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Introduction Experimental context
2¢  Slow Vehicles in free flow conditions are affecting the global driving safety A fu"y Simulated fra mework

with required maneuvers for other drivers, like « mandatory lane changes ». .
We assume that such behaviour should affect the natural spatial distribution ¢ SUMO [1] is implemented with the default lane-
of lane-changes and be featued by a recognizable pattern. change model [2] and a Krauss [1] car-following a
model calibrated thanks to a Genetic Algorithm.
2 Main contributions : % TraCl is used to dynamically collect data on = o
=« Introduction of a lane change detection process with low Connected Vehicles with a refreshment period of . N
requirements regarding the input data, only requirement: the 10 Hz. g = o
Speed and heading time-series of Connected Vehicles (CVS) TABLE 1: Default and calibrated values of selected parameters E o ;Z:
natively left by CVs through Cooperative Awareness Messages. R AN MR
% Introduction of a slow vehicle detection process based on the e S e e
weighted local density of lane changes along a highway. - o oo c .

Methodology

Space-Time diagram on the right lane = - . :
P g g WA Connected Vehicle  smmms==  Individual trajectory of a Slow-vehicle  mmmms=====Individual trajectory with lane-changes s Individual trajectory without lane-change
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on modifications of CV’s energy
computed by Wavelet Tranform

2 For a fixed time-window (60s long, updated every 30s),
¢ For any Connected Vehicles (CVs),
:¢  The speed and steering angle profiles of Connected Vehicles (CVs)
are collected and feed a Wavelet Transform (WT) analysis.
¢  The energy resulting from the WT of speed and steering angle is
combined into a global indicator Eslobal,

\V’b, Eglobal( b) _ Cspeed v Espeed ( b) 1 Cangle > Eangle ( b)

2¢  The global indicator E&°bal js compared to a threshold, when it is
larger than 2.5, a lane-change is detected.
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S ow ve I C es ete Ctl O n Ot LRGN eghiedcatiertion > Apply LR with weighted samples
if WLROuput.AdjustedR? > 0.9 then
..’E . . > Check that WLR fit properly
< % Preliminary identified lane-changes are discriminated by ot Ot s Collet sped estimation
.,0’ 1 . . . . . . . . . SlowVehiclelnitialPosition <— WLROuput.InterceptCoefficient
S computing two weights aiming at reinforcing the distinction > Collct il posiion esimation
’ between patterns related to slow-vehicles and other lane Frrors  WLROuput sl

> Collect residuals errors from WLR

\ 4

MedError - median(Errors)
12000 __ iue'Trajector.y ! C h a n ges > Calculate the median residual error
== Predicted Trajectory < . SubsetScatterPlot «— WeightedScatterPlot [ Errors < MedError |
10000 . ) ;( A we |g ht re I ate d to t h e adavera ge WT ene rgy T LR(SUbsetSthtCrPi)tS)elect only points with error lower than the median error
E o) o 2¢ A weight related to the local density of lane-changes Slow\ehicleSpeed - LROWutSlopeCoeffcient T T Reeression o fhesubse
2 . ° ~ . . . . . . . > Collect speed estimation
'E 000 >“\< A (CO m b N ah on Of) G adussSiadn (We |g hte d ) I_l near Reg Fression IS SlowVehiclelnitialPosition +— LROuput.InterceptCoefficient P e
o 400 . . . ] > Collect initial position estimation
then applied to approximate the potential trajectory of the o Speed < 60 kb
2000 4 I dlow Ve 1c.e ed < m/h then
slow vehicle and threshold-based criterion are set up to ,J >° oo

100 200 300 400 500 600 SlowVehicleStatus « False

Time (s) validate the existence of a slow vehicle. end if

return {SlowVehicleStatus, Slow VehicleSpeed, SlowVehiclelnitialPosition

Main results

Variation of failure rate and MAE of estimated speed for (a) slow

= - . | .
Expe rl m e nta I DeSIg n 100.\;ehlcle speed of 30km/h; (b) slowlx)ehlcle speed of 50km/h

)2« Parameters under consideration ; ; e g | HON RO ROX
2¢  Volume-to-Capacity ratio: 10%, 20%, 30% i perr A\ Toen | ko I L
2t CVs Market Penetration Rate: 10%, 20%, 30%, 50% s - £ 1 I £ I I I I
2 Speed of the slow vehicle: 30 kph, 50 kph ’s\ N - o o 2ox
%¢ Any unique combination of parameters was computed R (j) - (:;') 3
with 30 random seeds for stochasticity purpose (afm Y MPR 4 . ov_meR (4 ;- S
el B e |5
2t Key Performance Indicators % cno pai il I \ e f I I I 5 I I I I
2¢  Failure Rate . o) S o ) o e o
):¢  Mean Absolute Error (MAE) of Estimated Speed of Slow
Vehicle e ———t Variation of time margin over different market penetration of CV and flow levels for (a) slow vehicle speed of 30km/h and
~ . . . 10 20 30 40 >0 10 20 30 40 50 level 1 regression; (b) slow vehicle speed of 30km/h and level 2 regression; (c) slow vehicle speed of 50km/h and level 1
2¢  Time Margin for Warning (b) VPR (7 PR () regression; (d) slow vehicle speed of 50km/h and level 2 regression

Conclusions and Highights Bibliography

% The performance of the slow vehicle detection algorithm stabilizes at a market penetration of 30% WhiCh [ fm o e e s vt oo e

emphasizes that a high market penetration might not be necessary for deployment ; (ITS0), IEEE, 2013, pp. 25752580, - oo epenaton Systems
= Globally, the MAE is below 6km/h and 8km/h for slow vehicle speeds of 30km/h and 50km/h respectively ; 2] Erdmann, J., SUMO’s lane-changing model. In Modeling Mobilty with Open Data,

Springer, 2015, pp. 105-123.

2« Because with a slow vehicle driving at 50 kph, its speed is closer to the flow’s speed, the failure rate is higher ; 8 Zhong, 2. S. 1 A, D. Ghen. an J. Laval, Applications of wavelet tansform fo
= Mostly, the 2-levels regression outperforms the 1-level in terms of reduced failure rates and estimated errors. Tansportation Rossarch Part B: Methedalogioa, Vol. 45, No. 2, 2011, pp. 572-384.



