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1 

Abstract— Pursuit-evasion game (PEG) problems are a 
type of dynamic differential games that received a lot of 
attention thanks to the ability of this framework to 
articulate many real-life applications such as in military, 
aerospace and mobile robotics. Several techniques are used 
to solve such games, but recently techniques relying on deep 
reinforcement learning (DRL) gained traction, in particular 
DRL techniques adapted for problems with continuous 
action spaces such as Deep Deterministic policy gradients 
(DDPG).  This paper explores the case of a one versus one 
pursuit-evasion game in a constrained game area, using two 
twin delayed DDPG (TD3) agents that are trained 
simultaneously from scratch via self-play only. The 
simulation results show that agents were performing better 
than other conventional methods such as Non-linear Model 
Predictive Control  (NMPC). 

I.INTRODUCTION 

Mobile robotics is a multi-disciplinary field where robots 
with a mobility ability autonomously execute specific 
tasks. One of the core disciplines of mobile robotics is 
motion planning and control where intelligent techniques 
are used to guide the robot navigation. Pursuit-evasion 
game is an example of a dynamic competitive game 
where two or more robots are playing a zero-sum game. 
In its simplest form, a pursuer p chases an evader e with 
the goal of capturing it, while the evader tries to avoid 
being captured. This simple framework is adapted to 
many research fields such as in military, surveillance, 
aerospace and mobile robotics. 
The first pursuit-evasion game was introduced by Isaacs 
under the label “Homicidal chauffeur” [1]. Isaac 
proposed a game where a fast driver with low 
maneuverability attacks a slower but agile pedestrian. [2] 
studied a stochastic version of the homicidal chauffeur 
game by considering the effect of noise on the game.  In 
more recent work, [3] studied the case of a nonlinear 
stochastic pursuit-evasion game where the agents were 
subject to noisy measurements. [4] treated the case  of a 
game with a constrained environment that included 
moving obstacle. [5] applied real-time nonlinear model 
predictive control to a pursuit-evasion game of 
autonomous aircraft. Similarly [6] non-linear model 
predictive control to a game between unmanned aerial 
and an unmanned ground vehicles. [7] applied limited 
information NMPC in a constrained environment to a one 
versus one pursuit-evasion game. As for the use of 
reinforcement learning in pursuit-evasion games, [8] 
used Q-learning, a reinforcement learning algorithm to 
directly train the individual agents in a 4 vs 1 game. [9] 
used also Q-learning, but to fine tune the parameters of 
the fuzzy logic controller for agents operating in a 
continuous action space. [10] studied a similar set-up but 
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using multi-agent twin delayed deep deterministic policy 
gradient (TD3), a more advanced DRL technique. 
In the case of deep learning for one vs one game, [11] 
considered the continuous aspect of action spaces in 
robotics, by using DDPG agents to train both evader and 
pursuer. However, game environment had neither 
obstacles nor boundaries, while the agents were trained 
over 2 separate phases: phase 1 where only the pursuer 
learns and phase 2 where both agents learn by playing 
against each other. [12] used Deep Q-network (DQN) to 
train both the pursuer and the evader in a constrained 
environment, while comparing two training approaches, 
namely curriculum learning and self-play. However, due 
to the use of DQN, the authors were forced to discretize 
and limit the allowed actions, so to avoid managing a 
continuous action space.  
The goal of this work is to use TD3 for a one vs one 
pursuit-evasion game, in a constrained environment, to 
train in single phase simultaneously the pursuer and 
evader agents, through the use of self-play.  Some 
reinforcement learning basics and recent techniques will 
be introduced in section I. In section II, a game 
formulation adapted to the use of reinforcement learning 
is introduced. Section III provides insight on the reward 
function used for training.  Training algorithm, 
parameters and evolution are presented in section IV. 
Section V provides the simulation results and a 
comparison with a benchmark.  

II.REINFORCEMENT LEARNING 

A.Basics 

Reinforcement learning is a type of machine learning 
where an agent learns, through trial and error and 
feedback from the environment, which actions to take in 
a given situation. Given the environment state 𝑠, the 
agent chooses the action 𝑎 to perform. Once the action is 
executed the state of the environment changes 
accordingly giving a new state 𝑠′, and the agent receives 
a corresponding reward 𝑟. Reinforcement learning uses 
Markov Decision Process (MDP) framework to define 
the interaction between a learning agent and the 
environment [13], meaning that the probability of 
reaching the state 𝑠′ depends only on the immediately 
preceding state 𝑠 and action 𝑎.  
The learning process is generally carried through training 
episodes composed of a sequence of finite number of 
transitions or steps, where the final state of an episode is 
called a terminal state. After each step 𝑘 the agent is 
given a reward 𝑟௞ . The policy 𝜋 of an agent, described in 
(1), is the probability of choosing the action 𝑎 given the 
state 𝑠: 
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𝜋(𝑠, 𝑎) = 𝑃(𝑎|𝑠)          () 
The state value 𝑉గ , expressed in (2), is the expected 
return starting from state 𝑠 and following the policy 𝜋 
thereafter, until the end of the episode. 
𝑉గ(𝑠) = 𝐸(∑ 𝛾௞𝑟௞| 𝑠௞ )          (1) 
where  𝛾 ∈ [0,1] is a discount factor used to discount 
future rewards. 
Similarly, the action value 𝒬గ, expressed in (3), is the 
expected return after performing action A starting from 
state S, and following the policy 𝜋 thereafter: 
𝒬గ(𝑆, 𝐴) = 𝐸(∑ 𝛾௞𝑟௞| 𝑠, 𝑎௞ )          (2) 
As stated in (4), the optimal policy is the action that 
maximizes the expected return or the action value of the 
agent: 
𝜋௢௣௧  (𝑠, 𝑎) = argmax஺ 𝒬(𝑠, 𝑎)         (3) 

B.Deep Reinforcement Learning  

[14] introduced and used deep Q-network (DQN) to play 
classic Atari games. DQN is known to perform poorly in 
games with continuous action space, such as control 
strategy in robotics. Many approaches were introduced to 
handle continuous action spaces such as Deterministic 
Policy Gradient (DPG) [15] and actor & critic approaches 
such as [16]. [17] introduced deep deterministic policy 
gradient (DDPG) for continuous control, which 
combines the benefits of DQN, DPG and actor-critic 
framework . Later, [18] Twin Delayed DDPG or TD3, 
improving over DDPG shortcomings . 

C.TD3 agent 

Twin delayed deep deterministic network TD3 is a state-
of-the-art policy gradient deep learning algorithm 
tailored for problems with a continuous action space.TD3 
has a main actor-critic network to be trained, and a target 
actor-critic network, that is softly updated from the main 
actor-critic network. In the main actor-critic network, the 
actor 𝜋థ is fed with the current state 𝑠 as input, so it 
outputs an action 𝑎 to be executed by the agent. The critic 
networks 𝒬ఏభ

 and 𝒬ఏమ
  take the current state 𝑠 and the 

action 𝑎 as inputs, to output two estimations 𝒬ଵ and 𝒬ଶ 
of the action value. 
Similarly, in the target actor-critic network, the target 
actor 𝜋థᇲ

ᇱ  is given the current state 𝑠ᇱ as input, so it 

outputs an action 𝑎ᇱ. The critic networks 𝒬
ఏభ

ᇲ
ᇱ  and 𝒬

ఏమ
ᇲ

ᇱ  

take the new state 𝑠ᇱ and 𝑎෤ᇱ, which is 𝑎ᇱ altered by a 
clipped random noise 𝜖, as inputs to output two 
estimations of the action value 𝒬ଵ

ᇱ  et 𝒬ଶ
ᇱ . 

𝜙, 𝜃ଵ, 𝜃ଶ are respectively the weights of the actor 
network and the two critic networks, learned through 
training. 𝜙ᇱ, 𝜃ଵ

ᇱ , 𝜃ଶ
ᇱ  are respectively the weights of the 

target actor network and the two target critic networks, 
updated periodically using the smooth update factor 𝜏 in 
(6). 
𝑤ᇱ ←  𝜏 𝑤 + (1 − 𝜏) 𝑤           () 
Where 𝑤 is either 𝜙, 𝜃ଵ, 𝜃ଶ and 𝜏 ∈ [0,1] is the smooth 
update factor. As shown in algorithm 1, similar to other 
deep reinforcement learning strategy, the training 
requires the usage of an experience replay buffer. 
 
 
 
 

 
Algorithm 1: TD3  
Initialize pursuer networks 𝜋థ, 𝒬ఏభ

 and 𝒬ଶ with random parameters 𝜙, 𝜃ଵ, 𝜃ଶ 
Initialize pursuer target networks  𝜙ᇱ ←  𝜙 , 𝜃ଵ

ᇱ ←  𝜃ଵ , 𝜃ଶ
ᇱ ←  𝜃ଶ 

Initialize pursuer Replay Buffer 𝐵 
for t =1 to T do 
                  Select action with exploration noise 𝑎~𝜋థ೛

+  𝜖 ,  

                  𝜖 ∼  𝒩(0, 𝜎) and observe reward 𝑟 and new state 𝑠ᇱ 
                  Execute actions and observe rewards  𝑟  and new state 𝑠ᇱ 
                  Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠ᇱ) in 𝐵 
                  Sample mini batch of N transitions (𝑠, 𝑎, 𝑟, 𝑠ᇱ) from 𝐵 
                  𝑎෤ ← 𝜋థᇲ

ᇱ (𝑠ᇱ) + 𝜖௣  , where 𝜖 ∼  𝑐𝑙𝑖𝑝(𝒩(0, 𝜎෤), −𝑐, 𝑐) 

                  y ← 𝑟 +  𝛾 𝑚𝑖𝑛୧ୀଵ,ଶ 𝒬
ఏ೔

ᇲ
ᇱ (𝑠ᇱ, 𝑎෤)  

                  Update critics 𝜃௜ ← 𝑎𝑟𝑔𝑚𝑖𝑛ఏ೔ 𝑁
ିଵ ∑(y −  𝒬ఏ೔

 (𝑠, 𝑎))ଶ 
                  if t mod d then 
                        Update 𝜙 by deterministic policy gradient: 
                        ∇థ𝐽(𝜙) =  𝑁ିଵ ∑   ∇௔𝒬ఏభ

(𝑠, 𝑎) |௔ୀ గഝ(௦)∇థ𝜋థ(𝑠)    

                        Update target Networks 
                        𝜃௜

ᇱ ←  𝜏𝜃௜ + (1 − 𝜏)𝜃௜
ᇱ 

                        𝜙ᇱ ←  𝜏𝜙 + (1 − 𝜏)𝜙ᇱ 
                  end if 
end for 

While not indicated in algorithm 1, the agent is not used 
during the first W steps of learning and the actions are 
rather generated randomly and stored into replay buffer. 
Depending on the game, the authors used between 1000 
and 10000 of these warmup steps. 

 

III.GAME FORMULATION AND NOTATIONS 

In this work, a pursuit-evasion game between two non-
holonomic robots is studied in a bounded game area, 
where the pursuer p aims to capture the evader e as soon 
as possible, while the evader e aims to avoid or delay 
being captured by p. The robots start from the same initial 
conditions and the positions and orientations of both 
robots are perfectly known at each step of the game. 
Every training episode has a maximum number of steps, 
that if reached, the evader wins the game. The pursuer 
wins only when it catches the evader before the end of 
the episode.  
The position of the robot is given by the cartesian 
coordinates of its center (𝑥௜ , 𝑦௜), while its orientation 𝜃௜  
is the angle of the robot relative to the x-axis, where i is 
either p for the pursuer or e for the evader.  
At each step k we measure the Euclidian distance D 
between the centers of the two robots as presented in (7). 
The pursuer captures the evader when the distance 
between the robots D is lower than Dcapture. 

𝐷(௞) = ට(𝑥௣
(௞)

− 𝑥௘
(௞)

)ଶ + (𝑦௣
(௞)

− 𝑦௘
(௞)

)ଶ      

 (4) 
The robots play in a squared game area of side 2L. The 
game is stopped if the pursuer or the evader reach the 
frontiers of the game area. In this case, neither of the 
robots wins nor loses, but the robot that has reached the 
boundary has failed. 
As in [7], both robots operate at a constant linear velocity 
𝑣௜ , but the pursuer will have a slightly higher speed than 
the evader. On the other hand, both agents are trained to 
produce the appropriate angular velocity for the next step 

𝜔௜
(௞), as long as  |𝜔௜

(௞)
| < 𝜔௠௔௫. However, both agents 



  

have the same maximum steering velocity 𝜔௠௔௫, 
meaning that no robot have an agility advantage. To be 
able to train the TD3 agents using reinforcement 
learning, the observations, the actions the transition 
function as well as the reward function must be designed. 
The reward function will be discussed in section IV. 

A.Presenting the game observation 

An observation O is the observed state of the game at a 
given time step. It is represented by the positions and 
orientation of both robots in (8): 

𝑂(௞) = (𝑥௣
(௞)

, 𝑦௣
(௞)

, 𝜃௣
(௞)

, 𝑥௘
(௞)

, 𝑦௘
(௞)

, 𝜃௘
(௞)

)       
 (5) 
When using neural networks for learning, it is common 
practice to normalize the inputs. The raw observations 
are scaled down to values in [0,1]. Therefore, 𝑠  in (9) is 
the normalized observation that serves as input to the 
neural net and saved in the replay buffer: 

𝑠(௞) = (
௫೛

(ೖ)

௅
,

௬೛
(ೖ)

௅
,

ఏ೛
(ೖ)

௠௢ௗ ଶగ

ଶగ
,

௫೐
(ೖ)

௅
,

௬೐
(ೖ)

௅
,

ఏ೐
(ೖ)

௠௢ௗ ଶగ

ଶగ
)   

   (6) 

B.Presenting the agent action 

As the linear velocities 𝑣௜  remain constant through the 
game, there is no action to be produced for the speed. The 

only action to be produced is the steering velocity 𝜔௜
(௞). 

Therefore, the size of the action domain is 1. 
The actor network produces a value in [-1, 1], which is 
multiplied by the maximum steering velocity 𝜔௠௔௫  for 
the transition. 

C.Presenting the transition function 

To make a transition from a state 𝑠 to the next state 𝑠ᇱ, 
the kinematic model of the robot must be introduced. In 
fact, at each step, a non-holonomic mobile robot is 
represented by: 

- the coordinates (x,y) of the center of the robot 
relative to the center of the game area. 

- 𝜃 which is the orientation its angle relative to 
the x-axis.  

- 𝑣 its linear velocity  
- 𝜔 its angular velocity. 

The kinematic model of such robot is given by (10) [19]. 

ቐ

𝑥̇௜ = 𝑣௜  𝑐𝑜𝑠𝜃௜

𝑦̇௜ = 𝑣௜  𝑠𝑖𝑛𝜃௜

𝜃̇௜ = 𝜔௜          

           (7) 

The learning is conducted through discrete steps, 
therefore, the discrete version of (10), given by (11), is 
used. 

൞

𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

+ 𝑇௦. 𝑣௜
(௞)

. 𝑐𝑜𝑠𝜃௜
(௞)

𝑦௜
(௞ାଵ)

= 𝑦௜
(௞)

+ 𝑇௦ . 𝑣௜
(௞)

. 𝑠𝑖𝑛𝜃௜
(௞)

𝜃௜
(௞ାଵ)

= 𝜃௜
(௞)

+ 𝑇௦ . 𝜔௜
(௞)

               

        (8) 

Where the subscript k denotes the step and 𝑇௦ the 
sampling time and i is either p for the pursuer or e for the 
evader. 
Using (7), the distance 𝐷 between the two robots is 
computed after each transition and fed to the reward 
function. After the reward is generated, every robot stores 
its transition (𝑠, 𝑎௜ , 𝑟௜ , 𝑠ᇱ) in the related memory buffer 
𝐵௜  . 

IV.PRESENTING THE REWARD FUNCTION 

A.Step reward 

Identifying the appropriate reward is critical for a 
successful training. As the positions of the robots evolve 
during the game, the criteria that changes accordingly is 
the distance D between the robots. We tested using - D as 
a reward for p and D as a reward for e. However, while 
the pursuer succeeds to learn a good strategy, the evader 
keeps moving in circles and fails to learn any appropriate 
strategy.  
The alternative is to use the gradient of distance from one 
step to the next: 
𝑟ଵ =  ∆𝐷 ∗ 𝑔 = (𝐷௞ − 𝐷௞ାଵ) ∗ 𝑔        (9) 
where 𝑔 = 1000 is a reward scaling coefficient. The 
pursuer receives the reward 𝑟ଵ, which, when positive, 
means that the pursuer is closing the gap. On the other 
hand, the evader receives a reward of -𝑟ଵ, which, when 
positive, means that the evader is distancing the pursuer. 
As pursuer gets closer to the evader, the 𝑟ଵ will approach 
0, therefore the scaling factor is used to keep giving 
meaningful feedback to the agent. 

B.Outcome reward 

Depending on the outcome of the game the pursuer 
receives the reward 𝑟ଶ described in (13). The evader 
receives -𝑟ଶ. 

𝑟ଶ = ቐ

+1000, 𝑖𝑓  𝐷 ≤ 𝐷௖௔௣௧௨௥௘

−1000, 𝑖𝑓  𝑠𝑡𝑒𝑝 = 1000
0,             otherwise 

       

 (10) 

C.Time penalty 

In order to encourage the pursuer to catch the evader as 
soon as possible, it is given a small penalty with every 
new step. The opposite applies also to the evader, a small 
reward is given to the evader for every step, 𝑟ଷ = −10. 

D.Failure penalty 

To account for the playground frontiers, the robot that 
reaches the limits of the play area receives a large penalty 
𝑟ସ. Two variants of this penalty are used. The simplest 
form of the failure penalty is described in (14). 
𝑟ସ =

൜
−2000, if  | 𝑥௜  | ≥ 𝐿 − 2𝑅௥௢௕   or  | 𝑦௜  | ≥ 𝐿 − 2𝑅௥௢௕

0       ,  if | 𝑥௜  | < 𝐿 − 2𝑅௥௢௕   and | 𝑦௜  | < 𝐿 − 2𝑅௥௢௕  
 

 (11) 
Where 𝐿 is the length of the game area and 𝑅௥௢௕  the 
radius of the robot. 
Another form of 𝑟ସ is given by (15), that gives a small 
penalty when the robot enters a buffer zone of width 𝑏, 
prior to reaching the limit of the play area. 
𝑟ସ =

ቐ

−2000, 𝑖𝑓  | 𝑥௜  | ≥ 𝐿 − 2𝑅௥௢௕  𝑜𝑟  | 𝑦௜  | ≥ 𝐿 − 2𝑅௥௢௕  
−10, 𝑖𝑓  | 𝑥௜  | ≥ 𝐿 − 2𝑅௥௢௕ − 𝑏  𝑜𝑟  | 𝑦௜  | ≥ 𝐿 − 2𝑅௥௢௕ − 𝑏

0,   𝑖𝑓 | 𝑥௜  | < 𝐿 − 2𝑅௥௢௕ − 𝑏 𝑎𝑛𝑑 | 𝑦௜  | < 𝐿 − 2𝑅௥௢௕ − 𝑏

  (12) 
A pursuer may face the situation of capturing the evader 
at exactly the frontier of the game area. 𝑟ଶ and 𝑟ସ were 
designed such as |𝑟ସ | ≫ |𝑟ଶ| in order to prevent the 
pursuer from destroying itself for a capture. 



  

E.Final reward 

The final rewards are given by (16) and (17): 
𝑟௣ =  𝑟ଵ + 𝑟ଶ + 𝑟ଷ + 𝑟ସ௣

         (13) 

𝑟௘ =  −𝑟ଵ − 𝑟ଶ − 𝑟ଷ + 𝑟ସ௘
         (14) 

Note that even though the robots are playing a zero-sum-
game, 𝑟௣ and 𝑟௘  are not always symmetric, specifically 
when one robot reaches the frontiers of the game area, in 
this case only the failing robot receives a penalty.  It was 
designed so, in order to avoid rewarding arbitrary actions 
of an agent, while it had nothing with the failure of the 
other player.  

V.TRAINING 

Algorithm 2 details the training steps for two TD3 
agents: 

Algorithm 2: Training Algorithm 
Initialize pursuer networks 𝜋థ೛

, 𝒬ఏభ೛
 and 𝒬ఏమ೛

with random parameters 𝜙௣, 𝜃ଵ௣ , 𝜃ଶ௣ 

Initialize pursuer target networks  𝜙௣
ᇱ ←  𝜙௣ , 𝜃ଵ௣

ᇱ ←  𝜃ଵ௣ , 𝜃ଶ௣
ᇱ ←  𝜃ଶ௣ 

Initialize evader networks 𝜋థ೐
, 𝒬ఏభ೐

 and 𝒬ఏభ೐
with random parameters 𝜙௘, 𝜃ଵ௘ , 𝜃ଶ௘ 

Initialize evader target networks  𝜙௘
ᇱ ←  𝜙௘ , 𝜃ଵ௘

ᇱ ←  𝜃ଵ௘  , 𝜃ଶ௘
ᇱ ←  𝜃ଶ௘ 

Initialize pursuer Replay Buffer 𝐵௣ 
Initialize evader Replay Buffer 𝐵௘ 
for ep =1 to M do 
      steps ß steps + 1 
      for k =1 to T do 
            if steps < W then 
                  select random actions for p and e 
            else 
                  𝑎௣ =  𝜋థ೛

(𝑠) 

                  𝑎௘ =  𝜋థ೐
(𝑠) 

                  Execute actions and observe rewards  𝑟௣, 𝑟௘   and new state 𝑠ᇱ 
                  Store pursuer transition (𝑠, 𝑎௣, 𝑟௣, 𝑠ᇱ) in 𝐵௣ 
                  Store evader transition (𝑠, 𝑎௘ , 𝑟௘, 𝑠ᇱ) in 𝐵௘  
                  Sample mini batch of N transitions (𝑠, 𝑎௣, 𝑟௣, 𝑠ᇱ) from 𝐵௣ 
                  𝑎෤௣

ᇱ ← 𝜋థ೛
ᇲ

ᇱ (𝑠ᇱ) + 𝜖௣ , where 𝜖௣ ∼  𝑐𝑙𝑖𝑝(𝒩(0, 𝜎), −𝑐, 𝑐) 

                  Compute 𝑦௣ ← 𝑟 +  𝛾 𝑚𝑖𝑛௝ୀଵ,ଶ 𝒬ఏೕ೛
ᇲ

ᇱ (𝑠ᇱ, 𝑎෤௣
ᇱ )  

                  Update critics 𝜃௝௣ ← 𝑎𝑟𝑔𝑚𝑖𝑛ఏೕ೛
(

ଵ

ே
∑(𝑦௣ −  𝒬ఏೕ೛

 (𝑠, 𝑎))ଶ 

                  Sample mini batch of N transitions (𝑠, 𝑎௘, 𝑟௘ , 𝑠ᇱ) from 𝐵௘ 
                  𝑎෤௘

ᇱ ← 𝜋థ೐
ᇲ

ᇱ (𝑠ᇱ) + 𝜖௘ , where 𝜖௘ ∼  𝑐𝑙𝑖𝑝(𝒩(0, 𝜎), −𝑐, 𝑐) 
                  Compute 𝑦௘ ← 𝑟 +  𝛾 𝑚𝑖𝑛௝ୀଵ,ଶ 𝒬

ఏೕ೐
ᇲ

ᇱ (𝑠ᇱ, 𝑎෤௘
ᇱ )  

                  Update critics 𝜃௝௘ ← 𝑎𝑟𝑔𝑚𝑖𝑛ఏೕ೐
(

ଵ

ே
∑(𝑦௘ −  𝒬ఏೕ೐

 (𝑠, 𝑎))ଶ 

                  if k mod d then 
                        Update 𝜙௣ and 𝜙௘ by deterministic policy gradient: 
                        ∇థ೛

𝐽൫𝜙௣൯ =  
ଵ

ே
∑ ∇థ೛

𝜋థ೛
(𝑠)  ∇௔೛

𝒬ఏభ೛
൫𝑠, 𝑎௣൯ |௔೛ୀ గഝ೛(௦)    

                        ∇థ೐
𝐽(𝜙௘) =  

ଵ

ே
∑ ∇థ೐

𝜋థ೐
(𝑠)  ∇௔೐

𝒬ఏభ೐
(𝑠, 𝑎௘) |௔೐ୀ గഝ೐ (௦)    

                        Update target Networks 
                        𝜃௝௣

ᇱ ←  𝜏𝜃௝௣ + (1 − 𝜏)𝜃௝௣
ᇱ  

                        𝜃௝௘
ᇱ ←  𝜏𝜃௝௘ + (1 − 𝜏)𝜃௝௘

ᇱ  
                        𝜙௣

ᇱ ←  𝜏𝜙௣ + (1 − 𝜏)𝜙௣
ᇱ  

                        𝜙௘
ᇱ ←  𝜏𝜙௘ + (1 − 𝜏)𝜙௘

ᇱ  
                  end if 
            end if 
      end for 
end for 

 
 
Table 1 provides the main parameters of the training. 

Table 1 : Game parameters 
Parameter  Value Description 
State dimension 6  
Action dimension 1  
M 10000 Training episodes 
P 1000 Steps per episode 
W 10000 Warmup steps 
𝑋௣ (-2,-8, π/2) Pursuer initial conditions 

𝑋௘ (6,-6, 0) Evader initial conditions 
L 10 m Game area length/2 

b 0.4 Buffer zone width 
𝜔௠௔௫ π/3 (rad/s) Maximum steering velocity  
𝑣௣ 0.5 m/s Pursuer maximum velocity 
𝑣௘ 0.48 m/s Evader maximum velocity 
Rrob 0.1 m Robot radius 
𝑇௦ 0.1 Sampling time 
D capture 0.3 m Capturing distance 
g 1000 Reward scaling factor 
noise µ = 0, σ =0.1 Random noise of 3rd scenario  

Since identical agents are used for both players,  both 
agents share exactly the same architecture and 
hyperparameters described in Table2. 

Table 2 : TD3 hyper-parameters 
Parameter Value 

Discount factor γ 0.99 

Soft update factor τ 0.005 

Target policy noise σ  0.2 

Policy noise clipping c 0.5 

Actor update delay d 2 

Actor layers sizes [256, 256, 1] 

Actor activation [Relu, Relu, tanh] 

Critic layers sizes [256, 256, 1] 

Critic activation [Relu, Relu, None] 

Learning rate for actor 0.0003 

Learning rate for critic 0.0003 

Optimizer Adam 

Replay memory size B 1000000 

Minibatch size 256 

In the first training scenario, we used the penalty reward 
described in (14), However, as shown in figure 4, the 
number of evader wins was very low compared to the 
failures. Therefore, the reward described in (15) was 
introduced to indicate to the agent that it is getting close 
to the boundaries, and that it must escape this zone. The 
width of the buffer zone influences the training. In fact, 
the buffer zone reduces the game area, and discourage 
both agents from exploring trajectories passing by the 
buffer zone. Therefore, the buffer zone was narrowed to 
b=0.4 m. In this case the number of the evader’s wins 
increased, but unexpectedly the number of failures 
increased also. 
Another training scenario was also considered. In fact, in 
real life practice, despite taking the right actions, a robot 
can find itself out of the desired position, due to several 
internal and external factors influencing the motion. 
Therefore, the agents were trained in the case imperfect 
actions altered by the addition of random normal error 
(noise), which generates new positions different from the 
intended ones.  This training scenario will obviously 
reduce the number of wins for both agents and increase 
the number of failures, especially for the evader which 
takes riskier paths.  

VI.SIMULATION AND COMPARATIVE RESULTS 

One of the main challenges encountered in this work was 
how to evaluate if an agent is performing well. As 
explained earlier, policy gradient algorithms can diverge 
at any time during learning even if trained against a fixed 
trajectory, and as shown in Fig. 5, TD3 makes no 
exception. 
 



  

 
Figure 1: score per episode when p is trained against a 

fixed evasion trajectory 

When training a single agent, it is possible to rely on the 
episode score to find the best performing agent. But, 
when training simultaneously 2 agents having different 
goals, it is harder to tell if the agent with a high score 
found a better policy or if the opponent diverged. 
Nevertheless, despite the occasional divergences, the 
later episodes had much better trajectories than the earlier 
episodes.  
Moreover, since the game step-up is exactly the one 
described in [7]. This work showcases that, given the 
linear velocities and sampling time, and with the use of 
MPC with a prediction horizon N=5, the pursuer will 
inevitably capture the evader at around 47 seconds and 
that the evader delays capture by moving as close as 
possible to the game frontiers. These results are taken as 
a benchmark for comparison.  
Therefore, best agents were selected according to the 
following criteria: 

 Consider only the last 200 episodes  
 The number of steps must be above 400, 

equivalent to 40 seconds. 
 Take the agent with the highest score 
 Additional check of the validity of the episode 

Next the simulation for the evader then the pursuer best 
episodes are presented, for each training scenario. 

A.Self-play scenario 

Figure 6 shows the evader moving along the game area 
limit, until it approaches the corner, where it decides to 
make a turn following the horizontal area limit. 
Approaching the capture, the evader tries a last 
maneuver. At this point the pursuer is so well trained that 
it anticipates the maneuver: 

 
Figure 2: Simulation of agents trained using self-play: (a) 

game trajectories; (b) distance evolution through game; (c) 
Circular histogram of Pursuer actions; (d) Histogram of 

evader actions 

The evader, similar to [7], tries to keep as close as 
possible to the game area limit. However, the pursuer acts 
a little different than [7], in fact the pursuer does not 
follow the exact path of the evader, but rather follows a 
trajectory that traps the evader into the corner in order to 
close the gap, after the evader makes the turn, to make a 
capture at around 40 seconds. This is confirmed by the 
histograms as most of the actions are condensed around 
0 rad/s while few extreme actions are taken. 

B.Self-play scenario with a buffer zone 

Figure 7 shows the result of the simulation when the 
agents are trained via self-play but with a buffer zone. 

 
Figure 3: Simulation the PEG with agents trained using 

self-play + buffer zone approach 

As illustrated in Fig. 7, the same behavior seen in 
Erreur ! Source du renvoi introuvable. is confirmed. 
Nevertheless, it is important to notice that both agents 
have trajectories slightly skewed to the center of the 
game area.  



  

C.Self-play scenario with noise 

Figure 8 shows the result of the simulation when the 
agents are trained via self-play but in the presence of 
noise: 

 

 
Figure 4: Simulation of the PEG with agents trained via 

self-play with noisy actions 

As illustrated in the figure, the histograms are more 
dispersed while more extreme actions are taken by both 
agents, compared to the previous scenarios. It is 
explained by the noise injection on the actions. 
In this case the evader tried also a last chance maneuver 
just before capture, but it failed to escape. 
The agents succeed to find similar trajectories as the two 
previous training cases. Also, the capture time is slightly 
higher than the self-play capture time, but it remains 
lower than the benchmark.  
It is justified by the fact that the training considered noise 
injection, resulting in agents robust to uncertain 
positions. 

CONCLUSION 

In this work an algorithm to train two twin delayed deep 
deterministic policy gradient agents was developed to 
play a pursuit evasion game in a bounded game area. Two 
alternate reward functions were introduced to improve 
the training. The game results were compared to a 
benchmark using a more conventional, yet efficient, 
technique. 
By choosing the self-play approach, the agents were 
trained simultaneously, avoiding a 2-step training 
process generally encountered in other research papers. 
This self-play approach has the advantage of eliminating 
human intervention and bias for training, and the need to 
engineer fixed trajectories for the pursuer pre-training.  
Our TD3 agents were able to surpass the performances of 
the benchmark, by reducing the capture time. Our pursuer 
proved to be behaving intelligently, by taking advantage 
of the constraints of the game area, instead of just 
following the evader path. Our evader shows also an 
intelligent behavior by maneuvering in the approach of 
capture. 

Moreover, we proved, that agents trained in the presence 
of noise, perform as good as the normal agents and adjust 
their policy to account for the noise. The later scenario 
paves the path for a real-life implementation on real 
robots. 
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