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RESUME

We design a fiber-based experimental setup to demonstrate an ideal four-wave mixing
process. After revealing the complete phase-space topology, we discuss the impact of the
second-order harmonics on the Hamiltoninan dymanics. Using a perturbative approach, we
discuss how invariants of the ideal motion experience changes in a real system; and develop
a modified four-wave mixing model.

MOTS-CLEFS : Four-wave mixing; nonlinear fiber optics, Hamiltoninan dyamics
1. INTRODUCTION

Interaction between waves in an optical fiber is governed by the nonlinear Schrodinger equation
(NLSE) which describes the impact of nonlinearity and dispersion on phases and amplitudes of the invol-
ved waves. If the system is limited to only three harmonics '} _ | y, exp(—in®,t +i@,) where w,, is the
modulation angular frequency, y,, and @, are spectral amplitude and phase of n-wave, the process can be
referred to as a four-wave mixing (FWM) in its degenerate case. The dynamics can be then described in
terms of reduced variables 1 = |wo|* /¥\_ | |wa|* and ¢ = @_| + @ — 2¢ by a set of analytical equa-

tions [[L]. In this contribution we discuss experimental demonstration of this ideal FWM and its extension
which takes into account impact of the second-order harmonics.

2. EXPERIMENTAL SETUP AND RESULTS

Experimental demonstration of the ideal FWM has been recently done developing a special type of
the setup (Figure[I|(a)) relying on iteration of initial conditions [2], where a phase-modulated continuous
wave laser is shaped according to initial conditions 1;,¢; and then propagates in a segment of fiber
(L=500m, y=1.7km™ ! W™, B, = —8 ps’km~!). Fiber parameters are carefully selected, so that
generation of higher-order harmonics is limited. The output parameters 1), 1,941 are then measured and
used as inputs for the next iteration of the input so one can reconstruct waves dynamics over tens of
kilometers while limiting the process to three-waves.

The experimental results of the phase-space plane (1) cos @, 1 sin¢) investigation are depicted in
Figure [I| (b1) where several initial conditions have sequentially propagated over L = 50 km (or £ =

L()/Po)_1 =12atk= a),n\/g,ﬁ—?o' = —2). We note a good agreement with the ideal FWM model as well
as an appearance of other typical characteristics of the process such as position of the separatrix and
existence of stationary solutions [2].

In addition, a feed-forward neural Network (NN) has been successfully trained [3] so that it can
reproduce the idealized dynamics, including experimental deviations from the model (Figure [I](b2)). We
also develop a method to control the FWM dynamics by introducing an abrupt power change, so we can
force a transition between two arbitrary states [4].

Finally, we discuss the impact of higher order harmonics on the dynamics. Indeed, in our experi-
mental configuration, generation of the second-order (and further) sidebands is limited but not excluded.
Thus, even if their level stays below 1% of the total spectral amplitude, the very existence of additional
nonlinear mixing processes impacts the system, especially at longer propagation distances. This leads to
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FIGURE 1 : (a) Experimental setup : CW - continuous wave, RF amp. - radiofrequency amplifier, PM - phase
modulator, EDFA - erbium-doped fiber amplifier, PC - polarization controller, OSA - optical spectrum analyzer,
PD - photodiode, SO - sampling oscilloscope, OBPF - optical band-pass filter, att. - attenuator. (b1) Experimental
FWM dynamics displayed on the phase-space plane (1) cos ¢, sin@). Black lines show the respective theoretical
dynamics. (b2) Dynamics reconstructed by a NN trained on the experimental data. (c) Showcase of the spiraling
dynamics over long propagation distance (§ = 30) and k¥ = —2 : numerical simulation - black, updated model -
colored dots. (d) Experimental recording of the asymmetry variation (colored dots) is compared to numerical data
(black solid line) and ideal four-wave mixing (black dashed line). The parameters are : kK = —1.2, 09 = 0.15,19 =
0.75,¢0 = 0.

deviation of the dynamics from the ideal closed orbits as depicted in Figure[T](c) (black lines - numerical
simulations). To take into account the existence of other photon nonlinear scattering processes of other
routes of photons’ exchange, we consider the development of the second-order sidebands in the pertur-
bative approximation which allows us to develop a modified FWM model, which still retains the three
photons (hence, three equations) framework (Figure |I| (c), dots - updated model). That allows to attribute
the spiraling behavior to changes in the Hamiltonian.

Another invariant in the ideal model that our modified theory can describe is the asymmetry para-
meter o = |w_;|* — |y |>. We show that in the experiment o is no longer conserved but decays towards
zero (Figure[T] (d)). This behavior can be again attributed to impact of the higher-order sidebands on the
wave-mixing dynamics [3].
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