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Sparsity andL1-optimal control for linear control systems

Pierre Cavaré a, Marc Jungers a, Jérôme Lohéac a

aUniversité de Lorraine, CNRS, CRAN, F-54000 Nancy, France

Abstract

For linear time-invariant systems, we take an interest in sparse controls, i.e., those whose support (or L0-norm) is of minimal
Lebesgue measure. We propose to extend this research to Radon measures and, in particular, to controls presenting Dirac
impulses. Then, we can find a minimizer which is impulsive (and so with a null support) and prove that there is no gap
when we extend the problem from L1-controls to Radon measures. To refine our research, this reasoning leads us to study the
minimization problems for L1 and measure norms. We prove that impulsive controls are still pertinent for these problems:
once again, we can find a minimizer and prove that there is no gap. In addition to the existence of a solution, we show that, by
extending the research to Radon measures, we can find a solution of L0 and L1-minimization problems in the form of a finite
linear combination of Dirac impulses, and we give an expression of the maximal number of these impulses. We also propose
an algorithm in order to compute an impulsive solution of the measure norm minimization problem.

Key words: Impulsive control, optimal control, sparsity.

1 Introduction

Context and problem statement. The investiga-
tion of the existence, uniqueness and determination of
optimal control, i.e., a control which respects equations
and conditions whileminimizing a certain cost, goes back
several decades (see e.g. [5,16,17,26]). In the same time,
consideration of discontinuous controls, measure con-
trols or impulsive controls, was made possible through
the work of A. Bressan, F. Rampazzo or M. Motta (see
e.g. [3,7,8,22,28]), among others. Thus, it seems natu-
ral that several impulsive optimal control problems were
studied in the last few years (see e.g. [21,27,20,4,12]).
A natural cost to minimize is the duration of action of
the control, which mathematically corresponds to the
Lebesgue measure of its support or its L0-norm. A con-
trol minimizing this criterion is said to be sparse ormax-
imum hands-off (see e.g [25]). This problem is not con-
vex and, in [24], M. Nagahara looks for conditions to
have an equivalence, for linear time-invariant (LTI) sys-
tems, between the problem of L0-minimization and the
one of L1-minimization which is convex and so easier
to solve. By this method, he obtains, under some con-
ditions (including a bounded condition on the control),
optimal controls in a form called bang-off-bang, i.e., con-
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trols switching between 0 and its bounds (see also the
recent paper [1]). More generally, still for LTI systems
and under a bounded condition, we can find the study
of the Lp-minimization problem for p ∈ [0, 1] in [14].
Controls considered in these papers are in the space L1

and we would like to extend the research to the Radon
measures set and, in particular, consider impulsive con-
trols. More precisely, we take an interest in controls of
purely impulsive form (i.e., which can be written as a
linear combination of Dirac impulses). The L0-norm of
a such control is equal to 0, and we could directly have
a solution of the L0-minimization problem.

Main results. We consider the problem of state
transfer for linear time-invariant LTI systems whose
plant model is given by{

ẋ(t) = Ax(t) +Bu(t),

x(0) = x0, x(T ) = x1,
(S)

where for all t ∈ [0, T ], x(t) ∈ Rn describes the state
and u(t) ∈ L1([0, T ],Rm) = L1([0, T ])m the control (or
input). The final time T > 0, the initial state x0 ∈ Rn

and the target x1 ∈ Rn are given, and A ∈ Rn×n and
B ∈ Rn×m are (constant) matrices.
We say that a control is feasible if it steers the solution
of the system from x0 to x1 in time T . In this paper,
we prove that if there exist feasible L1-controls, then
there exist feasible impulsive controls. More than that,



we can guarantee that there is no gap when we extend
the L0-minimization problem from the space L1 to the
set of Radon measures (Proposition 1). The construc-
tion of a sequence of feasible L1-controls approaching a
given feasible impulsive control leads us to consider the
L1-minimization problem to refine our research among
all these feasible impulsive controls. This new problem is
directly linked to the one of measure normminimization,
which always has an impulsive solution whose number
of impulses can be bounded (Theorem 5). Once again,
we can prove that there is no gap between these two
problems (Proposition 7). Thanks to the Pontryagin’s
Maximum Principle (PMP), we can find sufficient condi-
tions ensuring that anyminimizer is necessarily of purely
impulsive form (Theorem 17 and Corollary 18) and we
propose, at the end of this paper, an algorithm based
on coordinate descent method [19] and Bregman itera-
tions [10] to compute an impulsive solution.

Organization of the paper. We give some notations
used in this paper in Section 2. Section 3 refers to the ex-
tension of problem (P0) from the L1-space to the Radon
measures set. In order to refine our research, we try to
adapt this reasoning to the L1-minimization problem in
Section 4. In Section 5, thanks to a change of variable,
we can use the (PMP) on the problem of measure norm
minimization. Section 6 describes all the possible situ-
ations when n = 2 and m = 1. We build, in Section 7,
an algorithm to approach an impulsive solution. Finally,
Section 8 is dedicated to the conclusion.

2 Notations and preliminaries

To have controls to consider in our minimization prob-
lems, we assume that there is at least one feasible L1-
control (Assumption 1).

Assumption 1 x1 is reachable from x0 in time T
through a control u ∈ L1([0, T ])m.

Among all feasible controls u (i.e., we can reach x1 from
x0 in time T with u), we take an interest in those whose
support (or L0-norm) is minimal. We call this prob-
lem (P0). If u ∈ L1([0, T ])m is feasible, then we must
have

x1 = eTAx0 +

∫ T

0

e(T−τ)ABu(τ)dτ.

We set y = x1 − eTAx0 and we recall that for u ∈
L1([0, T ])m, the input-to-state mapping is defined by

ΦT : u ∈ L1([0, T ])m 7→
∫ T

0

e(T−τ)ABu(τ)dτ ∈ Rn.

(1)
Thus, a control u is feasible if and only if ΦT (u) = y and
Assumption 1 means there exists u ∈ L1([0, T ])m such
that ΦT (u) = y.

Before formulating problem (P0), we give some notations
used in this paper. For i ∈ J1,mK, we call bi the i-th col-
umn of thematrixB.C⊤ denotes the transpose of a given
matrix C. Moreover, we use different norms either for el-
ements of Rm or for functions of L1. Here we resume the
different writings adopted. For u = (u1 u2 . . . um)

⊤ ∈
Rm, we consider the norms |u|1 =

∑m
i=1 |ui| and |u|∞ =

maxi∈J1,mK |ui|. For u ∈ L1([0, T ])m, we consider the L0-
norm (which is indeed not a norm because it does not
satisfy the homogeneity condition) defined by

∥u∥L0 = µL {t ∈ [0, T ] : u(t) ̸= 0} = µL {supp(u)} ,

where µL denotes the Lebesgue measure. We also con-
sider the L1 and the L∞ norms given by ∥u∥L1 =∫ T

0
|u(t)|1 dt and ∥u∥L∞ = ess supt∈[0,T ] |u(t)|∞.

Now, we can formulate the problem (P0)

inf ∥u∥L0

u ∈ L1([0, T ])m and ΦT (u) = y.
(P0)

In other words, we want to minimize the support of the
control so it seems natural to consider impulsive controls
whose support is null.
For that, we considerM([0, T ]) the set of finite Radon
measures on [0, T ] endowed with the norm

∥u∥M = sup
φ∈C0([0,T ],R)

∥φ∥L∞≤1

∫
[0,T ]

φ(t)du(t).

We can extend these notations to the multi-input case
by consideringM([0, T ])m the set of finite Radon mea-
sures on [0, T ] with values in Rm (i.e., such that each
component has to be inM([0, T ])). Then, the measure
norm is obtained by summing the measure norm of each
component.
Here, we take an interest in impulsive controls, i.e., com-
posed of linear combinations of finite number of Dirac
impulses. Let u be such a control. Then, there exist
N ∈ N∗, (αi)i∈J1,NK ∈ Rm and (ti)i∈J1,NK ∈ [0, T ] such

that u =
∑N

i=1 αiδti ∈M([0, T ])m. Thus, we have

∥u∥M =

N∑
i=1

|αi|1 =

N∑
i=1

m∑
k=1

|αi,k| ,

where αi,k is the k-th component of αi ∈ Rm.
By definition, a control u ∈ L1([0, T ])m has its compo-
nents in L1([0, T ]) which can be canonically injected in
M([0, T ]) via

L1([0, T ]) → M([0, T ])

u 7→

(
φ ∈ C0([0, T ],R) 7→

∫ T

0

φ(t)u(t)dt

)
.
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Thus, we can canonically inject L1([0, T ])m in
M([0, T ])m and extend the input-to-state mapping (1)
toM([0, T ])m (as in [21])

ΦT : u ∈M([0, T ])m 7→
∫
[0,T ]

e(T−τ)ABdu(τ) ∈ Rn.

We still have that u ∈M([0, T ])m is a feasible control if
and only if ΦT (u) = y.

3 Existence of sparse control

The objective of this section is to prove Proposition 1
which ensures that, under Assumption 1, we have

0 = inf ∥u∥L0

u ∈ L1([0, T ])m and ΦT (u) = y,

and, in addition to the existence of a feasible impulsive
control, there is no gap when we extend the problem (P0)
from L1([0, T ])m toM([0, T ])m.

Proposition 1 If x0, x1 ∈ Rn and T > 0 satisfy As-
sumption 1, then for every nonempty set T ⊂ [0, T ]
and every ε > 0, there exists an impulsive control u∗ ∈
M([0, T ]), which steers x0 to x1 in time T and such that
dist(T , supp(u∗)) < ε.
Furthermore, for every feasible impulsive control u∗ ∈
M([0, T ])m, there exists a sequence of feasible controls
(uk)k∈N ∈ L1([0, T ])m such that

lim
k→∞

∥uk∥L0 = 0 and lim
k→∞

∥uk∥L1 = ∥u∗∥M .

We prove this proposition by constructing an appropri-
ate sequence (uk)k∈N which vaguely converges to u∗.
We recall the definition of the vague convergence below
(see [6, Definition 30.1] or [11, Section 1.9] for more de-
tails).

Definition 2 (Vague (or weak-*) convergence) If
m = 1, saying that the sequence (uk)k∈N ∈ M([0, T ])
converges vaguely to u∗ ∈ M([0, T ]) means that for all
f continuous from [0, T ] to R,

lim
k→∞

∫
[0,T ]

fduk =

∫
[0,T ]

fdu∗.

If m ≥ 1, the sequence (uk)k∈N ∈ M([0, T ])m converges
vaguely to u∗ ∈M([0, T ])m if the sequence of each com-
ponent of (uk)k∈N converges vaguely to the corresponding

component of u∗. We note uk
∗
⇀ u∗.

Remark 3 More generally, the vague convergence
is a way of convergence defined on dual sets. Here,

M([0, T ])m is the dual space of the set of continuous
functions on [0, T ] endowed with the L∞-norm and each
element of L1([0, T ])m is considered as an element of
M([0, T ])m. By using classical results on vaguely con-
vergence and compactness (see e.g. [6,11]), we have:

• if (uk)k∈N ∈ M([0, T ])m is such that uk
∗
⇀ u∗ ∈

M([0, T ])m, then ∥u∗∥M ≤ lim infk→∞ ∥uk∥M;

• if (uk)k∈N is a bounded sequence of M([0, T ])m

(i.e., supk∈N ∥uk∥M < ∞), then there exist a sub-
sequence (uki) and u∗ ∈ M([0, T ])m such that

uki

∗
⇀ u∗.

To prove Proposition 1, we need the following lemma,
which will allow us to build the impulsive control u∗. We
callR the set of all possible final states with a L1-control
by starting from x0 = 0:

R =

{∫ T

0

e(T−τ)ABu(τ)dτ : u ∈ L1([0, T ])m

}
.

We can notice that R does not depend on T since we do
not impose a bound on control u.

Lemma 4 By noting r = rkΦT , where rk(·) denotes the
rank, for almost every t1, . . . , tr ∈ [0, T ], we have

Span
{
e(T−ti)ABv : i ∈ J1, rK, v ∈ Rm

}
= R.

PROOF. By reasoning as in the proof of the Kalman
condition in [29, Theorem 2.2.1], we have

Span
{
AiBv : i ∈ J0, n− 1K, v ∈ Rm

}
= R.

Thus, by using the Cayley-Hamilton theorem, we di-
rectly deduce that

Span
{
e(T−ti)ABv : i ∈ J1, rK, v ∈ Rm

}
⊂ R.

for all t1, . . . , tr ∈ [0, T ].

By reasoning as in [9, Proof of Theorem 7], there exists
τ1, . . . , τr ∈ [0, T ] and v1, . . . , vr ∈ Rm such that

dimSpan
{
e(T−ti)ABv : i ∈ J1, rK, v ∈ Rm

}
≤ dimSpan

{
e(T−τi)ABvi : i ∈ J1, rK

}
.

and we set S = Span
{
e(T−τi)ABvi : i ∈ J1, rK

}
. Then,

for every t ∈ [0, T ] and every v ∈ Rm, we have
e(T−t)ABv ∈ S. If not, there would exist t0 ∈ [0, T ]
and v0 ∈ Rm such that e(T−t0)ABv0 ̸∈ S. Thus, vectors
e(T−τi)ABvi (for i ∈ J0, rK) are r + 1 elements of R
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whose dimension is r so they are linearly dependent,
and we have a contradiction with the maximality of
τ1, . . . , τr and v1, . . . , vr. From this observation, we
easily deduce that R = RanΦT ⊂ S.
We have thus shown that there exist
τ1, . . . , τr ∈ [0, T ] and v1, . . . , vr ∈ Rm such that
Span

{
e(T−τi)ABvi : i ∈ J1, rK

}
= R. In particular,

there exist P ∈ Rr×n such that

det
(
P
(
e(T−τ1)ABv1, . . . , e

(T−τr)ABvr

))
̸= 0.

Thus, the analytic application (t1, . . . , tr) 7→
det
(
P
(
e(T−t1)ABv1, . . . , e

(T−tr)ABvr
))

is non-
trivial. Hence, its zeros set is of null measure,
this ensures that for almost every (t1, . . . , tr),
dimSpan

{
e(T−ti)ABvi : i ∈ J1, rK

}
= r, which con-

cludes this proof. 2

PROOF. (Proposition 1) Let T ⊂ [0, T ] and ε > 0.
By assumption, y = x1 − eTAx0 ∈ R and, thanks to
Lemma 4, there exist t1, . . . , tr ∈ [0, T ] and α1, . . . , αr ∈
Rm such that mini∈J1,rK dist(ti, T ) < ε and

y =

r∑
i=1

e(T−ti)ABαi =

∫
[0,T ]

e(T−t)ABdu∗(t),

with u∗ =
∑r

i=1 αiδti ∈M([0, T ])m.
To prove the second part of the result, the idea to build
the sequence (uk)k∈N is to consider a sequence (vk)k∈N
based on u∗ and, in order to make this sequence feasible,
to add a sequence of corrective controls (wk)k∈N.
For every k ∈ N∗, we consider Ik =

[
− 1

k ,
1
k

]
and, for all

t ∈ [0, T ],

vk(t) =

r∑
i=1

αi

µL ((Ik + ti) ∩ [0, T ])
χIk+ti(t),

where χI is the characteristic function of the set I. Thus,
vk describes, around each impulse αiδti , a rectangle with
an area equal to αi. When k → ∞, the height of these
rectangles increases while the base decreases. Based on

these considerations, it is easy to show that vk
∗
⇀ u∗

when k →∞.
However, the controls vk may not steer x0 to x1 in time T
and, for all k ∈ N, we define yk = ΦT (vk). The vague
convergence of vk to u∗ ensures that,

lim
k→∞

yk = lim
k→∞

ΦT (vk) = ΦT (u
∗) = y.

Thus, we want to build a sequence of controls wk ∈
L1([0, T ])m such that the sequence (uk)k∈N defined by
uk = vk + wk respects the requested properties.
For all θ > 0, we consider the sets

Rθ =
{
Φθ(f) : f ∈ L1([0, θ])m s.t. ∥f∥L∞ ≤ 1

}
.

These sets constitute an increasing sequence of compact
sets containing 0 in their interior. Since limk→∞ yk =
y, for every large enough k, the time optimal control
problem:

θk = min θ

Φθ(f) = y − yk,
f ∈ L∞([0, θ],Rm) and ∥f∥L∞ ≤ 1,

admits a solution. In other words, θk is the index of
the smallest set Rθ containing y − yk. The mapping
y − yk 7→ θk is continuous in 0 and so limk→∞ θk = 0.
We note fk a control associated to θk, i.e., such that
fk ∈ L1([0, θk],Rm) and Φθk(fk) = y − yk. We set,

wk(t) =

{
0 if t ∈ [0, T − θk),
fk(t− (T − θk)) if t ∈ [T − θk, T ].

We directly have that wk
∗
⇀ 0 when k → ∞. Then, for

all k ∈ N, we have vk + wk ∈ L1([0, T ])m and

ΦT (vk + wk) =

∫ T

0

e(T−t)AB(vk(t) + wk(t))dt

= ΦT (vk) +

∫ θk

0

e(θk−s)ABfk(s)ds

= ΦT (vk) + Φθk(fk) = y,

which proves that vk +wk is feasible. When k →∞, we

have, vk
∗
⇀ u∗ and wk

∗
⇀ 0 so vk + wk

∗
⇀ u∗. 2

Thus, if x1 is reachable from x0 in time T with L1-
controls, then we can always find impulsive feasible con-
trols and so solutions of the L0-minimization problem.
Proposition 1 seems to be showing a link between the
L1-norm and the measure norm: let us use this new cri-
terion to refine our research.

4 L1-optimal controls

4.1 Presentation of problems (P1) and (PM)

We decide to take an interest in the L1-minimization,
and we consider the problem

inf ∥u∥L1 =

∫ T

0

|u(t)|1 dt

u ∈ L1([0, T ])m and ΦT (u) = y.

(P1)

To find solutions, this problem is generally studied with
a condition of the type ∥u∥L∞ ≤ M on the control
(see e.g. [1]). In [14,24], authors proved the equivalence
between (P0) and (P1) under some conditions:
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• for the single-input case, it is shown in [24], that
this equivalence holds if (A,B) is controllable and
A is non-singular;

• for the multi-input case, we can find in [14] that if

A
(
bj Abj . . . A

n−1bj

)
is non-singular for all j ∈

J1,mK, then the equivalence holds.

Let assume that we are in one of these cases and con-
sider a feasible control v ∈ L∞([0, T ])m and u∗M a
solution of (P0) and (P1), with the additional constraint
∥u∗M∥L∞ ≤ M . It is in particular shown in [14,24] that
u∗M is of bang-off-bang structure. We then have, for
M ≥ ∥v∥L∞ ,

M ∥u∗M∥L0 = ∥u∗M∥L1 ≤ ∥v∥L1 .

Thus, ∥u∗M∥L0 → 0 whenM →∞ (i.e., when we remove
the constraint) which leads us to consider impulsive con-
trols.
Let us prove that we can extend the problem (P1) to
M([0, T ])m. We consider the problem,

min ∥u∥M
u ∈M([0, T ])m and ΦT (u) = y.

(PM)

We can notice that this is aminimum and not an infimum
because the limit is reached. Indeed, if we set

ℓ = inf ∥u∥M
u ∈M([0, T ])m and ΦT (u) = y,

and consider a sequence (uk)k∈N of feasible controls
such that limk→∞ ∥uk∥M = ℓ, then (uk)k∈N is a
bounded sequence of finite Radon measures and Re-
mark 3 ensures that there exist a subsequence (uki)i∈N
and u∗ ∈ M([0, T ])m such that uki

∗
⇀ u∗. From that,

we can deduce that:
• ∥u∗∥M ≤ lim infki→∞ ∥uki

∥ = ℓ (see Remark 3);

• limki→∞ ΦT (uki
) = ΦT (u

∗) ∈ R so u∗ is feasible
and ∥u∗∥M ≥ ℓ.

Finally, ∥u∗∥M = ℓ and, under Assumption 1, prob-
lem (PM) always has a minimizer.
The canonical injection of L1([0, T ])m intoM([0, T ])m

directly ensures that,

inf ∥u∥L1

u ∈ L1([0, T ])m,

ΦT (u) = y,

≥ min ∥u∥M
u ∈M([0, T ])m,

ΦT (u) = y.

(2)

As for (P0), we would like to check whether a gap occurs
or not when we extend (P1) to (PM). In other words, is
relation (2) an equality? If (PM) has an impulsive solu-
tion, then we can reason as in the proof of Proposition 1
to answer this question.

4.2 Existence of impulsive solutions of (PM)

The following theorem ensures that (PM) can be solved
with an impulsive control and allows us to bound the
number of Dirac impulses of this solution.

Theorem 5 Assume that x0, x1 ∈ Rn and T > 0 satisfy
Assumption 1. The minimization problem (PM) has a
solution which is a linear combination of at most

∑m
i=1 ri

Dirac impulses, where ri is the rank of the Kalmanmatrix
of the pair (A, bi).

To prove this theorem, we first consider the single-input
case (m = 1) then we break down the problem (PM)
into m sub-problems.

4.2.1 Single-input case (m = 1)

When m = 1, the idea is to consider y = x1 − eTAx0 as
an element of the convex hull of the set C defined by

C =
{
e(T−t)AB : t ∈ [0, T ]

}
∪
{
−e(T−t)AB : t ∈ [0, T ]

}
, (3)

and to use the following lemma.

Lemma 6 Let S be a subset of a normed vector space of
dimension d and y ∈ Conv(S) (where Conv(·) is the con-
vex hull). There exist (αi)i∈J1,dK ∈ R+ and (xi)i∈J1,dK ∈ S
such that y =

∑d
i=1 αixi with

∑d
i=1 αi ≤ 1.

PROOF. The Caratheodory theorem [18, Theo-
rem 4.3.24] ensures that there are (βi)i∈J1,d+1K ∈ R+

and (xi)i∈J1,d+1K ∈ S such that y =
∑d+1

i=1 βixi with∑d+1
i=1 βi ≤ 1. We set β0 = 1−

∑d+1
i=1 βi ≥ 0 and we con-

sider the following system (where (γi)i∈J0,d+1K are the
unknowns)

d+1∑
i=1

γixi = 0 and

d+1∑
i=0

γi = 0.

There are d+1 equations for d+2 unknowns, so there is
a non-trivial solution (γi)i∈J0,d+1K. In particular, there
are (at least) one γi > 0 and one γi < 0 and, by taking
the opposite if necessary, we can consider that γ0 ≤ 0.
We consider the set

I =

{
βi
γi

: i ∈ J1, d+ 1K and γi > 0

}
,

(which is not empty) and we note i0 an index such that
βi0

γi0
= min I. For all i ∈ J1, d+1K, we set αi = βi−

βi0

γi0
γi.
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Thus, we have αi0 = 0,

d+1∑
i=1

αixi =

d+1∑
i=1

(
βi −

βi0
γi0

γi

)
xi

=

d+1∑
i=1

βixi −
βi0
γi0

d+1∑
i=1

γixi = y,

and

d+1∑
i=1

αi =

d+1∑
i=1

(
βi −

βi0
γi0

γi

)
=

d+1∑
i=1

βi −
βi0
γi0

d+1∑
i=1

γi

= 1− β0 +
βi0
γi0

γ0 ≤ 1.

To prove the lemma, we have to check if the (αi)i∈J1,d+1K
are non-negative. Let i ∈ J1, d + 1K. There are three
distinct cases:
• if γi = 0, then αi = βi ≥ 0;

• if γi > 0, βi

γi
≥ βi0

γi0
by definition of i0 and αi ≥ 0;

• if γi < 0, then βi

γi
≤ 0 ≤ βi0

γi0
and αi ≥ 0. 2

PROOF. (Theorem 5 (m = 1)) Let u ∈ M([0, T ])
such that ΦT (u) = y. Since we know the existence of
a solution of (PM), in order to prove this proposition,
we just have to build a control v ∈M([0, T ]) which is a
linear combination of at most r = dimR Dirac impulses
and such that ΦT (v) = y and ∥v∥M ≤ ∥u∥M.
We consider the set C ⊂ R defined in (3) and we assume
that u ̸≡ 0 (otherwise, there is nothing to prove). Thus,
we have

y =

∫
[0,T ]

e(T−t)ABdu(t)

=

∫
[0,T ]

e(T−t)ABdu+(t)−
∫
[0,T ]

e(T−t)ABdu−(t),

where, for every measurable set E, u±(E) = (|u(E)| ±
u(E))/2. Hence, y/ ∥u∥M ∈ Conv(C) and the Lemma 6
ensures that there are (αi)i∈J1,rK ∈ R+, (ti)i∈J1,rK ∈
[0, T ] and k ∈ J1, rK such that

∑r
i=1 αi ≤ 1 and

1

∥u∥M
y =

k∑
i=1

αie
(T−ti)AB −

r∑
i=k+1

αie
(T−ti)AB.

Setting ςi = αi for i ∈ J1, kK and ςi = −αi for i ∈
Jk + 1, rK, we have, y = ∥u∥M

∑r
i=1 ςie

(T−ti)AB, with∑r
i=1 |ςi| ≤ 1. Finally, the control v = ∥u∥M

∑r
i=1 ςiδti

verifies ΦT (v) = y and ∥v∥M = ∥u∥M
∑r

i=1 |ςi| ≤
∥u∥M, which concludes this proof. 2

4.2.2 Multi-input case (m ≥ 1)

PROOF. (Theorem 5 (general case)) Let u ∈
M([0, T ])m such that ΦT (u) = y. Just like the previous
case, to prove this proposition, we have to build a con-
trol v ∈ M([0, T ])m which is a linear combination of at
most

∑m
i=1 ri Dirac impulses and such that ΦT (v) = y

and ∥v∥M ≤ ∥u∥M.
For i ∈ J1,mK, we note ui the i-th component of u. As
before, we have

y =

∫
[0,T ]

e(T−t)ABdu(t) =

m∑
i=1

∫
[0,T ]

e(T−t)Abidui(t),

and we set yi =
∫
[0,T ]

e(T−t)Abidui(t). Then, we consider

the problem

min ∥vi∥M
vi ∈M([0, T ]) and yi =

∫
[0,T ]

e(T−t)Abidvi(t).

(PM,i)
For every i ∈ J1,mK, yi is reachable from 0 in time T
(thanks to ui) and Theorem 5 (casem = 1) ensures that
there exist (αj)j∈J1,riK ∈ R and (tj)j∈J1,riK ∈ [0, T ] such

that the control vi =
∑ri

j=1 αjδtj is a solution of (PM,i).

We go back to the problem (PM) and we consider the
control v with values in Rm whose components are the
(vi)i∈J1,mK issued of them sub-problems (PM,i). By not-

ing R =
∑m

i=1 ri, thanks to the expression of the vi,
there are (γj)j∈J1,RK ∈ Rm and times (tj)j∈J1,RK ∈ [0, T ]

such that v =
∑R

j=1 γjδtj . Furthermore, we have

y =

m∑
i=1

yi =

m∑
i=1

∫
[0,T ]

e(T−t)Abidvi(t) = ΦT (v).

Finally, for all i ∈ J1,mK, vi is a solution of (PM,i) so
∥v∥M =

∑m
i=1 ∥vi∥M ≤

∑m
i=1 ∥ui∥M = ∥u∥M, which

concludes this proof. 2

4.3 No gap between (P1) and (PM)

Now we know the existence of an impulsive solution u∗

of (PM), we can build sequences (vk) and (wk) as in the
proof of Proposition 1 to obtain:

• (vk)k∈N∗ ∈ L1([0, T ])m;

• (wk)k∈N∗ ∈ L1([0, T ])m;

• vk
∗
⇀ u∗ and wk

∗
⇀ 0;

• ∥vk∥L0 → 0 and ∥wk∥L0 → 0;

• ∥vk∥L1 → ∥u∗∥M and ∥wk∥L1 → 0.

Thus, we deduce this following proposition, which
ensures that there is no gap between (P1) and (PM).
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Proposition 7 We have

inf ∥u∥L1

u ∈ L1([0, T ])m,

ΦT (u) = y,

= min ∥u∥M
u ∈M([0, T ])m,

ΦT (u) = y.

(4)

Furthermore, if u∗ is an impulsive solution of (PM),
then there is a sequence of feasible controls (uk) ∈
L1([0,M ],Rm) such that

uk
∗
⇀ u∗ and lim

k→∞
∥uk∥L1 = ∥u∗∥M .

Remark 8 There is no guarantee that this impulsive
control will be unique or give a better result than contin-
uous controls. For example, we consider ẋ(t) = u(t) with
n = m = 1. We can prove that the set of L1-minimizers
for this system is composed of all elements u ofM([0, T ])
such that u is of constant sign and u([0, T ]) =

∫
[0,T ]

du =

x1−x0. Thus, among these minimizers, we can find im-
pulsive controls (with a potentially infinite number of im-
pulses), C∞ controls, Cantor functions or even a mix of
these varieties.

5 Use of Pontryagin’s maximum principle

In this section, we search for sufficient conditions to
ensure that any minimizer of (PM) is necessarily of
purely impulsive form by using the Pontryagin’s maxi-
mum principle (PMP) (see e.g. [2,15,26]) on the prob-
lem (PM).

Remark 9 Here, we do not necessarily have the control-
lability of system (S) but we can rewrite it according to a
basis of Rn adapted to the accessible setR (see [30, Theo-
rem 3.11]). By restraining to R, we obtain a controllable
system with a state in dimension r. The n− r remaining
components are not affected by the control and, thanks
to Assumption 1, they will follow the trajectory imposed
by this last system. So, even if that means working in
dimension r, in the following, we consider that the pair
(A,B) is controllable.

5.1 Change of variable

By its “almost all” aspect, the PMP does not allow
us to obtain optimal impulsive controls. Thus, we use
the same change of variable as in [8] or [21, p. 31] to
“reparametrize” the time t and use the PMP.

We remind that for all u ∈ Rm, |u|1 =
∑m

i=1 |ui| where
ui are the components of u. The idea is to set:

• s(t) = t+
∫ t

0
|u(τ)|1 dτ with S = s(T );

• y(s(t)) = x(t) for all t ∈ [0, T ];

• w0(s(t)) =
1

1+|u(t)|1
= 1

ṡ(t) ;

• w(s(t)) = 1
1+|u(t)|1

u(t) = 1
ṡ(t)u(t);

• ẏ0 = w0 with y0(0) = 0.

Thus, for all s ∈ [0, S], we have w0(s)+ |w(s)|1 = 1 with
w0(s) ∈ [0, 1] and all components of w(s) in [−1, 1].
Moreover, we have,

y0(s) =

∫ s

0

w0(σ)dσ =

∫ t

0

1dτ = t,

which particularly ensures that w0 ̸≡ 0 on [0, S]. Finally,
we can rewrite the system (S) in the form{

ẏ(s) = w0(s)Ay(s) +Bw(s),

ẏ0(s) = w0(s).
(5)

We want to minimize the quantity
∫ t

0
|u(t)|1 dt = S − T

with T given so finally, we are interested in

min S

y(0) = x0 and y(S) = x1,

y0(0) = 0 and y0(S) = T,

(w0, w) ∈ L∞([0, S])× L∞([0, S])m,

∀s ∈ [0, S], w0(s) ≥ 0 and w0(s) + |w(s)|1 = 1,

(y0, y) solution of (5),

(6)

which is a problem on which we can apply the PMP.

Remark 10 Let us represent this change of variable in
the case of an impulsive control u = αδτ for α ∈ Rm and
τ ∈ [0, T ]. From the foregoing, we have

s(t) =

{
t if 0 ≤ t ≤ τ,
t+ |α|1 if τ < t ≤ T.

We could have a problem of continuity to use this change
of variable, but we can show that the trajectory x(·)
of (S) corresponds to the solution y(·) of the new prob-
lem (see [21, p. 30-31] for the case m = 1).
Below, for m = 1, we have drawn the controls t 7→ u(t),
s 7→ w0(s) and s 7→ w(s). We can notice that this change
of variable “freezes” the impulse’s moment (during a
length equal to the intensity of the impulse), see Fig. 1.

5.2 First deductions of the PMP

The objective of this paragraph is to prove the following
proposition, which we will interpret after.

Proposition 11 Assume that (w0, w, y0, y) is a mini-
mizer of (6). There exists q : [0, S] → Rn absolutely
continuous and such that for almost all s ∈ [0, S]:
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t

α

Tτ0
u

sτ τ + |α|

1

T + |α|0

w0

sτ τ + |α|

1

T + |α|0
w

Fig. 1. Illustration of the change of variable given in Sec-
tion 5.1, see Remark 10.

(i) q̇(s) = −w0(s)A
⊤q(s);

(ii)
∣∣B⊤q(s)

∣∣
∞ ≤ 1;

(iii) if w0(s) = 0, then
∣∣B⊤q(s)

∣∣
∞ = 1;

(iv) if
∣∣B⊤q(s)

∣∣
∞ < 1, then w0(s) = 1.

PROOF. (Proposition 11, item (i)) The PMP en-
sures that if the control (w0, w) associated to the tra-
jectory y(·) is optimal on [0, S], then there exist two
absolutely continuous functions q : [0, S] → Rn and
q0 : [0, S]→ R and c ≤ 0 such that (q, q0, c) is non-trivial
and for almost all s ∈ [0, S]

q̇(s) = −∂H
∂y

(y(s), y0(s), q(s), q0(s), c, w0(s), w(s)),

q̇0(s) = −
∂H

∂y0
(y(s), y0(s), q(s), q0(s), c, w0(s), w(s)),

where the Hamiltonian H is defined by

H(y, y0, q, q0, c, w0, w) = ⟨q, w0Ay +Bw⟩+ q0w0 + c.

It follows that q0 is constant and q satisfies item (i). 2

In order to prove items (ii), (iii) and (iv) of Proposi-
tion 11, we need the following two lemmas. In these lem-
mas, we consider the assumptions of Proposition 11, and
use the first deductions made in the proof of item (i) of
Proposition 11.

Lemma 12 For almost all s ∈ [0, S] we have

w0(s) =

{
0 if ⟨q(s), Ay(s)⟩+ q0 <

∣∣B⊤q(s)
∣∣
∞ ,

1 if ⟨q(s), Ay(s)⟩+ q0 >
∣∣B⊤q(s)

∣∣
∞ .

PROOF. When (y, y0, q, q0, c, w0, w) is optimal, the
maximization condition of the PMP ensures1 that for
almost all s ∈ [0, S],

H(y, y0, q, q0, c, w0, w)

= max
0≤v0≤1

|v|1=1−v0

H(y, y0, q, q0, c, v0, v)

= max
0≤v0≤1

max
|v|1=1−v0

H(y, y0, q, q0, c, v0, v).

So we must have ⟨B⊤q, w⟩ = (1 − w0)
∣∣B⊤q

∣∣
∞ and the

Hamiltonian becomes,

H(y, y0, q, q0, c, w0, w)

= max
0≤v0≤1

(
v0 (⟨q, Ay⟩+ q0) + (1− v0)

∣∣B⊤q
∣∣
∞ + c

)
(7)

which concludes the proof. 2

Lemma 13 We have c ̸= 0.

Thus, up to a rescaling, we can assume that c = −1,
and, according to (7), q(·) and q0 satisfy for almost all
s ∈ [0, S],

H(y, y0, q, q0,−1, w0, w)

= w0 (⟨q, Ay⟩+ q0) + (1− w0)
∣∣B⊤q

∣∣
∞ − 1 = 0.

PROOF. The final time S is not fixed, and the
system is autonomous, so for almost all s ∈ [0, S],
H(y(s), y0(s), q(s), c, w0(s)) = 0. Let us prove
Lemma 13 by contraposition: we assume that c = 0.
Thanks to Lemma 12, we can distinguish three cases:

• if ⟨q, Ay⟩+ q0 =
∣∣B⊤q

∣∣
∞, we have H =

∣∣B⊤q
∣∣
∞ =

0, that is to say B⊤q = 0;

• if ⟨q, Ay⟩ + q0 <
∣∣B⊤q

∣∣
∞, we have w0 = 0 and so

H =
∣∣B⊤q

∣∣ = 0, that is to say B⊤q = 0;

• if ⟨q,Ay⟩+ q0 >
∣∣B⊤q

∣∣
∞, we have w0 = 1 so H =

⟨q, Ay⟩+ q0 = 0 and, according to our assumption,
we must have

∣∣B⊤q
∣∣ < 0 which is a contradiction.

Finally, we must have B⊤q(s) = 0 for almost all
s ∈ [0, S] and we use the same reasoning as in [21, p. 34]
by considering the set E defined by

E =
{
s ∈ [0, S] : B⊤q(s) = 0

}
∩{s ∈ [0, S] : w0(s) > 0} .

As w0 ̸≡ 0, µL(E) > 0 and, by noting Ed the set of
density points of E, we have µL(E

d) = µL(E). Then,
we consider s ∈ Ed and a sequence (sk)k∈N ∈ E which
converges to s such that |[sk, s] ∩ E| > 0 for all k ∈ N.

1 The time s is omitted in the expression of H to make
computations clearer.
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Let k ∈ N. By definition, we have B⊤q(s) = B⊤q(sk) =
0 and, since B⊤q ∈W 1,∞([0, S]), we obtain that

0 = B⊤q(s)−B⊤q(sk) =

∫ s

sk

B⊤q̇(σ)dσ

=

∫ s

sk

−w0(σ)B
⊤A⊤q(σ)dσ,

according to the (already proved) item (i) of the Propo-
sition 11. Let i ∈ J1,mK. We note ai(σ) the i-th compo-
nent of B⊤A⊤q(σ) ∈ Rm. Thus, we have∫ s

sk

w0(σ)ai(σ)dσ = 0.

But w0 ̸≡ 0 with w0 ≥ 0, so either ai(σ) is identically
equal to 0 or its sign changes on [sk, s]. In all cases, there
exists σk ∈ [sk, s] such that ai(σk) = 0. When k → ∞,
we have σk → s and, by continuity, ai(s) = 0. We can
generalize for all i and obtain that B⊤A⊤q(s) = 0. By
repeating this operation, we show that B⊤(A⊤)kq(s) =
0 for all s ∈ Ed and all k ∈ J0, n−1K. Thus, the Kalman
condition due to the controllability of the system (see
Remark 9) ensures that we have q(s) = 0 for all s ∈ Ed.
Then, item (i) of Proposition 11 ensures that

q(s) = e

(∫ σ

s
w0(τ)dτ

)
A⊤
q(σ),

and, by choosing σ ∈ Ed, we finally obtain that q ≡ 0.
Then, the Hamiltonian is H = w0q0 = 0 and, since
w0 ̸≡ 0, we have q0 = 0. But (q, q0, c) must be non-
trivial, and we obtain the desired contradiction. 2

PROOF. (Proposition 11, items (ii) to (iv))
Lemma 13 ensures that for almost all s ∈ [0, S], we have

w0 (⟨q, Ay⟩+ q0) + (1− w0)
∣∣B⊤q

∣∣
∞ = 1.

Using Lemma 12, we can distinguish three cases:

• if ⟨q(s), Ay(s)⟩+ q0 <
∣∣B⊤q(s)

∣∣
∞, then w0(s) = 0

and H =
∣∣B⊤q

∣∣
∞ − 1 = 0, so

∣∣B⊤q(s)
∣∣
∞ = 1;

• if ⟨q(s), Ay(s)⟩ + q0 =
∣∣B⊤q(s)

∣∣
∞, then H =∣∣B⊤q

∣∣
∞ − 1 = 0 , so

∣∣B⊤q(s)
∣∣
∞ = 1;

• if ⟨q(s), Ay(s)⟩+ q0 >
∣∣B⊤q(s)

∣∣
∞, then w0(s) = 1

andH = ⟨q(s), Ay(s)⟩+q0−1 = 0, so
∣∣B⊤q(s)

∣∣
∞ <

⟨q(s), Ay(s)⟩+ q0 = 1.
We deduce from it that for almost all s ∈ [0, S], we have∣∣B⊤q(s)

∣∣
∞ ≤ 1 (item (ii)). Furthermore, we obtain the

two following equivalences:

⟨q(s), Ay(s)⟩+ q0 ≤
∣∣B⊤q(s)

∣∣
∞ ⇐⇒

∣∣B⊤q(s)
∣∣
∞ = 1,

⟨q(s), Ay(s)⟩+ q0 >
∣∣B⊤q(s)

∣∣
∞ ⇐⇒

∣∣B⊤q(s)
∣∣
∞ ̸= 1.

Now, we have,

E0 = {s ∈ [0, S] : w0(s) = 0}
⊂
{
s ∈ [0, S] :

∣∣B⊤q(s)
∣∣
∞ = 1

}
, (item (iii))

E1 = {s ∈ [0, S] : w0(s) = 1}
⊃
{
s ∈ [0, S] :

∣∣B⊤q(s)
∣∣
∞ ̸= 1

}
, (item (iv))

which concludes the proof. 2

5.3 Sufficient conditions

We recall that our objective is to find sufficient condi-
tions in order to obtain an impulsive control by using the
PMP as previously. According to Remark 10, it seems
that we have an impulsive control when w0(s) ∈ {0, 1}
for almost all s ∈ [0, T ] and so, by using items (iii)
and (iv) of Proposition 11, we would like to avoid the
case where w0(s) > 0 and

∣∣B⊤q(s)
∣∣
∞ = 1 on an interval

of [0, S]. Indeed, we have the following lemma.

Lemma 14 By using the notations and assumptions of
Proposition 11, if, for almost all s ∈ [0, S],

∣∣B⊤q(s)
∣∣
∞ =

1 involves w0(s) = 0, then the L1-optimal control found
by the PMP (in the previous part) is a finite linear com-
bination of Dirac impulses.

PROOF. We assume that, for almost all s ∈ [0, S],∣∣B⊤q(s)
∣∣
∞ = 1 involves w0(s) = 0. Thus, items (ii), (iii)

and (iv) of Proposition 11 ensure that for almost all
s ∈ [0, S],

w0(s) =

{
0 if

∣∣B⊤q(s)
∣∣
∞ = 1,

1 if
∣∣B⊤q(s)

∣∣
∞ ̸= 1.

Item (i) of Proposition 11 and the expression of y0 (ob-
tained during the change of variable) allow us to write
that, for almost all t ∈ [0, T ],

q(s(t)) = exp

(∫ S

s(t)

w0(σ)dσA
⊤

)
q(S)

= exp
(
(y0(S)− y0(s(t)))A⊤) q(S)

= exp
(
(T − t)A⊤) q(S) =: p(t).

Then, for all i ∈ J1,mK, we consider the following func-
tions on [0, T ]

fi(t) = b⊤i p(t)− 1 and gi(t) = b⊤i p(t) + 1,
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and the set

T = {t ∈ [0, T ] : w0(s(t)) = 0}
=
{
t ∈ [0, T ] :

∣∣B⊤q(s(t))
∣∣
∞ = 1

}
=
{
t ∈ [0, T ] : ∃i ∈ J1,mK s.t.

∣∣b⊤i q(s(t))∣∣ = 1
}

= {t ∈ [0, T ] : ∃i ∈ J1,mK s.t. fi(t) = 0 or gi(t) = 0} .

None of the functions fi and gi can be identically null,
since otherwise, we would have T = [0, T ] and w0 ≡ 0,
which is not. Moreover, these functions are clearly an-
alytic so they vanish a finite number of times and two
cases can occur:

• if, for all i ∈ J1,mK and all t ∈ [0, T ], fi(t) ̸=
0 and gi(t) ̸= 0, then for all s ∈ [0, S], we have∣∣B⊤q(s)

∣∣
∞ ̸= 1, that is to say w0(s) = 1 and so

u ≡ 0;

• otherwise, there areN ∈ N∗ and τ1, . . . , τN ∈ [0, T ]
such that T = {τ1, . . . , τN}. We directly deduce
that

{s ∈ [0, S] : w0(s) = 0} = y−1
0 ({τ1, . . . , τN}) .

Since y0 is continuous and non-decreasing, we ob-
tain that this set is a finite union of closed intervals,
which concludes the proof. 2

Remark 15 If all eigenvalues of A are real, as in the
proof of [21, Proposition 5.2.5], by using [17, Exer-
cice 16], we can show that, for i ∈ J1,mK, each fi and
each gi has at most n zeros (counted with multiplicity)
and we have N ≤ 2nm.

To find sufficient conditions to avoid the case where
w0(s) > 0 and

∣∣B⊤q(s)
∣∣
∞ = 1 on an interval of [0, S], we

reason as in [5, Proof of Theorem 6-13] by assuming that

µL

({
s ∈ [0, S] : w0(s) > 0 and

∣∣B⊤q(s)
∣∣
∞ = 1

})
> 0.

For all i ∈ J1,mK, we consider the sets

Ei =
{
s ∈ [0, S] : w0(s) > 0 and

∣∣b⊤i q(s)∣∣∞ = 1
}
.

Thus, we have E =
⋃m

i=1Ei and
∑m

i=1 µL(Ei) ≥
µL(E) > 0. Thus, there exists i ∈ J1,mK such that
µL(Ei) > 0 and we can write Ei = E+

i ∪ E
−
i where

E+
i =

{
s ∈ [0, S] : w0(s) > 0 and b⊤i q(s) = 1

}
,

E−
i =

{
s ∈ [0, S] : w0(s) > 0 and b⊤i q(s) = −1

}
.

Hence, we have µL(E
+
i ) > 0 or µL(E

−
i ) > 0 and we

assume that µL(E
+
i ) > 0 (the other case is similar). We

can differentiate the function s 7→ b⊤i q(s) on the set Ed
i

of density points of E+
i and, by reasoning as in the proof

of Lemma 13, we deduce that, for all s ∈ Ed
i and all

k ∈ N∗, b⊤i (A
k)⊤q(s) = 0. This implies

C⊤
i A

⊤q(s) = 0 ∀s ∈ Ed
i , (8)

where, as in [5, Theorem 6-13], we have considered the

matrix Ci =
(
bi Abi . . . A

n−1bi

)
.

But, by definition of Ei, q(s) ̸= 0 and, for (8) to hold, it
is necessary that C⊤

i A
⊤ be a singular matrix. Thus, we

must have the relation

det
(
C⊤

i A
⊤) = det

(
C⊤

i

)
det
(
A⊤) = 0. (9)

Before formulating a theorem about the desired suffi-
cient conditions, we recall the definition of a normal lin-
ear system given by [5, Definition 6-15].

Definition 16 (Normality)2 The system (S) (or the
pair (A,B)) is normal if, for all i ∈ J1,mK, the system
ẋ(t) = Ax(t) + biu(t) is controllable.

Thus, if (A,B) is normal and A is non-singular, then (9)
cannot hold, and we obtain the following theorem.

Theorem 17 If (A,B) is normal andA is non-singular,
then any minimizer of (PM), for the system (S), is a
finite linear combination of Dirac impulses.

Corollary 18 In the single-input case (m = 1), if
(A,B) is controllable and A is non-singular 3 , then any
minimizer of (PM), for the system (S), is a finite linear
combination of Dirac impulses.

6 Characterization for n = 2 and m = 1

In Section 3, we have proved Theorem 5 by using convex
combinations. Here, we assume that n = 2 and m = 1
and we want to study this convex set in order to charac-
terize the moments of the impulses. For all t1, t2 ∈ [0, T ],
we set C([t1, t2]) = C+([t1, t2]) ∪ C−([t1, t2]), where

C+([t1, t2]) =
{
e(T−t)AB : t ∈ [t1, t2]

}
⊂ R2,

and C−([t1, t2]), its symmetrical to the origin. We sim-
ply note C+ = C+([0, T ]) (idem for C− and C). Thus,
the convex hull of C is the set of all y ∈ R2 which can
be reached from the origin in time T with an impulsive
control u such that ∥u∥M ≤ 1. Obviously, we can adapt
this maximum thanks to a rescaling.

2 Normality is not only a notion concerning linear systems.
One can find its definition in [25, Definition 7].
3 In [23], for B ∈ Rn, the pair (A,B) is said non-singular
when (A,B) is controllable and A is non-singular.
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We recall that every point of a convex set can be ex-
pressed as a convex combination of points on its bound-
ary. Thus, we want to study ∆ = C ∩ ∂ Conv (C).
Before giving a result, let us interpret ∆ and these
notations through an example: we consider T = π

2 ,

A =

(
1 −2
2 1

)
and B =

(
1

1

)
. On Fig. 2, we have drawn

the different sets introduced in this section (on the left,
arrows follow t ∈ [0, T ]). It would seem that there ex-
ists τ ∈ (0, T ) such that ∆ = C([0, τ ]). Thus, any point
y ∈ Conv(C) can be reached thanks to an impulsive con-
trol u consisting of (at most) two impulses in [0, τ ] and
such that ∥u∥M ≤ 1.
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4
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Fig. 2. The sets C = C+ ∪ C− (on the left), Conv(C) (in the
middle) and ∆ = ∆+ ∪∆− (on the right).

Thanks to convex combinations, for y given, finding a
such control becomes a geometry game. The appearance
of C (and so of ∆) directly depends on the eigenvalues
of A, and we obtain the same conclusions by change of
basis. Thus, we distinguish cases according to the Jor-
dan matrix similar to A. We do not give an extensive
analytic demonstration, but just some ideas to see the
link between the eigenvalues of A and a characterization
of the moments of the impulses.
If A is singular, we can show that C+ and C− are seg-
ments, symmetrical to the origin. Thus, Conv(C) is a
parallelogram (possibly flat) and ∆ = C (see Fig. 3).
In the following, we assume that 0 ̸∈ σ(A) (where σ(A)
denotes the spectrum of A). Moreover, the substitution
s = T − t allows us to consider fewer cases by assuming
that A has at least one eigenvalue with nonnegative real
part: it will be sufficient to “reverse” the conclusions.

Two distinct real eigenvalues. Thus, we consider

A =

(
λ1 0

0 λ2

)
with λ1 > 0 and λ2 ∈ R∗. The controlla-

bility of (A,B) ensures that the two components of B
are not null. We can show that C+ is the representation
of a function whose study leads to two cases:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

50

100

150

Fig. 3. A singular.

• if λ2 > 0, then there exists τ ∈ [0, T ] such that
∆ = C([0, τ ]) (see Fig. 4);

• if λ2 < 0, then ∆ is reduced to four points corre-
sponding to the times t = 0 and t = T (see Fig. 5).

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

10
4

-150

-100
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0

50

100
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Fig. 4. Two distinct positive eigenvalues.
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0
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0.4

0.6

0.8

1

Fig. 5. Two real eigenvalues with opposite signs.

Onedouble real eigenvalue. Thus, we considerA =(
λ 1

0 λ

)
with λ > 0. The controllability of (A,B) ensures

that the second component of B is not null. By studying

11



the function represented by C+ in the plan (x2, x1), we
obtain that there exists τ ∈ [0, T ] such that ∆ = C([0, τ ])
(see Fig. 6);

-150 -100 -50 0 50 100 150

-60

-40

-20

0

20

40

60

Fig. 6. One double positive eigenvalue

Two complex conjugate eigenvalues. Thus, we

consider A =

(
α β

−β α

)
with α ≥ 0 and β ∈ R+∗. The

controllability of (A,B) ensures thatB =
(
b1 b2

)⊤
̸= 0.

The equations of C+ are given by{
x1(t) = eα(T−t) (b1 cos (β(T − t)) + b2 sin (β(T − t))) ,
x2(t) = eα(T−t) (b2 cos (β(T − t))− b1 sin (β(T − t))) .

Thus, for all t ∈ [0, T ], the point (x1(t), x2(t)) ∈ C+ is

on the circle of center (0, 0) and radius eα(T−t)
√
b21 + b22.

• if α = 0, then C is included in a circle and ∆ = C
(see Fig. 7);

• if α > 0, then C+ is a spiral which get closer to
the origin and there exists τ ∈ [0, T ] such that
∆ = C([0, τ ]) (see Fig. 8);

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.8

1

Fig. 7. Complex conjugate eigenvalues with null real part.

Conclusions. Table 1 summarizes the different re-
sults.
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Fig. 8. Complex conjugate eigenvalues with positive real
part.

Table 1
Summary of the results obtained in Section 6.

Eigenvalues of A Description of ∆

A singular (0 ∈ σ(A)) ∆ = C([0, T ])

Two distinct positive ∃τ ∈ [0, T ] s.t. ∆ = C([0, τ ])

real negative ∃τ ∈ [0, T ] s.t. ∆ = C([τ, T ])

eigenvalues of different signs ∆ = C({0}) ∪ C({T})

One double positive ∃τ ∈ [0, T ] s.t. ∆ = C([0, τ ])

real eigenvalue negative ∃τ ∈ [0, T ] s.t. ∆ = C([τ, T ])

Two complex positive real part ∃τ ∈ [0, T ] s.t. ∆ = C([0, τ ])

conjugate negative real part ∃τ ∈ [0, T ] s.t. ∆ = C([τ, T ])

eigenvalues zero real part ∆ = C([0, T ])

7 Numerical computations

In this section, we propose an algorithm converging to
an impulsive solution of (PM). For more facilities, we
assume that (A,B) is controllable.

7.1 Strategy

We reason as in [19]. Here there are the main ideas:

(1) To approach a solution of (PM), we “cut” [0, T ] in
N intervals, and we impose that the impulses occur
at times ti = iT

N for i ∈ J0, NK. Then, we search
for elements of Rm (corresponding to the weights
of the impulses) which allow us to approach uN ,
the “discretized” solution of (PM) with imposed
impulses at times ti. Intuitively, we can imagine
that when N →∞, we do not impose the moment
of the impulses anymore, and so we approach the
desired solution (see paragraph 7.2).

(2) Instead of solving directly (PM), we take an interest
in a minimization problem in the form

min
µ∈(Rm)N+1

|µ|+ λ |y − Lµ|22 ,

where |·|2 denotes the Euclidean norm.We can show
that we obtain a solution of (PM) when λ → ∞
(see paragraph 7.3).
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(3) Bregman iterations help us to obtain a solution
of (PM) from a solution of this new problem (see
paragraph 7.3).

(4) Practically, to solve this new problem, we use an
algorithm based on the coordinate descent method
(see paragraph 7.4).

7.2 Time discretization and convergence

Let us show that the discretized solution converges to a
solution of (PM) when N →∞.
For N ∈ N∗, we consider a discretization TN of [0, T ]
such that

(i) TN ⊂ TN+1;
(ii) for all t ∈ [0, T ], limN→∞ dist(t, TN ) = 0;

(iii) T̃ =
⋂

N∈N∗ TN =
{
t̃1, . . . , t̃k

}
with:

rk
(
e(T−t̃1)AB, . . . , e(T−t̃k)AB

)
= n.

This last assumption is not so strong since the control-
lability of (A,B) ensures that for almost all t̃1, . . . , t̃k ∈
[0, T ], we have rk

(
e(T−t̃1)AB, . . . , e(T−t̃k)AB

)
= n (see

Lemma 4). We set u∗ =
∑N∗

i=1 µ
∗
i δτ∗

i
a solution of (PM)

and we consider:
• u∗N =

∑N∗

i=1 µ
∗
i δτi where τi ∈ argminτ∈TN

|τ∗i − τ |;
• uN =

∑
ti∈TN

µiδti , a solution of (PM) with im-
posed impulses according to the discretization TN .

When N → ∞, for all i ∈ J1, N∗K, assumption (ii) en-

sures that τi → τ∗i and so u∗N
∗
⇀ u∗. But, according to

its construction, u∗N may not be a feasible control. To
“correct” this, we consider a measure vN whose support
is included in T̃ and such that ΦT (u

∗
N + vN ) = y, that

is to say ΦT (vN ) = y − ΦT (u
∗
N ).

Since u∗ is a solution of (PM), ΦT (u
∗) = y. From

u∗N
∗
⇀ u∗, we have that limN→∞ ΦT (u

∗
N ) = ΦT (u

∗) = y
and we deduce that

lim
N→∞

ΦT (vN ) = lim
N→∞

∑
t∈T̃

e(T−t)ABvN (t) = 0.

Thus, since rk
(
e(T−t̃1)AB, . . . , e(T−t̃k)AB

)
= n, we de-

duce that vN can be chosen such that limN→∞ ∥vN∥M =

0 and so u∗N + vN
∗
⇀ u∗.

By construction, uN is solution of (PM) among the mea-
sures presenting impulses at times t ∈ TN . The control
u∗N + vN only has impulses at times t ∈ TN so

∥uN∥M ≤ ∥u
∗
N + vN∥M ≤ ∥u

∗
N∥M + ∥vN∥M .

But ∥u∗N∥M = ∥u∗∥M and ∥vN∥M → 0 so there is C ∈
R independent of N such that ∥uN∥M ≤ C. We deduce

that there is ũ ∈M([0, T ]) such that uN
∗
⇀ ũ.

Since u∗ is optimal, we have ∥ũ∥M ≥ ∥u∗∥M. But we

also have

∥ũ∥M ≤ lim inf
N→∞

(∥u∗N∥M + ∥vN∥M)

= lim inf
N→∞

∥u∗N∥M = ∥u∗∥M .

Thus, ∥ũ∥M = ∥u∗∥M which proves that, whenN →∞,
the minimizer of the discretized version of (PM) con-
verges (up to the extraction of a subsequence) to a min-
imizer of (PM).

As announced in the strategy, we decide, for N ∈ N∗, to
cut [0, T ] in N intervals (of same length) [ti, ti+1] where
ti =

iT
N with i ∈ J0, NK. We note UN the set of controls

in the form of linear combination of Dirac impulses at
times ti on [0, T ]. In other words, we have

UN =
{ N∑

i=0

αiδti : ∀i ∈ J0, NK, ti = iT
N

and αi = (αi,1, αi,2, . . . , αi,m)⊤ ∈ Rm
}
.

Modulo extraction, this discretization of [0, T ] respects
the assumptions of this proof. Thus, forN given, we want
to write an algorithm allowing us to approach uN , solu-
tion of (PM) constrained in UN . Large values of N make
uN closest to a general solution of (PM) (i.e., without a
restriction to UN ).

7.3 Reformulation of (PM)

For N ∈ N∗ given, we are interested in the “discretized”
minimization problem

min ∥u∥M
u ∈ UN and ΦT (u) = y.

(PN
M)

To a control u =
∑N

i=0 αiδti ∈ UN , we can associate the

vector µ ∈ Rm(N+1) presenting the m components of
each N + 1 elements αi associated to the impulses of u.
Thus, this “discretized” problem can be rewritten in the
form

min |µ|1 =
∑m(N+1)

j=1 |µj |
µ ∈ Rm(N+1) and Lµ = y,

where µj are the components of µ ∈ Rm(N+1) and

L =
(
e(T−t0)AB, . . . , e(T−tN )AB

)
∈ Rn×m(N+1).

We note µ∗ a solution of this problem, and we consider
the problem

min
µ∈Rm(N+1)

Jλ(µ) = |µ|1 + λ |y − Lµ|22 , (Pλ)
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where λ > 0 is a scalar parameter. We note µλ a solution
of this problem, and we have that

|µλ|1 + λ |y − Lµλ|22 ≤ |µ
∗|1 + λ |y − Lµ∗|22 = |µ∗|1 .

Since λ |y − Lµλ|22 ≥ 0, we deduce that |µλ|1 ≤ |µ∗|1 for
all λ > 0.
By denoting uλ (respectively u∗) the control of UN
associated to µλ (respectively to µ∗), we obtain that
∥uλ∥M ≤ ∥u∗∥M for all λ > 0. Thus, there is u∞ ∈
UN such that (up to the extraction of a subsequence)

uλ
∗
⇀ u∞ when λ → ∞. By considering µ∞ the ele-

ment ofRm(N+1) associated to u∞, we directly have that
|µ∞|1 ≤ |µ∗|1 and, since |y − Lµ∞|22 = 0, the optimality
of µ∗ ensures that |µ∞|1 = |µ∗|1.

To obtain a solution of (PN
M) from one of (Pλ), we use, as

in [19] (and initiated in [10]), the Algorithm 1 based on
Bregman iterations. This method allows us to approach
the solution with a few numbers of iterations and for
reasonable values of λ (see [19]).

Algorithm 1 Bregman iterations method

Require: L ∈ Rn×M , y ∈ Rn, λ > 0, tolerance
Ensure: µ ∈ argmin

{
|µ|1 : µ ∈ RM s.t. Lµ = y

}
1: y0 ← 0
2: µ0 ← 0

3: while
|Lµk−y|

2

|y|2
> tolerance do

4: yk+1 ← y + yk − Lµk

5: µk+1 ← argminµ∈RM

{
|µ|1 + λ

∣∣Lµ− yk+1
∣∣2
2

}
6: end while

7.4 Coordinate descent method

To complete this algorithm, we have to describe a
method to solve (Pλ) (line 5 of Algorithm 1). We choose
to use the coordinate descent method: at each iteration,
we stabilize all components of µ except one, which we
update to approach the solution. So this method asks
two questions:

• How to choose the component of µ that we want
to update? We call this way of selection the sweep
pattern.

• How to update the chosen component of µ?

We do not give details of computation, but the algo-
rithm can be found in Appendix A.

Sweep pattern. The function Jλ is convex and lower
semicontinuous. So µ∗ = argminµ Jλ(µ) if and only if
0 ∈ (∂Jλ(µ

∗))i for all i ∈ J1,m(N + 1)K, where ∂Jλ(µ∗)
is the subdifferential of Jλ in µ∗ and (∂Jλ(µ

∗))i its i-th
component.
We decide to update the i-th component of µ such that
(∂Jλ(µ))i is the farthest (from 0) component of ∂Jλ(µ).

Expression for the update. In dimension 1, the so-
lution of

min
x∈R

(
|x|+ λ(x− f)2

)
is given by x = shrink

(
f, 1

2λ

)
, where

shrink (f, µ) =


f − µ if f > µ,

0 if − µ ≤ f ≤ µ,
f + µ if f < −µ.

For µ ∈ Rm(N+1) and i ∈ J1,m(N+1)K, we express what
depends on the i-th component of µ in the expression of
Jλ(µ) to find a formula to update the chosen component.

7.5 Results on discretized 1D heat equation

We consider the 1D heat equation, for t > 0 and ξ ∈
(0, 1), defined by

∂tψ(t, ξ) = ∂2ξψ(t, ξ),

∂ξψ(t, 0) = 0,

ψ(t, 1) = u(t),

ψ(0, ξ) = ψ0(ξ),

(10)

where ψ0 ∈ L2([0, 1]) is the initial state. As in [21], we
consider the finite-difference spatial discretization of this
problem. Thus, we can rewrite (10) in the form of the
system (S) with

A = (n− 1)2



−2 2 0 · · · · · · 0

1 −2 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1

0 · · · · · · 0 1 −2


∈ Rn×n,

and B = (n − 1)2
(
0 . . . 0 1

)⊤
∈ Rn where n > 2 is

the number of discretization points and xi(t) (the i-th

component of x(t)) stands for ψ
(
t, i−1

n−1

)
. Moreover,

the pair (A,B) is controllable.
On Fig.9, we have drawn the impulsive control
(composed of 10 impulses) obtained thanks to Algo-
rithm 1 for the control time T = 1, initial condition
ψ0(ξ) = sin(πξ)+ 1

4 sin(10πξ) and target ψ1(ξ) = 0, and
we have set the relaxation parameter λ to 50. For the
discretization, we have chosen N = 1000 and n = 101.
On Fig.10, we have represented the evolution of the
temperature with this control for ξ ∈ [0, 1]:

• before the first impulse on Fig.10(a);
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• between the first impulse and just before the second
one on Fig.10(b);

• between the second impulse and the fifth one on
Fig.10(c);

• between the sixth impulse and the last one on
Fig.10(d).

8 Conclusion

In this paper, we proved the interest of impulsive
controls in L0 or L1-minimization problems for lin-
ear systems. On one hand, when we authorize Radon
measure controls, there exists a minimizer which is im-
pulsive and, on the other hand, when we are restricted
to L1([0, T ])m, we can still approach this impulsive
minimizer. In other words, there is no gap when we ex-
tend these minimization problems from L1([0, T ])m to
M([0, T ])m. An impulsive optimal control is usually not
unique, but we can find one with a number of impulses
bounded by:

• the rank of the Kalman matrix of the pair (A,B)
for the L0-minimization problem;

•
∑m

i=1 ri (where ri is the rank of the Kalman matrix
of the pair (A, bi)) for the L1-minimization prob-
lem.

Furthermore, the obtained results are confirmed by
some numerical experiments.
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Fig. 9. An optimal impulsive control for the discretized 1D heat equation.
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A Algorithm for coordinate descent method

Algorithm 2 allows us to update the vector µ in Bregman
iterations (line 5 of Algorithm 1). We give here some
explications on it.

Algorithm 2 Coordinate descent method

Require: L ∈ Rn×M , y ∈ Rn, λ > 0, tolerance

Ensure: µ ∈ argminµ∈RM

{
|µ|1 + λ |Lµ− y|22

}
1: µ← 0 ∈ RM

2: Λ← −L⊤y ∈ RM

3: G← 0 ∈ RM

4: for i ∈ J1,MK do
5: if |2λΛ(i) + 1| ≥ 1 then
6: G(i)← |2λΛ(i) + 1| − 1
7: end if
8: end for
9: i∗ ← argmaxi∈J1,MKG(i)

10: d←
(
L⊤L

)
(i∗, i∗)

11: η ← µ(i∗)
12: µ(i∗)← 1

d shrink
(
µ(i∗)d− Λ(i∗) ; 1

2λ

)
13: k ← 0
14: while |G|∞ > tolerance do
15: Λ(i∗)← Λ(i∗) + (µ(i∗)− η)L⊤L(:, i∗)
16: for i ∈ J1,MK do
17: if µ(i) = 0 then
18: if |2λΛ(i) + 1| ≥ 1 then
19: G(i)← |2λΛ(i) + 1| − 1
20: else
21: G(i)← 0
22: end if
23: else
24: G(i)← |2λΛ(i) + sign(µ(i))|
25: end if
26: i∗ ← argmaxi∈J1,MKG(i)

27: d←
(
L⊤L

)
(i∗, i∗)

28: η ← µ(i∗)
29: µ(i∗)← 1

d shrink
(
µ(i∗)d− Λ(i∗) ; 1

2λ

)
30: end for
31: k ← k + 1
32: end while

Variable Λ (lines 2 and 15) is an help for computations.
By reasoning as in [19], we can find an induction relation
on it (line 15) and save computations. For this reason,
we have to initiate variables (lines 1 to 12) before the
main loop (lines 13 to 32).
Each component of G ∈ RM is the smallest element
(in absolute value) of the corresponding component of
the subdifferential of Jλ. The biggest components of G
indicate the index of the component of µ to be updated
(lines 9 and 26).
Variable d (lines 10 and 27) is the coefficient on the i∗-th
row and the i∗-th column of the matrix L⊤L and takes

part in the update of µ (lines 12 and 29). Variable η is a
save of the i∗-th component of µ before the update: we
need it in the induction relation of Λ.

Remark 19 When this algorithm updates a new com-
ponent of µ, it might lose time between two close im-
pulses and produce a “dirty” representation of µ. To avoid
that, we can solve (thanks to CVX 4 for example) the re-
strained minimization problem before the update of a new
component.
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