
HAL Id: hal-04638328
https://hal.science/hal-04638328v1

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pursuit-Evasion Game in a bounded game area using
deep reinforcement learning and self-play

Mohamed Nadhir Daoud, Hassene Seddik, Ahmad Hably, Chiraz Ben Jabeur

To cite this version:
Mohamed Nadhir Daoud, Hassene Seddik, Ahmad Hably, Chiraz Ben Jabeur. Pursuit-Evasion Game
in a bounded game area using deep reinforcement learning and self-play. CoDIT 2024 - 10th Inter-
national Conference on Control, Decision and Information Technologies, Jul 2024, La Valette, Malta.
�hal-04638328�

https://hal.science/hal-04638328v1
https://hal.archives-ouvertes.fr

1

Abstract— Pursuit-evasion game (PEG) problems are a
type of dynamic differential games that received a lot of
attention thanks to the ability of this framework to
articulate many real-life applications such as in military,
aerospace and mobile robotics. Several techniques are used
to solve such games, but recently techniques relying on deep
reinforcement learning (DRL) gained traction, in particular
DRL techniques adapted for problems with continuous
action spaces such as Deep Deterministic policy gradients
(DDPG). This paper explores the case of a one versus one
pursuit-evasion game in a constrained game area, using two
twin delayed DDPG (TD3) agents that are trained
simultaneously from scratch via self-play only. The
simulation results show that agents were performing better
than other conventional methods such as Non-linear Model
Predictive Control (NMPC).

I.INTRODUCTION

Mobile robotics is a multi-disciplinary field where robots
with a mobility ability autonomously execute specific
tasks. One of the core disciplines of mobile robotics is
motion planning and control where intelligent techniques
are used to guide the robot navigation. Pursuit-evasion
game is an example of a dynamic competitive game
where two or more robots are playing a zero-sum game.
In its simplest form, a pursuer p chases an evader e with
the goal of capturing it, while the evader tries to avoid
being captured. This simple framework is adapted to
many research fields such as in military, surveillance,
aerospace and mobile robotics.
The first pursuit-evasion game was introduced by Isaacs
under the label “Homicidal chauffeur” [1]. Isaac
proposed a game where a fast driver with low
maneuverability attacks a slower but agile pedestrian. [2]
studied a stochastic version of the homicidal chauffeur
game by considering the effect of noise on the game. In
more recent work, [3] studied the case of a nonlinear
stochastic pursuit-evasion game where the agents were
subject to noisy measurements. [4] treated the case of a
game with a constrained environment that included
moving obstacle. [5] applied real-time nonlinear model
predictive control to a pursuit-evasion game of
autonomous aircraft. Similarly [6] non-linear model
predictive control to a game between unmanned aerial
and an unmanned ground vehicles. [7] applied limited
information NMPC in a constrained environment to a one
versus one pursuit-evasion game. As for the use of
reinforcement learning in pursuit-evasion games, [8]
used Q-learning, a reinforcement learning algorithm to
directly train the individual agents in a 4 vs 1 game. [9]
used also Q-learning, but to fine tune the parameters of
the fuzzy logic controller for agents operating in a
continuous action space. [10] studied a similar set-up but

1 with École Nationale d'Ingénieurs de Tunis, hassene.seddik@uvt.tn
 2 with Univ. Grenoble Alpes, CNRS, Grenoble INP*, GIPSA-lab, Grenoble
38000, France, ahmad.hably@grenoble-inp.fr

using multi-agent twin delayed deep deterministic policy
gradient (TD3), a more advanced DRL technique.
In the case of deep learning for one vs one game, [11]
considered the continuous aspect of action spaces in
robotics, by using DDPG agents to train both evader and
pursuer. However, game environment had neither
obstacles nor boundaries, while the agents were trained
over 2 separate phases: phase 1 where only the pursuer
learns and phase 2 where both agents learn by playing
against each other. [12] used Deep Q-network (DQN) to
train both the pursuer and the evader in a constrained
environment, while comparing two training approaches,
namely curriculum learning and self-play. However, due
to the use of DQN, the authors were forced to discretize
and limit the allowed actions, so to avoid managing a
continuous action space.
The goal of this work is to use TD3 for a one vs one
pursuit-evasion game, in a constrained environment, to
train in single phase simultaneously the pursuer and
evader agents, through the use of self-play. Some
reinforcement learning basics and recent techniques will
be introduced in section I. In section II, a game
formulation adapted to the use of reinforcement learning
is introduced. Section III provides insight on the reward
function used for training. Training algorithm,
parameters and evolution are presented in section IV.
Section V provides the simulation results and a
comparison with a benchmark.

II.REINFORCEMENT LEARNING

A.Basics

Reinforcement learning is a type of machine learning
where an agent learns, through trial and error and
feedback from the environment, which actions to take in
a given situation. Given the environment state 𝑠, the
agent chooses the action 𝑎 to perform. Once the action is
executed the state of the environment changes
accordingly giving a new state 𝑠′, and the agent receives
a corresponding reward 𝑟. Reinforcement learning uses
Markov Decision Process (MDP) framework to define
the interaction between a learning agent and the
environment [13], meaning that the probability of
reaching the state 𝑠′ depends only on the immediately
preceding state 𝑠 and action 𝑎.
The learning process is generally carried through training
episodes composed of a sequence of finite number of
transitions or steps, where the final state of an episode is
called a terminal state. After each step 𝑘 the agent is
given a reward 𝑟௞ . The policy 𝜋 of an agent, described in
(1), is the probability of choosing the action 𝑎 given the
state 𝑠:

Pursuit-Evasion Game in a bounded game area using deep
reinforcement learning and self-play

 Mohamed Nadhir DAOUD1, Hassene SEDDIK1, Ahmad HABLY2 and Chiraz BEN JABEUR1

𝜋(𝑠, 𝑎) = 𝑃(𝑎|𝑠) ()
The state value 𝑉గ , expressed in (2), is the expected
return starting from state 𝑠 and following the policy 𝜋
thereafter, until the end of the episode.
𝑉గ(𝑠) = 𝐸(∑ 𝛾௞𝑟௞| 𝑠௞) (1)
where 𝛾 ∈ [0,1] is a discount factor used to discount
future rewards.
Similarly, the action value 𝒬గ, expressed in (3), is the
expected return after performing action A starting from
state S, and following the policy 𝜋 thereafter:
𝒬గ(𝑆, 𝐴) = 𝐸(∑ 𝛾௞𝑟௞| 𝑠, 𝑎௞) (2)
As stated in (4), the optimal policy is the action that
maximizes the expected return or the action value of the
agent:
𝜋௢௣௧ (𝑠, 𝑎) = argmax஺ 𝒬(𝑠, 𝑎) (3)

B.Deep Reinforcement Learning

[14] introduced and used deep Q-network (DQN) to play
classic Atari games. DQN is known to perform poorly in
games with continuous action space, such as control
strategy in robotics. Many approaches were introduced to
handle continuous action spaces such as Deterministic
Policy Gradient (DPG) [15] and actor & critic approaches
such as [16]. [17] introduced deep deterministic policy
gradient (DDPG) for continuous control, which
combines the benefits of DQN, DPG and actor-critic
framework . Later, [18] Twin Delayed DDPG or TD3,
improving over DDPG shortcomings .

C.TD3 agent

Twin delayed deep deterministic network TD3 is a state-
of-the-art policy gradient deep learning algorithm
tailored for problems with a continuous action space.TD3
has a main actor-critic network to be trained, and a target
actor-critic network, that is softly updated from the main
actor-critic network. In the main actor-critic network, the
actor 𝜋థ is fed with the current state 𝑠 as input, so it
outputs an action 𝑎 to be executed by the agent. The critic
networks 𝒬ఏభ

 and 𝒬ఏమ
 take the current state 𝑠 and the

action 𝑎 as inputs, to output two estimations 𝒬ଵ and 𝒬ଶ
of the action value.
Similarly, in the target actor-critic network, the target
actor 𝜋థᇲ

ᇱ is given the current state 𝑠ᇱ as input, so it

outputs an action 𝑎ᇱ. The critic networks 𝒬
ఏభ

ᇲ
ᇱ and 𝒬

ఏమ
ᇲ

ᇱ

take the new state 𝑠ᇱ and 𝑎෤ᇱ, which is 𝑎ᇱ altered by a
clipped random noise 𝜖, as inputs to output two
estimations of the action value 𝒬ଵ

ᇱ et 𝒬ଶ
ᇱ .

𝜙, 𝜃ଵ, 𝜃ଶ are respectively the weights of the actor
network and the two critic networks, learned through
training. 𝜙ᇱ, 𝜃ଵ

ᇱ , 𝜃ଶ
ᇱ are respectively the weights of the

target actor network and the two target critic networks,
updated periodically using the smooth update factor 𝜏 in
(6).
𝑤ᇱ ← 𝜏 𝑤 + (1 − 𝜏) 𝑤 ()
Where 𝑤 is either 𝜙, 𝜃ଵ, 𝜃ଶ and 𝜏 ∈ [0,1] is the smooth
update factor. As shown in algorithm 1, similar to other
deep reinforcement learning strategy, the training
requires the usage of an experience replay buffer.

Algorithm 1: TD3
Initialize pursuer networks 𝜋థ, 𝒬ఏభ

 and 𝒬ଶ with random parameters 𝜙, 𝜃ଵ, 𝜃ଶ
Initialize pursuer target networks 𝜙ᇱ ← 𝜙 , 𝜃ଵ

ᇱ ← 𝜃ଵ , 𝜃ଶ
ᇱ ← 𝜃ଶ

Initialize pursuer Replay Buffer 𝐵
for t =1 to T do
 Select action with exploration noise 𝑎~𝜋థ೛

+ 𝜖 ,

 𝜖 ∼ 𝒩(0, 𝜎) and observe reward 𝑟 and new state 𝑠ᇱ
 Execute actions and observe rewards 𝑟 and new state 𝑠ᇱ
 Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠ᇱ) in 𝐵
 Sample mini batch of N transitions (𝑠, 𝑎, 𝑟, 𝑠ᇱ) from 𝐵
 𝑎෤ ← 𝜋థᇲ

ᇱ (𝑠ᇱ) + 𝜖௣ , where 𝜖 ∼ 𝑐𝑙𝑖𝑝(𝒩(0, 𝜎෤), −𝑐, 𝑐)

 y ← 𝑟 + 𝛾 𝑚𝑖𝑛୧ୀଵ,ଶ 𝒬
ఏ೔

ᇲ
ᇱ (𝑠ᇱ, 𝑎෤)

 Update critics 𝜃௜ ← 𝑎𝑟𝑔𝑚𝑖𝑛ఏ೔ 𝑁
ିଵ ∑(y − 𝒬ఏ೔

 (𝑠, 𝑎))ଶ
 if t mod d then
 Update 𝜙 by deterministic policy gradient:
 ∇థ𝐽(𝜙) = 𝑁ିଵ ∑ ∇௔𝒬ఏభ

(𝑠, 𝑎) |௔ୀ గഝ(௦)∇థ𝜋థ(𝑠)

 Update target Networks
 𝜃௜

ᇱ ← 𝜏𝜃௜ + (1 − 𝜏)𝜃௜
ᇱ

 𝜙ᇱ ← 𝜏𝜙 + (1 − 𝜏)𝜙ᇱ
 end if
end for

While not indicated in algorithm 1, the agent is not used
during the first W steps of learning and the actions are
rather generated randomly and stored into replay buffer.
Depending on the game, the authors used between 1000
and 10000 of these warmup steps.

III.GAME FORMULATION AND NOTATIONS

In this work, a pursuit-evasion game between two non-
holonomic robots is studied in a bounded game area,
where the pursuer p aims to capture the evader e as soon
as possible, while the evader e aims to avoid or delay
being captured by p. The robots start from the same initial
conditions and the positions and orientations of both
robots are perfectly known at each step of the game.
Every training episode has a maximum number of steps,
that if reached, the evader wins the game. The pursuer
wins only when it catches the evader before the end of
the episode.
The position of the robot is given by the cartesian
coordinates of its center (𝑥௜ , 𝑦௜), while its orientation 𝜃௜
is the angle of the robot relative to the x-axis, where i is
either p for the pursuer or e for the evader.
At each step k we measure the Euclidian distance D
between the centers of the two robots as presented in (7).
The pursuer captures the evader when the distance
between the robots D is lower than Dcapture.

𝐷(௞) = ට(𝑥௣
(௞)

− 𝑥௘
(௞)

)ଶ + (𝑦௣
(௞)

− 𝑦௘
(௞)

)ଶ

 (4)
The robots play in a squared game area of side 2L. The
game is stopped if the pursuer or the evader reach the
frontiers of the game area. In this case, neither of the
robots wins nor loses, but the robot that has reached the
boundary has failed.
As in [7], both robots operate at a constant linear velocity
𝑣௜ , but the pursuer will have a slightly higher speed than
the evader. On the other hand, both agents are trained to
produce the appropriate angular velocity for the next step

𝜔௜
(௞), as long as |𝜔௜

(௞)
| < 𝜔௠௔௫. However, both agents

have the same maximum steering velocity 𝜔௠௔௫,
meaning that no robot have an agility advantage. To be
able to train the TD3 agents using reinforcement
learning, the observations, the actions the transition
function as well as the reward function must be designed.
The reward function will be discussed in section IV.

A.Presenting the game observation

An observation O is the observed state of the game at a
given time step. It is represented by the positions and
orientation of both robots in (8):

𝑂(௞) = (𝑥௣
(௞)

, 𝑦௣
(௞)

, 𝜃௣
(௞)

, 𝑥௘
(௞)

, 𝑦௘
(௞)

, 𝜃௘
(௞)

)
 (5)
When using neural networks for learning, it is common
practice to normalize the inputs. The raw observations
are scaled down to values in [0,1]. Therefore, 𝑠 in (9) is
the normalized observation that serves as input to the
neural net and saved in the replay buffer:

𝑠(௞) = (
௫೛

(ೖ)

௅
,

௬೛
(ೖ)

௅
,

ఏ೛
(ೖ)

௠௢ௗ ଶగ

ଶగ
,

௫೐
(ೖ)

௅
,

௬೐
(ೖ)

௅
,

ఏ೐
(ೖ)

௠௢ௗ ଶగ

ଶగ
)

 (6)

B.Presenting the agent action

As the linear velocities 𝑣௜ remain constant through the
game, there is no action to be produced for the speed. The

only action to be produced is the steering velocity 𝜔௜
(௞).

Therefore, the size of the action domain is 1.
The actor network produces a value in [-1, 1], which is
multiplied by the maximum steering velocity 𝜔௠௔௫ for
the transition.

C.Presenting the transition function

To make a transition from a state 𝑠 to the next state 𝑠ᇱ,
the kinematic model of the robot must be introduced. In
fact, at each step, a non-holonomic mobile robot is
represented by:

- the coordinates (x,y) of the center of the robot
relative to the center of the game area.

- 𝜃 which is the orientation its angle relative to
the x-axis.

- 𝑣 its linear velocity
- 𝜔 its angular velocity.

The kinematic model of such robot is given by (10) [19].

ቐ

𝑥̇௜ = 𝑣௜ 𝑐𝑜𝑠𝜃௜

𝑦̇௜ = 𝑣௜ 𝑠𝑖𝑛𝜃௜

𝜃̇௜ = 𝜔௜

 (7)

The learning is conducted through discrete steps,
therefore, the discrete version of (10), given by (11), is
used.

൞

𝑥௜
(௞ାଵ)

= 𝑥௜
(௞)

+ 𝑇௦. 𝑣௜
(௞)

. 𝑐𝑜𝑠𝜃௜
(௞)

𝑦௜
(௞ାଵ)

= 𝑦௜
(௞)

+ 𝑇௦ . 𝑣௜
(௞)

. 𝑠𝑖𝑛𝜃௜
(௞)

𝜃௜
(௞ାଵ)

= 𝜃௜
(௞)

+ 𝑇௦ . 𝜔௜
(௞)

 (8)

Where the subscript k denotes the step and 𝑇௦ the
sampling time and i is either p for the pursuer or e for the
evader.
Using (7), the distance 𝐷 between the two robots is
computed after each transition and fed to the reward
function. After the reward is generated, every robot stores
its transition (𝑠, 𝑎௜ , 𝑟௜ , 𝑠ᇱ) in the related memory buffer
𝐵௜ .

IV.PRESENTING THE REWARD FUNCTION

A.Step reward

Identifying the appropriate reward is critical for a
successful training. As the positions of the robots evolve
during the game, the criteria that changes accordingly is
the distance D between the robots. We tested using - D as
a reward for p and D as a reward for e. However, while
the pursuer succeeds to learn a good strategy, the evader
keeps moving in circles and fails to learn any appropriate
strategy.
The alternative is to use the gradient of distance from one
step to the next:
𝑟ଵ = ∆𝐷 ∗ 𝑔 = (𝐷௞ − 𝐷௞ାଵ) ∗ 𝑔 (9)
where 𝑔 = 1000 is a reward scaling coefficient. The
pursuer receives the reward 𝑟ଵ, which, when positive,
means that the pursuer is closing the gap. On the other
hand, the evader receives a reward of -𝑟ଵ, which, when
positive, means that the evader is distancing the pursuer.
As pursuer gets closer to the evader, the 𝑟ଵ will approach
0, therefore the scaling factor is used to keep giving
meaningful feedback to the agent.

B.Outcome reward

Depending on the outcome of the game the pursuer
receives the reward 𝑟ଶ described in (13). The evader
receives -𝑟ଶ.

𝑟ଶ = ቐ

+1000, 𝑖𝑓 𝐷 ≤ 𝐷௖௔௣௧௨௥௘

−1000, 𝑖𝑓 𝑠𝑡𝑒𝑝 = 1000
0, otherwise

 (10)

C.Time penalty

In order to encourage the pursuer to catch the evader as
soon as possible, it is given a small penalty with every
new step. The opposite applies also to the evader, a small
reward is given to the evader for every step, 𝑟ଷ = −10.

D.Failure penalty

To account for the playground frontiers, the robot that
reaches the limits of the play area receives a large penalty
𝑟ସ. Two variants of this penalty are used. The simplest
form of the failure penalty is described in (14).
𝑟ସ =

൜
−2000, if | 𝑥௜ | ≥ 𝐿 − 2𝑅௥௢௕ or | 𝑦௜ | ≥ 𝐿 − 2𝑅௥௢௕

0 , if | 𝑥௜ | < 𝐿 − 2𝑅௥௢௕ and | 𝑦௜ | < 𝐿 − 2𝑅௥௢௕

 (11)
Where 𝐿 is the length of the game area and 𝑅௥௢௕ the
radius of the robot.
Another form of 𝑟ସ is given by (15), that gives a small
penalty when the robot enters a buffer zone of width 𝑏,
prior to reaching the limit of the play area.
𝑟ସ =

ቐ

−2000, 𝑖𝑓 | 𝑥௜ | ≥ 𝐿 − 2𝑅௥௢௕ 𝑜𝑟 | 𝑦௜ | ≥ 𝐿 − 2𝑅௥௢௕
−10, 𝑖𝑓 | 𝑥௜ | ≥ 𝐿 − 2𝑅௥௢௕ − 𝑏 𝑜𝑟 | 𝑦௜ | ≥ 𝐿 − 2𝑅௥௢௕ − 𝑏

0, 𝑖𝑓 | 𝑥௜ | < 𝐿 − 2𝑅௥௢௕ − 𝑏 𝑎𝑛𝑑 | 𝑦௜ | < 𝐿 − 2𝑅௥௢௕ − 𝑏

 (12)
A pursuer may face the situation of capturing the evader
at exactly the frontier of the game area. 𝑟ଶ and 𝑟ସ were
designed such as |𝑟ସ | ≫ |𝑟ଶ| in order to prevent the
pursuer from destroying itself for a capture.

E.Final reward

The final rewards are given by (16) and (17):
𝑟௣ = 𝑟ଵ + 𝑟ଶ + 𝑟ଷ + 𝑟ସ௣

 (13)

𝑟௘ = −𝑟ଵ − 𝑟ଶ − 𝑟ଷ + 𝑟ସ௘
 (14)

Note that even though the robots are playing a zero-sum-
game, 𝑟௣ and 𝑟௘ are not always symmetric, specifically
when one robot reaches the frontiers of the game area, in
this case only the failing robot receives a penalty. It was
designed so, in order to avoid rewarding arbitrary actions
of an agent, while it had nothing with the failure of the
other player.

V.TRAINING

Algorithm 2 details the training steps for two TD3
agents:

Algorithm 2: Training Algorithm
Initialize pursuer networks 𝜋థ೛

, 𝒬ఏభ೛
 and 𝒬ఏమ೛

with random parameters 𝜙௣, 𝜃ଵ௣ , 𝜃ଶ௣

Initialize pursuer target networks 𝜙௣
ᇱ ← 𝜙௣ , 𝜃ଵ௣

ᇱ ← 𝜃ଵ௣ , 𝜃ଶ௣
ᇱ ← 𝜃ଶ௣

Initialize evader networks 𝜋థ೐
, 𝒬ఏభ೐

 and 𝒬ఏభ೐
with random parameters 𝜙௘, 𝜃ଵ௘ , 𝜃ଶ௘

Initialize evader target networks 𝜙௘
ᇱ ← 𝜙௘ , 𝜃ଵ௘

ᇱ ← 𝜃ଵ௘ , 𝜃ଶ௘
ᇱ ← 𝜃ଶ௘

Initialize pursuer Replay Buffer 𝐵௣
Initialize evader Replay Buffer 𝐵௘
for ep =1 to M do
 steps ß steps + 1
 for k =1 to T do
 if steps < W then
 select random actions for p and e
 else
 𝑎௣ = 𝜋థ೛

(𝑠)

 𝑎௘ = 𝜋థ೐
(𝑠)

 Execute actions and observe rewards 𝑟௣, 𝑟௘ and new state 𝑠ᇱ
 Store pursuer transition (𝑠, 𝑎௣, 𝑟௣, 𝑠ᇱ) in 𝐵௣
 Store evader transition (𝑠, 𝑎௘ , 𝑟௘, 𝑠ᇱ) in 𝐵௘
 Sample mini batch of N transitions (𝑠, 𝑎௣, 𝑟௣, 𝑠ᇱ) from 𝐵௣
 𝑎෤௣

ᇱ ← 𝜋థ೛
ᇲ

ᇱ (𝑠ᇱ) + 𝜖௣ , where 𝜖௣ ∼ 𝑐𝑙𝑖𝑝(𝒩(0, 𝜎), −𝑐, 𝑐)

 Compute 𝑦௣ ← 𝑟 + 𝛾 𝑚𝑖𝑛௝ୀଵ,ଶ 𝒬ఏೕ೛
ᇲ

ᇱ (𝑠ᇱ, 𝑎෤௣
ᇱ)

 Update critics 𝜃௝௣ ← 𝑎𝑟𝑔𝑚𝑖𝑛ఏೕ೛
(

ଵ

ே
∑(𝑦௣ − 𝒬ఏೕ೛

 (𝑠, 𝑎))ଶ

 Sample mini batch of N transitions (𝑠, 𝑎௘, 𝑟௘ , 𝑠ᇱ) from 𝐵௘
 𝑎෤௘

ᇱ ← 𝜋థ೐
ᇲ

ᇱ (𝑠ᇱ) + 𝜖௘ , where 𝜖௘ ∼ 𝑐𝑙𝑖𝑝(𝒩(0, 𝜎), −𝑐, 𝑐)
 Compute 𝑦௘ ← 𝑟 + 𝛾 𝑚𝑖𝑛௝ୀଵ,ଶ 𝒬

ఏೕ೐
ᇲ

ᇱ (𝑠ᇱ, 𝑎෤௘
ᇱ)

 Update critics 𝜃௝௘ ← 𝑎𝑟𝑔𝑚𝑖𝑛ఏೕ೐
(

ଵ

ே
∑(𝑦௘ − 𝒬ఏೕ೐

 (𝑠, 𝑎))ଶ

 if k mod d then
 Update 𝜙௣ and 𝜙௘ by deterministic policy gradient:
 ∇థ೛

𝐽൫𝜙௣൯ =
ଵ

ே
∑ ∇థ೛

𝜋థ೛
(𝑠) ∇௔೛

𝒬ఏభ೛
൫𝑠, 𝑎௣൯ |௔೛ୀ గഝ೛(௦)

 ∇థ೐
𝐽(𝜙௘) =

ଵ

ே
∑ ∇థ೐

𝜋థ೐
(𝑠) ∇௔೐

𝒬ఏభ೐
(𝑠, 𝑎௘) |௔೐ୀ గഝ೐ (௦)

 Update target Networks
 𝜃௝௣

ᇱ ← 𝜏𝜃௝௣ + (1 − 𝜏)𝜃௝௣
ᇱ

 𝜃௝௘
ᇱ ← 𝜏𝜃௝௘ + (1 − 𝜏)𝜃௝௘

ᇱ
 𝜙௣

ᇱ ← 𝜏𝜙௣ + (1 − 𝜏)𝜙௣
ᇱ

 𝜙௘
ᇱ ← 𝜏𝜙௘ + (1 − 𝜏)𝜙௘

ᇱ
 end if
 end if
 end for
end for

Table 1 provides the main parameters of the training.

Table 1 : Game parameters
Parameter Value Description
State dimension 6
Action dimension 1
M 10000 Training episodes
P 1000 Steps per episode
W 10000 Warmup steps
𝑋௣ (-2,-8, π/2) Pursuer initial conditions

𝑋௘ (6,-6, 0) Evader initial conditions
L 10 m Game area length/2

b 0.4 Buffer zone width
𝜔௠௔௫ π/3 (rad/s) Maximum steering velocity
𝑣௣ 0.5 m/s Pursuer maximum velocity
𝑣௘ 0.48 m/s Evader maximum velocity
Rrob 0.1 m Robot radius
𝑇௦ 0.1 Sampling time
D capture 0.3 m Capturing distance
g 1000 Reward scaling factor
noise µ = 0, σ =0.1 Random noise of 3rd scenario

Since identical agents are used for both players, both
agents share exactly the same architecture and
hyperparameters described in Table2.

Table 2 : TD3 hyper-parameters
Parameter Value

Discount factor γ 0.99

Soft update factor τ 0.005

Target policy noise σ 0.2

Policy noise clipping c 0.5

Actor update delay d 2

Actor layers sizes [256, 256, 1]

Actor activation [Relu, Relu, tanh]

Critic layers sizes [256, 256, 1]

Critic activation [Relu, Relu, None]

Learning rate for actor 0.0003

Learning rate for critic 0.0003

Optimizer Adam

Replay memory size B 1000000

Minibatch size 256

In the first training scenario, we used the penalty reward
described in (14), However, as shown in figure 4, the
number of evader wins was very low compared to the
failures. Therefore, the reward described in (15) was
introduced to indicate to the agent that it is getting close
to the boundaries, and that it must escape this zone. The
width of the buffer zone influences the training. In fact,
the buffer zone reduces the game area, and discourage
both agents from exploring trajectories passing by the
buffer zone. Therefore, the buffer zone was narrowed to
b=0.4 m. In this case the number of the evader’s wins
increased, but unexpectedly the number of failures
increased also.
Another training scenario was also considered. In fact, in
real life practice, despite taking the right actions, a robot
can find itself out of the desired position, due to several
internal and external factors influencing the motion.
Therefore, the agents were trained in the case imperfect
actions altered by the addition of random normal error
(noise), which generates new positions different from the
intended ones. This training scenario will obviously
reduce the number of wins for both agents and increase
the number of failures, especially for the evader which
takes riskier paths.

VI.SIMULATION AND COMPARATIVE RESULTS

One of the main challenges encountered in this work was
how to evaluate if an agent is performing well. As
explained earlier, policy gradient algorithms can diverge
at any time during learning even if trained against a fixed
trajectory, and as shown in Fig. 5, TD3 makes no
exception.

Figure 1: score per episode when p is trained against a

fixed evasion trajectory

When training a single agent, it is possible to rely on the
episode score to find the best performing agent. But,
when training simultaneously 2 agents having different
goals, it is harder to tell if the agent with a high score
found a better policy or if the opponent diverged.
Nevertheless, despite the occasional divergences, the
later episodes had much better trajectories than the earlier
episodes.
Moreover, since the game step-up is exactly the one
described in [7]. This work showcases that, given the
linear velocities and sampling time, and with the use of
MPC with a prediction horizon N=5, the pursuer will
inevitably capture the evader at around 47 seconds and
that the evader delays capture by moving as close as
possible to the game frontiers. These results are taken as
a benchmark for comparison.
Therefore, best agents were selected according to the
following criteria:

 Consider only the last 200 episodes
 The number of steps must be above 400,

equivalent to 40 seconds.
 Take the agent with the highest score
 Additional check of the validity of the episode

Next the simulation for the evader then the pursuer best
episodes are presented, for each training scenario.

A.Self-play scenario

Figure 6 shows the evader moving along the game area
limit, until it approaches the corner, where it decides to
make a turn following the horizontal area limit.
Approaching the capture, the evader tries a last
maneuver. At this point the pursuer is so well trained that
it anticipates the maneuver:

Figure 2: Simulation of agents trained using self-play: (a)

game trajectories; (b) distance evolution through game; (c)
Circular histogram of Pursuer actions; (d) Histogram of

evader actions

The evader, similar to [7], tries to keep as close as
possible to the game area limit. However, the pursuer acts
a little different than [7], in fact the pursuer does not
follow the exact path of the evader, but rather follows a
trajectory that traps the evader into the corner in order to
close the gap, after the evader makes the turn, to make a
capture at around 40 seconds. This is confirmed by the
histograms as most of the actions are condensed around
0 rad/s while few extreme actions are taken.

B.Self-play scenario with a buffer zone

Figure 7 shows the result of the simulation when the
agents are trained via self-play but with a buffer zone.

Figure 3: Simulation the PEG with agents trained using

self-play + buffer zone approach

As illustrated in Fig. 7, the same behavior seen in
Erreur ! Source du renvoi introuvable. is confirmed.
Nevertheless, it is important to notice that both agents
have trajectories slightly skewed to the center of the
game area.

C.Self-play scenario with noise

Figure 8 shows the result of the simulation when the
agents are trained via self-play but in the presence of
noise:

Figure 4: Simulation of the PEG with agents trained via

self-play with noisy actions

As illustrated in the figure, the histograms are more
dispersed while more extreme actions are taken by both
agents, compared to the previous scenarios. It is
explained by the noise injection on the actions.
In this case the evader tried also a last chance maneuver
just before capture, but it failed to escape.
The agents succeed to find similar trajectories as the two
previous training cases. Also, the capture time is slightly
higher than the self-play capture time, but it remains
lower than the benchmark.
It is justified by the fact that the training considered noise
injection, resulting in agents robust to uncertain
positions.

CONCLUSION

In this work an algorithm to train two twin delayed deep
deterministic policy gradient agents was developed to
play a pursuit evasion game in a bounded game area. Two
alternate reward functions were introduced to improve
the training. The game results were compared to a
benchmark using a more conventional, yet efficient,
technique.
By choosing the self-play approach, the agents were
trained simultaneously, avoiding a 2-step training
process generally encountered in other research papers.
This self-play approach has the advantage of eliminating
human intervention and bias for training, and the need to
engineer fixed trajectories for the pursuer pre-training.
Our TD3 agents were able to surpass the performances of
the benchmark, by reducing the capture time. Our pursuer
proved to be behaving intelligently, by taking advantage
of the constraints of the game area, instead of just
following the evader path. Our evader shows also an
intelligent behavior by maneuvering in the approach of
capture.

Moreover, we proved, that agents trained in the presence
of noise, perform as good as the normal agents and adjust
their policy to account for the noise. The later scenario
paves the path for a real-life implementation on real
robots.

REFERENCES
[1] ISAACS, Rufus. Differential games: a mathematical theory with applications
to warfare and pursuit, control and optimization. Courier Corporation, 1999.
[2] PACHTER, Meir et YAVIN, Yaakov. A stochastic homicidal chauffeur
pursuit-evasion differential game. Journal of Optimization Theory and
Applications, 1981, vol. 34, p. 405-424.
[3] BASIMANEBOTLHE, Othusitse et XUE, Xiaoping. Stochastic optimal
control to a nonlinear differential game. Advances in Difference Equations, 2014,
vol. 2014, no 1, p. 1-14.
[4] FISAC, Jaime F. et SASTRY, S. Shankar. The pursuit-evasion-defense
differential game in dynamic constrained environments. In : 2015 54th IEEE
Conference on Decision and Control (CDC). IEEE, 2015. p. 4549-4556.
[5] EKLUND, J. Mikael, SPRINKLE, Jonathan, et SASTRY, S. Shankar.
Switched and symmetric pursuit/evasion games using online model predictive
control with application to autonomous aircraft. IEEE Transactions on Control
Systems Technology, 2011, vol. 20, no 3, p. 604-620.
[6] TZANNETOS, George, MARANTOS, Panos, et KYRIAKOPOULOS,
Kostas J. A competitive differential game between an unmanned aerial and a
ground vehicle using model predictive control. In : 2016 24th Mediterranean
Conference on Control and Automation (MED). IEEE, 2016. p. 1053-1058.
[7] SANI, Mukhtar, ROBU, Bogdan, and HABLY, Ahmad. Limited Information
Model Predictive Control for Pursuit-evasion Games. In : 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, 2021. p. 265-270.
[8] ISHIWAKA, Yuko, SATO, Takamasa, et KAKAZU, Yukinori. An approach
to the pursuit problem on a heterogeneous multiagent system using reinforcement
learning. Robotics and Autonomous Systems, 2003, vol. 43, no 4, p. 245-256.
[9] DESOUKY, Sameh F. et SCHWARTZ, Howard M. Self-learning fuzzy logic
controllers for pursuit–evasion differential games. Robotics and Autonomous
Systems, 2011, vol. 59, no 1, p. 22-33.
[10] DE SOUZA, Cristino, NEWBURY, Rhys, COSGUN, Akansel, et al.
Decentralized multi-agent pursuit using deep reinforcement learning. IEEE
Robotics and Automation Letters, 2021, vol. 6, no 3, p. 4552-4559.
[11] WANG, Maolin, WANG, Lixin, et YUE, Ting. An application of continuous
deep reinforcement learning approach to pursuit-evasion differential game. In :
2019 IEEE 3rd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), 2019. p. 1150-1156.
[12] QI, Qi, ZHANG, Xuebo, et GUO, Xian. A deep reinforcement learning
approach for the pursuit evasion game in the presence of obstacles. In : 2020 IEEE
International Conference on Real-time Computing and Robotics (RCAR), 2020.
p. 68-73.
[13] SUTTON, Richard S., and BARTO, Andrew G., “Reinforcement Leraning,
an introduction”, 2nd edition, MIT Press, Cambridge, MA, 2018, P
13,49,58,131,437
[14] MNIH, Volodymyr, KAVUKCUOGLU, Koray, SILVER, David, et al.
Human-level control through deep reinforcement learning. nature, 2015, vol. 518,
no 7540, p. 529-533.
[15] SILVER, David, LEVER, Guy, HEESS, Nicolas, et al. “Deterministic policy
gradient algorithms”, International conference on machine learning, 2014. p. 387-
395.
[16] PROKHOROV, Danil V. et WUNSCH, Donald C. Adaptive critic designs.
IEEE transactions on Neural Networks, 1997, vol. 8, no 5, p. 997-1007.
[17] LILLICRAP, Timothy P., HUNT, Jonathan J., PRITZEL, Alexander, et al.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.
[18] FUJIMOTO, Scott, HOOF, Herke, et MEGER, David. Addressing function
approximation error in actor-critic methods. In : International conference on
machine learning. PMLR, 2018. p. 1587-1596.
[19] JUALIN Luc, “Mobile Robobtics”, 6th Ed. Elsevier, 2015. p. 17-17

