively decomposable class of posets.

We introduce in [2] an alternative – and complementary –
decomposition scheme based on (elementary) graph rewriting
principles. More precisely, this so called BITS-decomposition
works on the cover graph of posets.

Definition 2 (Transitive reduction and cover graph). Let
P = (X,<P) be a poset. The transitive reduction relation of P
is ≺P= {(x, y) ∈ X2 | x <P y and ∄u ∈ X such that x <P

u <P y}. The cover graph of P is the directed acyclic
(and intransitive) graph (DAG) with vertex set X and edge
relation ≺P . Following this terminology, we say that x covers
y whenever x ≺P y. ⌟

A graph rewriting system is based on two basic principles:
(1) patterns that identify the parts of the graph concerned by
the rewriting, and (2) effects explaining how the matched parts
should be transformed. In the case of the BITS-decomposition,
the patterns and effects are rather straightforward.

Definition 3 (BITS-decomposition). Let P = (X,<P) be a
poset. We denote by P [x ≺ y ≺ z] the poset P identifying a y
such that there is x, z and x covers y and y covers z, and there
is no element u in X distinct from x and z such that u ≺P y
or y ≺P u. We denote by P [x|y] the poset P in which at least
two elements x and y are incomparable, i.e. such that neither
x <P y nor y <P x. The BITS-decomposition of poset P

4The parallel construction P ∥ Q is of course the same as P ⋓Q, but the
former notation insists on the disjointness condition.

•a

•c•b

•d •e •f

•g
•h

•a

•c•b

•d •e •f

•g
•h

•a

•c•b

•d •e •f

•g
•h

•a

•c•b

•d •e •f

•g
•h

P1 P2 P3 P4

Fig. 1. Diagrammatic representation of four posets of size 8

consists in the repeated and non-deterministic application the
following rewrite rules:

BIT: P [x ≺ y ≺ z]⇒ P [X \ {y}]
SPLIT:P [x|y]⇒ P◁x≺y with P◁u≺v = P ⋓ (X, {(u, v)})

We denote by P ⇒∗ P ′ the decomposition of P into P ′ by
an arbitrary number of rewrites. ⌟

In graphical terms, the element y of pattern P [x ≺ y ≺ z]
corresponds to a vertex with input and output arity exactly 1
in the cover graph of P . In a similar way the nodes x, y in a
pattern P [x|y] corresponds to arbitrary vertices with no edges
between them.

Lemma 1. Given a poset P = (X,<P), then either there is
a y such that P [x ≺ y ≺ z] for some x, z ∈ X ; otherwise
there is a pair (x, y) ∈ X2 such that P [x|y]; or P = 1.

Proof. We proceed by contradiction. Suppose that there is
a poset P = (X,<P) such that none of the three patterns
hold. By convention there are at least two elements ⊥,⊤ such
that ⊥ <P ⊤. If there is no other element in the ordering
then trivially P = 1. So suppose there are n > 0 elements
y1, . . . , yn distinct from ⊥ and ⊤ with relations in <P (if only
wrt. ⊥ and ⊤). If n = 1 then by convention ⊥ <P y1 <P ⊤
thus P [⊥ ≺ y1 ≺ ⊤] applies. If n > 1 we make the
hypothesis that all elements are comparable, since otherwise
the pattern P [x|y] would apply. For any yi, 1 ≤ i ≤ n the
pattern P [x ≺ yi ≺ z] applies for some x, z ∈ X because
x ≺P yi ≺P z is a total order given the fact that the elements
cannot be incomparable.

Lemma 2. Given a poset P , then P ⇒∗
1.

Proof. By the previous lemma we know that the BITS-patterns
are always matching. Each time the BIT-rule applies an ele-
ment of the poset P is removed. Hence, if this is systematically
the only applicable rule ultimately the pattern 1 is reached. If
otherwise the SPLIT rule is matched, a new relation between
existing elements x, y is added. This rewrite disables pattern
P [x|y] since x and y are now comparable. Put in other terms,
all incomparable pairs can be made comparable by repeated
application of the SPLIT rules. Ultimately the poset shall only
contain chains, which can be systematically eliminated using
the BIT-rule.

The BITS rules can thus decompose arbitrary posets, how-
ever an interesting poset subclass naturally emerges from the
proposed rewriting system.

Definition 4. A poset is said BIT-decomposable iff it reduces
to 1 by the sole, and repeated, application of the BIT-rule.

As detailed in [2], together with the decomposition itself,
we can construct a multivariate integral formula for the linear
extensions count.

Definition 5. Let P = (X,<P) be a poset. We denote by
Ψ(P) a multivariate integral formula such that P 1−→ Ψ(P) is
inferred from the following rules:

P \ {y}
∫ α(z)

α(x)
Ψ.dy

−−−−−−−→ Ψ′

P [x ≺ y ≺ z] Ψ−→ Ψ′
BIT

1
Ψ−→ Ψ

END

P◁x≺y
Ψ−→ Ψ1 P◁y≺x

Ψ−→ Ψ2

P [x | y] Ψ−→ Ψ1 +Ψ2

SPLIT

with P \ {y} = P [X \ {y}] and P◁u≺v = P ⋓ (X, {(u, v)}) and α(⊥) = 0,

α(⊤) = 1, and α(x) = x otherwise. ⌟

Theorem 2. Let P be a poset. Then ♯ℓe(P) = |X|! ·Ψ(P).

Proof idea. The basic idea is to consider the embedding of
the poset P into a polytope O(P) = {v ∈ [0, 1]X | vx <
vy whenever x <P y} called the order polytope, exploiting
the fact that ♯ℓe(P) = |X|! · V ol(O(P)) (cf. [16]).

A detailed proof is given in [2].

In Figure 1, only the poset P2 is BIT-decomposable. The
nodes with input arities 1 are {b, e, f, g} that can be eliminated
in an arbitrary order. A possible decomposition is as follows:

Ψ(P2) =
∫ 1

0

∫ h

0

∫ h

a

∫ h

c

∫ h

d

∫ h

c

∫ d

a

∫ h

c
1

.df.db.de.dg.dd.dc.da.dh

This gives: ♯ℓe(P2) = 8! ·Ψ(P2) =
8!

1260
= 32.

III. MODULAR COUNTING OF LINEAR EXTENSIONS

The previous section presented two decomposable classes of
posets with very distinct and complementary characteristics. In
a way, the series-parallel (SP) operators are applied “from the
outside” by matching the largest possible series and parallel
substructures. The BIT-rule, in contrast, operate “from the
inside” by eliminating individual nodes. Moreover, the two
schemes are tightly connected to linear extensions counting
principles. It seems thus natural to (try to) integrate these
principles one way or another. This is the question we adress in
this section, and our starting point is the well-known principle
of modular decomposition (the historical reference appears
to be [5] but a useful, modern reference is [6]). While the
principle applies on graphs in general, in this paper we only
consider the case of posets.

Definition 6. Let P = (X,<P) a poset. A module of P is a
subset M of X such that for any x, x′ ∈M and y ∈ X \M ,
x <P y iff x′ <P y and y <P x iff y <P x′. A module
is trivial if it is a singleton. A module M is said strong if
for any other module N of P either N ⊂ M , or M ⊂ N or
M∩N = ∅. It is said maximally strong no other strong module
contains it. Given a partition of X into a set of modulesM, the
quotient order of P is P/M = (M, <M) such that M1 <M
M2, M1,M2 ∈M if and only if there exist x ∈M1, y ∈M2

and x <P y. ⌟

There is an exponential number of modular partitions of a
poset P , however there exists a canonical case.

Theorem 3 (cf. [5]). The partition of maximally strong
modules of a poset P is unique.

Definition 7 (Modular decomposition, cf. [6]).
The modular decomposition of a poset P = (X,<P)

consists in generating a maximal modular partition M of
P . Then, for each module M ∈ M, the maximal modular
partition of P [M] is generated, and so on. The decomposition
can be arranged in a tree such that each node is associated
to a maximal partition and arranged following the inclusion
relation. The leaf nodes are exactly the trivial modules {x}
for every x ∈ X , and the internal nodes correspond to non-
trivial (and thus decomposed) modules. An internal node can
be linear, complete or prime. A linear node denotes a series
construction, and is of the form L[t1, ..., tn] with the ti’s as
subtrees. A complete node denotes a parallel construction, and
is or the form C[t1, ..., tn]. Finally if the underlying poset
as an alternative structure, it is said prime and is of the
form PQ[t1, ..., tn] where the poset Q encodes the relationship
between the sub-components. The modular decomposition tree
t of P is such that PO(t) = P with:

PO(x) = ({x}, ∅)
PO(L[t1, ..., tn]) = PO(t1)⊙ ···⊙ PO(tn)
PO(C[t1, ..., tn]) = PO(t1) ∥ ··· ∥ PO(tn)
PO(PQ[t1, ..., tn]) = Q ⋓ (PO(t1) ∥ ··· ∥ PO(tn))

⌟

The modular decomposition of poset P2 from Figure 1 is
depicted in Figure 2 (left). The decomposition tree contains a
single prime node, and is otherwise SP. Efficient algorithms
exist for constructing such decomposition trees. The initial
step, for most algorithms, is to compute the directed acyclic
graph corresponding to the transitive closure of the input poset.
This step can be performed in O(n). Then quadratic and sub-
quadratic algorithms have been proposed in the literature to
construct the decomposition tree of a directed graph, cf.[6]
for details.

Proposition 1 (Series-parallel counting).
Let P = (X,<P) a series-parallel poset and t its

modular decomposition. Then ♯ℓe(P) = ♯ℓe(t) with: ♯ℓe(x) = 1, x ∈ X
♯ℓe(L[t1, ..., tn]) =

∏
i ♯ℓe(ti)

♯ℓe(C[t1, ..., tn]) =
(∑

i |ti|
|t1|,...,|tn|

)
·
∏

i ♯ℓe(ti)

Proof. This is a direct consequence of the recursive construc-
tion of Definition 7, applying the formulas of Theorem 1.

Evaluating the contribution of the prime nodes to the linear
extensions count, in a modular way, relies on the following
theorem.

Theorem 4 (Prime counting). Let P = (X,<P) be a partial
order with modular decomposition tree t such that its root is
a prime node labeled by Q i.e. P = PQ[t1, ..., tn]. Then:

♯ℓe(P) = ♯ℓe(Q ⋓
⋃
i

lin(PO(ti))) ·
∏
i

♯ℓe(PO(ti))

where lin(P) is an arbitrary total order on X , of size |P |. ⌟

In Figure 2 (right) is depicted the linearization of the poset
corresponding to the unique prime node in the decomposition
of P2 (from Figure 1).

Proof. Proof details are proposed in appendix. A similar result
and alternative proof is proposed in [7].

Corollary 1. ♯ℓe(PQ[t1, ..., tn]) =
(
∑

i |ti|)! ·Ψ(Q ∪
⋃

i lin(PO(ti))) ·
∏

i ♯ℓe(ti).

Proof. This is a direct consequence of applying Theorem 2 in
the context of prime counting.

Definition 8. A BIT-modular poset is such that all prime nodes
of its modular decomposition are BIT-decomposable.

In Figure 1, the posets P1, P2 and P3 are examples of BIT-
modular posets. Note that if P2 is fully BIT-decomposable,
this is not the case of P3. Comparatively, the poset P4 is not
BIT-modular because it requires at least an application of the
SPLIT-rule.

L

P•a •h
cb

d,g e,f

•c•b L C

•d •g •e •f

b c

d

g
e f

PO(t1) PO(t2)

Q

PO(t3) PO(t4)

Q ⋓
⋃

i PO(ti)

=⇒

b c

d g e f

lin(PO(t1)) lin(PO(t2))

Q

lin(PO(t3)) lin(PO(t4))

Q ⋓
⋃

i lin(PO(ti))

Fig. 2. Modular decomposition of poset P2 (left), and linearization of its prime node (right).

IV. ALGORITHMIC CONSIDERATIONS

From the mathematical results of the previous sections,
especially Proposition 1 and Theorem 4, we proposed Algo-
rithm 1 (below) to solve the linear extensions count.

Algorithm 1 Modular counting of linear extensions
function LECOUNT(t the decomposition tree of a poset P)

if t = x then return 1
else if t = L[t1, ..., tn] then return

∏
i LECOUNT(ti)

else if t = C[t1, ..., tn] then
return

(∑
i |ti|

|t1|,...,|tn|

)
·
∏

i LECOUNT(ti)

else t = PQ[t1, ..., tn]
P̊ ← Q ⋓

⋃
i lin(PO(ti))

return Ψ(P̊) · |P |! ·
∏

i LECOUNT(ti)

Theorem 5. Given the modular decomposition tree t of a
poset P , Algorithm 1 counts the number of linear extensions
of P .

Proof. This is a direct consequence of Proposition 1 and
Theorem 4.

•
x1

•
x2

•
x3

•
x4

· · ·

· · ·

•
x2n−1

•
x2n

•
m1

•
m2

•
m3

•
m4

•
m5

•
w1

•
w2

•
w3

•
w4

•
w5

•
oc1

•oc5

•
oc3

•
oc2

•
oc4

Fig. 3. Left to right: a n-Crown, a M , a W , and an OC5.

Obviously, Algorithm 1 has a super-exponential complex-
ity in the worst-case. If we consider, for example, the n-
Crown poset C = (X,<C) (depicted in Figure 3) where
X = {1, . . . , 2n} and the relations x1 >C x2 <C x3 >C . . .
and x1 >C x2n. The poset C is prime, and it is a simple
observation that at least n applications of SPLIT rules are
needed to decompose the order. Consequently, the associated
counting formula is a sum of 2n integral formulas.

As a counterpoint, we are looking for classes of posets for
which the algorithm becomes tractable. Series-parallel posets
is an obvious starting point.

Corollary 2. Given the modular decomposition tree t of a
Series-Parallel poset P , Algorithm 1 runs in O(|P |) arith-
metical operations complexity.

Proof. Considering the factorial numbers up to |P | precom-
puted, this is a direct consequence of the linear size of the
modular decomposition tree (see [6] for details).

Unsuprisingly, the complexity of the problem comes from
the prime modules. Thus, when the prime modules are con-
strained to live in a given set we can generalize the previous re-
sult. Various classes of so-called “quasi” Series-parallel posets
have been studied in the literature. An important example is
that of N-sparse posets, the order-theoretic counterpart of the
P4-reducible graphs. Similarly, the P4-extendible graphs have
their counterpart of the N-extendible partial orders.

Definition 9. from [9] and [17]. P4 is the path graph of length
3. A graph G is:

• P4-reducible if every vertex v of G belongs to at most
one induced P4

• P4-extendible if for any subset W of G, which contains
some P4, there exists at most one x (outside of W), such
that x forms another P4 with vertices of W .

A poset is said N-sparse (resp. N-extendible) if its compari-
bility graph is P4-reducible (resp. P4-extendible).

A useful characterization is based on the modular decompo-
sition perspective and an elementary poset construction named
the spider product, denoted by P ▷◁ A,B,C,D, which can be
described as follows:

B

P

A C

D
• When A,B,C,D are sin-

gletons, P ▷◁ A,B,C,D
is a simple spider product.

• When A,B,C,D are of
size 1 except one of size
2, P ▷◁ A,B,C,D is an
extended spider product.

(cf. e.g. [18] for a more formal definition)

Theorem 6 (from [18] and [19]). A poset is N-sparse if and
only if the prime vertices of its modular decomposition are
simple spider products P ▷◁ A,B,C,D where P is the tree
of a N-sparse poset.

A poset is N-extendible if and only if the prime vertices of
its modular decomposition are:

• M,W,OC5 whose leafs are singletons (see Figure 3),
• extended spider products P ▷◁ A,B,C,D where P is an

N-extended poset.

Theorem 7. The number of linear extensions of N -extendible
posets (thus, N -sparse posets too) can be computed in O(n)
arithmetical operations.

proof (sketch). First, let deals with the finite patterns M =
m1 > m2 < m3 > m4 < m5, W = w1 < w2 > w3 < w4 >
w5 and OC5 = (oc1 ∥ oc2) ⊙ (oc3 ∥ oc4) ∪ {oc1 < oc5 <
oc3}. Because they are of a small size, their number of linear
extensions can be precomputed : ♯ℓe(M) = ♯ℓe(W) = 16 and
♯ℓe(OC5) = 14. Then it remains to deal with the extended
spider product.

Let P = x1 < . . . < xk be a linear order of size k and Q
be the poset P ▷◁ A,B,C,D.

Actually, we can avoid the usage of BITS rules to count the
number of linear extensions of Q, as follows.

• there are k+2 linear extensions with D < B (the number
of possible places for A)

• there are k + 2 − 1 linear extensions with A > C (the
number of possible places for D minus one where D <
B, which is already counted by the previous case)

• there remain (k+1)(k+2) linear extensions of the other
kind.

At the end the total count is (k+2)2+(k+1). Note that these
computations are sufficient to deal with the case of N-sparse
posets.

Now using the same kind of enumeration, we can count the
number of linear extensions of the extended spider product i.e.
when one of the posets A,B,C or D is a chain or an antichain
of size 2:

• when A or D is an antichain of size 2:
♯ℓe(Q) = (k + 3)3 − 3 · (k + 3)

• when A or D is a chain of size 2:
♯ℓe(Q) = k+1

2 (k + 4)2 + 1
• when B or C is an antichain of size 2:

♯ℓe(Q) = 2
[
(k + 2)2 + (2k + 3)

]
• when B or C is a chain of size 2:

♯ℓe(Q) = (k + 2)2 + (2k + 3)

Modifying the else clause of Algorithm 1 with those
formulas, leads to the linear complexity.

Finally, the essence of this theorem is that the primes
modules are constrained to be finite and belonging to a finite
set. Thus, we can easily generalize the result to poset of
bounded modular-width.

Lemma 3. Let P = PQ[t1, ..., tk] be a prime poset of size n
where the ti are total orders. Then, there exists an order of
applications of the BITS rules such that the computation of
♯ℓe(P) is carried with O(nk) arithmetical operations.

Proof. Let us proceed by steps:

1) Reduce the lin(PO(ti)) components one by one :
• because lin(PO(ti)) is a linear order we can

apply the BIT rule until it is totally reduced : with
|ti| = ni and lin(PO(ti)) = x1< ... < xni

,
the BITS formula computed is5∫ α(⊤i)

α(⊥i)

∫ xni

α(⊥i)
. . .

∫ x2

α(⊥i)
1 dx11 . . . dxni−1 dxni

=
(α(⊤i)−α(⊥i))

ni

ni!
• Then, after reducing all the ti’s the formula is

exactly ψ =
∏i=k

i=1
(α(⊤i)−α(⊥i))

ni

ni!
i.e. an homoge-

neous polynomial of total degree n with k variables
2) Now, it remains to reduce Q:

a) if Q is not BIT-decomposable, then, at most a linear
number (in k) of SPLIT rules must be applied to
obtain a BIT-decomposable poset

b) Q is BIT-decomposable: then integrating the poly-
nomial ψ k times ends the process

The first step builds an homogeneous polynomial with,
at most, k variables of total degree n. By elementary enu-
meration, that polynomial has, at most,

(
n+k−1

k

)
= O(nk)

coefficients.
For the second step, if some SPLIT rules must be applied,

then the formula to integrate is a sum of at most k! homoge-
neous polynomials with k variables and degree at most n.6

It remains to compute the complexity of integrating k times
an homogeneous polynomial with k variables and total degree
n. The integration of a polynomial can be performed by
iterating over its coefficients and so, will double the number
of coefficients in the worst case. So, the overall operation will
cost O(2k nk) operations.

Because the k is constant, the total complexity of the whole
computations is O(nk).

Theorem 8. Let t be the modular decomposition tree of a
poset P . Let {Q1, ..., Qℓ} be the set of posets labeling the
prime vertices of t and k = maxi |Qi| (the size of the biggest
prime module of P , also called the modular-width). Then,
Algorithm 1 counts the number of linear extensions of P with
complexity O

(
nk+1

)
in terms of arithmetical operations.

Proof. The modular decomposition tree t has O(n) vertices
and so, a linear number of primes vertices of size k. By
Lemma 3, the number of linear extensions of such vertices
can be computed with O

(
nk

)
arithmetical operations. So the

overall complexity is O
(
nk+1

)
.

That result largely improves the one of [7] which was
O(nk2

).

V. THE BIT-WIDTH PARAMETER

For final section of the paper, we introduce a new parameter
that is tightly connected to the BITS-decomposition: the BIT-
width of a poset. Our starting point is the notion of a BIT-order,

5Here, α(⊥i) and α(⊤i) correspond to the bounds of PO(ti) in Q. For
example, if ∀x ∈ PO(ti), ∀y ∈ PO(tj), x < y in Q then α(⊥j) = xni

and α(⊤i) = y1.
6The worst case being unfolding a free order with the SPLIT rule.

i.e. a recording of the order in which the elements of a poset
are consumed through applications of the BIT-rule.

Definition 10. Let P be a BIT-decomposable poset. A BIT-
order β of decomposition of P is a sequence of applications of
the BIT-rule, identified by the removed elements, that reduces
P to 1.

To a BIT-order β we associate the sequence of polynomials
Polβ corresponding to the integrals computed along the
decomposition. ⌟

Rolling back into the example of poset P2 (for
which a counting formula is given after Theorem 2),
using the same BIT-order β = (f, b, e, g, d, c, a, h),
we obtain the following sequence of polynomials:
Polβ =

(h−c,(d−a)(h−c),(d−a)(h−c)2,(d−a)(h−c)2(h−d),

− 1
6 (3 ac2−2 c3+3 ah2−h3−3 (2 ac−c2)h)(c−h)2,

2
45 a6− 4

15 a5h+ 2
3 a4h2− 8

9 a3h3+ 2
3 a2h4− 4

15 ah5+ 2
45 h6, 2

315 h7, 1
1260)

Definition 11. Let ♯var : K[X1, ..., Xn] 7→ N be the function
associating to a polynomial its number of variables. The BIT-
width w(β) of a BIT-order β is the maximal number of
variables involved in a polynomial of β:

w(β) = max
pol∈Polβ

♯var(pol).

The BIT-width w(P) of a BIT-decomposable poset P is the
minimum of the BIT-width of its BIT-order:

w(P) = min
β a BIT-order of P

w(β) ⌟

Going back to the example, w(β) = 4 but one can check
that w(P2) = 2 which is realized (non uniquely) by the BIT-
order (b, a, d, g, e, f, c, h).

Theorem 9. Let P be a BIT-decomposable poset of size n
and BIT-width w and let β be one of its BIT-order of BIT-
width w. Then, the evaluation of the BIT-formula Ψ(P) has a
complexity of O(nw+1).

Proof. Actually, the theorem is just a refinement of Lemma 3.
It is sufficient to see that the polynomials involved in the
computations of Ψ(P) are homogeneous polynomials of total
degree at most n with at most w variables and thus are
composed of at most O(nw) monomials. So each integral costs
O(nw) to evaluate and there are n integrals.

Fig. 4. A caterpillar poset.

The application of this theorem in practice requires a
knowledge on how to build a BIT-order of minimal width,

which we think is a difficult task in general. Taking the
problem upside-down, it is interesting to investigate the poset
class of a fixed BIT-width. Interestingly, the posets of BIT-
width 1 are the well-known caterpillar posets (cf. Figure 4).

Definition 12. Let S a poset such that
Sx = ({x, s1 . . . , sℓ}, {∀i > 0, x < si ∨ x > si})
is a star poset of center x. Let A =
({a1,1, . . . ak1,1, . . . a1,m . . . akm,m}, <A) be a generalized
alternating poset such that: each (a1,i, . . . , aki,i) is a chain (1 ≤ i ≤ m)

∀i, aki,i <A a1,i+1 ∧ aki+1,i+1 >A a1,ki+2

∨aki,i >A a1,i+1 ∧ aki+1,i+1 <A a1,ki+2

A caterpillar poset is a generalized alternating poset A lifted

union a set of star posets (Si,j) i.e a main thread where each
element is the center of star poset. ⌟

Proposition 2. A poset has BIT-width 1 if and only if it is a
caterpillar poset.

Proof. First, a BIT-width 1 poset must be built by repeating the
following procedure, starting from P ← ({x}, <), thread←
x and, center ← x:

Choose an element u between center and thread
Let v be a fresh element, add v to P with u < v or v < u
if u = thread then center ← u
thread← v

Then, it is trivial to check that the obtained poset is a
caterpillar.

The other implication is proved by building an order of BIT-
width 1 for a caterpillar. Such order is obtained by starting
from a star at one of the extremities, and so decomposing
the star entirely before continuing on the next one along the
thread.

Corollary 3. The number of linear extensions of caterpillars
can be counted using O(n2) arithmetical operations.

Corollary 4. Let E be a finite set of prime posets. Let C be
the set of posets such that their prime vertices belong to E
or are caterpillars. Then, there exists an O(n2) to count the
linear extensions of posets in C.

Of course, the investigation of the BIT-width parameter
is incomplete and many questions remains unanswered. We
conclude the presentation with two problems left open for
future work, and conjectured difficult.

Conjecture 1. The following problem is NP-complete:
BIT-WIDTH
INPUT: a BIT-decomposable poset P , an integer k ≥ 3
OUTPUT: w(P) ≤ k

Conjecture 2. The following problem is ♯P -complete:
BIT-MODULAR-COUNT
INPUT: a BIT-modular poset P
OUTPUT: ♯ℓe(P)

REFERENCES

[1] K. Kangas, T. Hankala, T. M. Niinimäki, and M. Koivisto, “Counting
linear extensions of sparse posets,” in IJCAI 2016. IJCAI/AAAI Press,
2016.

[2] O. Bodini, M. Dien, A. Genitrini, and F. Peschanski, “Quantitative and
algorithmic aspects of barrier synchronization in concurrency,” Discret.
Math. Theor. Comput. Sci., vol. 22, no. 3, 2021. [Online]. Available:
https://doi.org/10.46298/dmtcs.5820

[3] M. Dien, A. Genitrini, and F. Peschanski, “A combinatorial study of
async/await processes,” in Theoretical Aspects of Computing - ICTAC
2022 - 19th International Colloquium, Tbilisi, Georgia, September 27-
29, 2022, Proceedings, ser. Lecture Notes in Computer Science, H. Seidl,
Z. Liu, and C. S. Pasareanu, Eds., vol. 13572. Springer, 2022, pp. 170–
187. [Online]. Available: https://doi.org/10.1007/978-3-031-17715-6 12

[4] G. Brightwell and P. Winkler, “Counting linear extensions is ♯p-
complete,” in Proceedings of the Twenty-Third Annual ACM Symposium
on Theory of Computing, ser. STOC ’91. New York, NY, USA:
Association for Computing Machinery, 1991, p. 175–181.

[5] T. Gallai, “Transitiv orientierbare graphen,” Acta Mathematica
Academiae Scientiarum Hungaricae, 1967.

[6] M. Habib and C. Paul, “A survey of the algorithmic aspects of modular
decomposition,” Computer Science Review, vol. 4, no. 1, pp. 41–59,
2010.

[7] M. Habib and R. H. Möhring, “On some complexity properties of n-
free posets and posets with bounded decomposition diameter,” Discrete
Mathematics, vol. 63, no. 2-3, pp. 157–182, 1987.

[8] R. H. Möhring, Computationally Tractable Classes of Ordered Sets, ser.
Institut für Ökonometrie und Operations Research: Report, 1987.

[9] A. von Arnim, R. Schrader, and Y. Wang, “The permutahedron of n-
sparse posets,” Mathematical Programming, vol. 75, no. 1, pp. 1–18,
1996.

[10] M. Peter and G. Wambach, “N-extendible posets, and how to minimize
total weighted completion time,” Discrete Applied Mathematics,
vol. 99, no. 1, pp. 157–167, 2000. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0166218X99001316

[11] S. Dittmer and I. Pak, “Counting linear extensions of restricted posets,”
Electron. J. Comb., vol. 27, no. 4, p. 4, 2020. [Online]. Available:
https://doi.org/10.37236/8552

[12] E. Eiben, R. Ganian, K. Kangas, and S. Ordyniak, “Counting linear
extensions: Parameterizations by treewidth,” Algorithmica, vol. 81, pp.
1657–1683, 2019.

[13] A. Garver, S. Grosser, J. P. Matherne, and A. Morales, “Counting linear
extensions of posets with determinants of hook lengths,” SIAM Journal
on Discrete Mathematics, vol. 35, no. 1, pp. 205–233, 2021.

[14] K. Kangas, M. Koivisto, and S. Salonen, “A faster tree-decomposition
based algorithm for counting linear extensions,” Algorithmica, vol. 82,
no. 8, pp. 2156–2173, 2020.

[15] G. Pruesse and F. Ruskey, “Generating linear extensions fast,” SIAM
Journal on Computing, vol. 23, no. 2, pp. 373–386, 1994.

[16] R. P. Stanley, “Two poset polytopes,” Discrete & Computational Geom-
etry, vol. 1, pp. 9–23, 1986.

[17] M. Peter and G. Wambach, “N-extendible posets, and how to minimize
total weighted completion time,” Discrete applied mathematics, vol. 99,
no. 1-3, pp. 157–167, 2000.

[18] B. Jamison and S. Olariu, “On a unique tree representation for p4-
extendible graphs,” Discrete Applied Mathematics, vol. 34, no. 1-3, pp.
151–164, 1991.

[19] ——, “A tree representation for p4-sparse graphs,” Discrete Applied
Mathematics, vol. 35, no. 2, pp. 115–129, 1992.

APPENDIX

Proof of Theorem 4 (Prime Counting). A proof for a similar
theorem can be found in [7]. We propose below a slightly
different proof in the context of the definitions given in the
present paper.

Given a linear extension λ ∈ ℓe(P) and an index i, 1 ≤
i ≤ n, we define the complement λ̄i (at index i) such that all
its elements from PO(ti) are replaced by a hole □i. More
formally:

∀k, 1 ≤ k ≤ |λ|, λ̄i(k) =
{

□i if λ(k) ∈ PO(ti)
λ(k) otherwise.

As an illustration we consider three linear extensions of the
prime poset of figure 2: λ = ⟨b, c, d, f, e, g⟩,
λ′ = ⟨c, e, b, d, g, f⟩ and λ′′ = ⟨c, f, b, d, g, e⟩.

We have, for example, λ̄3 = ⟨b, c,□3, f, e,□3⟩
and λ̄′3 = ⟨c, e, b,□3,□3, f⟩.
We now define the subset ℓe(P)|λ̄i

= {κ | κ ∈ ℓe(P) ∧
κ̄i = λ̄i}, i.e. the linear extensions of P that induce the same
holes as λi. By definition 6, since PO(ti) is a module, all the
total orders obtained by substituing the holes of λ̄i by a linear
extension of PO(ti) are linear extensions of P . This means
that the order relation of PO(ti) is disjoint from ℓe(P)|λ̄i

,
and thus ♯ℓe(P)|λ̄i

= ♯ℓe(PO(ti)).
We now consider all the complements of λ at once, forming

the set ℓe(P)|λ̄ =
⋂

i ℓe(P)|λ̄i
. Informally, this is the set of

linear extensions of P in which all the index holes are inserted.
We have, as an illustration, that:
λ̄ = ⟨□1,□2,□3,□4,□4,□3⟩,
λ̄′ = ⟨□2,□4,□1,□3,□3,□4⟩ and λ̄′′ = λ̄′.
This last example shows that permutations within a compo-

nent lin(PO(ti)) do not impact the complements, as expected.
Considering the fact that if i and j are distinct indices then
□i and □j are also distinct, we obtain that ♯ℓe(P)|λ̄ =∏n

i=1 ♯ℓe(PO(ti)).
It remains to count the number of such sets ℓe(P)|λ̄. For

this, we consider the partial order P̊ = Q ⋓
⋃

i lin(PO(ti)).
For each linear extension λ ∈ ℓe(P̊) we have ♯ℓe(P̊)

∣∣∣
λ̄
= 1.

Indeed, all the elements of λ are replaced by indexed holes,
depending on which set lin(PO(ti)) is the element from, and
this series of holes is of course unique, which means that if
λ ̸= λ′ then ℓe(P̊)

∣∣∣
λ̄
̸= ℓe(P̊)

∣∣∣
λ̄′

. This means that ℓe(P̊) can
be bijectively mapped to ℓe(P)|λ̄ by reading the indices of
holes in order, thus:

♯ℓe(P) =
∑
{♯X | X = ℓe(P)|λ̄}

= ♯ℓe(Q ⋓
⋃

i lin(PO(ti))) ·
∏

i ♯ℓe(PO(ti))

https://doi.org/10.46298/dmtcs.5820
https://doi.org/10.1007/978-3-031-17715-6_12
https://www.sciencedirect.com/science/article/pii/S0166218X99001316
https://www.sciencedirect.com/science/article/pii/S0166218X99001316
https://doi.org/10.37236/8552

	Introduction
	Two decomposition schemes for partial orders
	Modular counting of linear extensions
	Algorithmic considerations
	The BIT-width parameter
	References
	Appendix

