Insights on long-term ecosystem changes from stable isotopes in historical squid beaks - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue BMC Ecology and Evolution Année : 2024

Insights on long-term ecosystem changes from stable isotopes in historical squid beaks

Paco Bustamante
Bram Couperus
Gaël Guillou
Anna M Larionova
Rushan M Sabirov

Résumé

Background: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. Results: We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G . fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G . fabricii ’s trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T . sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIX th century. Conclusions: Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids’ increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.
Fichier principal
Vignette du fichier
Golikov et al 2024 BMC Ecology and Evolution.pdf (2.72 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04638331 , version 1 (08-07-2024)

Identifiants

Citer

Alexey V Golikov, José C Xavier, Filipe R Ceia, José P Queirós, Paco Bustamante, et al.. Insights on long-term ecosystem changes from stable isotopes in historical squid beaks. BMC Ecology and Evolution, 2024, 24 (1), pp.90. ⟨10.1186/s12862-024-02274-7⟩. ⟨hal-04638331⟩

Collections

CNRS UNIV-ROCHELLE
4 Consultations
5 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More