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Abstract

This work focuses on construction of efficient
numerical methods for wave scattering by fractal
antennas, see [3]. It builds on the theoretical ba-
sis proposed in the recent work [1], which estab-
lishes boundary integral (BIE) formulations for
solving sound-soft Helmholtz scattering problems
on fractal screens. An important feature of such
formulations is the use of the Hausdorff measure
on fractals instead of the standard Lebesgue’s
measure. This adds an extra dimension to the
two classical difficulties encountered with numer-
ical BEM simulations, namely the evaluation of
boundary integrals and the fact that the under-
lying matrices are dense. Our idea is to exploit
the Hausdorff measure’s self-similar structure in
order to deal with these difficulties.
Keywords: Integral Equation, Fractal, Quadra-
ture, H-matrix.

1 Geometry of fractal scatterers

Let S = {Sℓ : x 7→ ρℓ Tℓx + bℓ : ℓ ∈ IL} with
IL := {0, . . . , L − 1}, a set of contractive simi-
larities in Rn, n = 2, 3, where 0 ≤ ρℓ < 1, Tℓ is
an orthogonal matrix, and bℓ ∈ Rn. Then the
scatterer Γ is the attractor of these similarities,
namely it is the unique non-empty compact set,
such that Γ =

⋃
ℓ Sℓ(Γ), see [1, Sec. 2.3].

This type of fractals can be seen as the limit
of an iterative process of decreasing pre-fractals
Fp ⊃ Fp+1, where Fp+1 :=

⋃
ℓ Sℓ(Fp), see Fig. 1,

We will additionally assume that the IFS satisfy

· · ·

· · ·

Figure 1: Converging sequences of pre-fractals.
Top: Cantor set, Bottom: Sierpiński triangle

the open set condition (OSC) [1, Sec. 2.3]. In
this case the Hausdorff dimension d of the fractal
is the solution of

∑
ℓ ρ

d
ℓ = 1. Moreover, the d-

Hausdorff measure µ of the fractal Γ is a non-zero
finite number (which we normalize to 1).

2 Setting of the problem

Given a wavenumber ω > 0 and an incident
field uin, we are interested in the scattered field:
usc ∈ H2

loc(Rn \ Γ) satisfying
−∆usc − ω2usc = 0, in Rn \ Γ,
usc = −uin, on Γ,

usc outgoing, at ∞.

(1)

As for standard scattering problem, one can re-
formulate (1) using Boundary Integral Equations,
see [1, Thm. 4.2]: Find φ : Γ 7→ C such that∫

Γ
G(x, y)φ(y) dµy = uin(x), ∀x ∈ Γ, (2)

where G is the Green function of the Helmholtz
equation. From φ, one then recovers usc via

usc(x) = −
∫
Γ
G(x, y)φ(y) dµy, x ∈ Rn \ Γ.

3 Space discretization

Eq. (2) is discretized, in its variational form,
using the Galerkin method called Hausdorff-
measure Boundary Element Method, see [1].

Thanks to OSC, we built a partition of Γ
into sub-fractals Γm := Sm1 ◦· · ·◦Smp(Γ), where
m = (m1, . . . ,mp) ∈ IpL. The Galerkin approxi-
mation space is then built with piece-wise con-
stant functions:

Vp := span
{
1Γm

∣∣m ∈ IpL
}

This leads to the matrix system AΦ = U in where
the coefficients of the matrix A are

Aα,β :=

∫∫
Γα×Γβ

G(x, y) dµy dµx. (3)

Therefore, the difficulties to be addressed are:

• compute efficiently Aα,β (Section 4);

• invert efficiently the matrix A (Section 5).
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4 High order quadrature

The most versatile method to compute integral
on Γ is the one-point barycenter rule [1]. How-
ever, this method is of low order. Our goal is to
construct higher order quadratures by exploiting
the property that, thanks to OSC,∫

Γ
f(x) dµx =

∑
ℓ
ρdℓ

∫
Γ
f(Sℓ(x)) dµ. (4)

We concentrate on the case where f is a continu-
ous function in an open set G ⊃ Γ. Take a space
P of polynomials, with dimP = J , and quadra-
ture points x1, . . . , xJ ∈ G that are P-unisolvent,
which allows defining Lagrange polynomials Li

such that Li(xj) = δij . We look for the quadra-
ture formula∫

Γ
f(x) dµx ≈ QJ(f) :=

∑
j
wj f(xj).

Our idea is to look for weights wj that integrate
exactly the constant function∑

j
wj = 1 (5)

and respect the property (4) in the sense that
QJ(f) =

∑
ℓ ρ

d
ℓ QJ(f ◦ Sℓ) which is shown to be

equivalent to

Sw = w, w = (wj) ∈ RJ ,

where Sij =
∑

ℓ ρ
d
ℓ Li(Sℓ(xj)). Therefore, we

compute the weights by solving

(P) Find w ∈ Ker(S − I) that satisfies (5).

Theorem 1 (i) The matrix S always admits the
eigenvalue 1. (ii) If the space P is S -invariant,
in the sense that P ◦ Sℓ ⊂ P, for any ℓ, the
eigenvalue 1 is simple and all other eigenvalues of
S are strictly less than 1 in modulus. In addition,
the quadrature formula is exact in P.

Note that the S -invariance property is sat-
isfied with P = Pk and also for P = Qk when
Tℓ = diag(±1, . . . ,±1) for any ℓ. In these cases,
Theorem 1 shows that (P) characterizes w and
that the iterated power method can be applied
to S for computing w. Moreover, the quadra-
ture formula being exact in P, the quadrature
error for the integral of f is directly related to
its interpolation error in P.

Remark 2 For S -invariant P the quadrature
weights are not necessarily positive, but they sat-
isfy the following bound

∑
j |wj | ≤ ΛJ , where ΛJ

is the Lebesgue constant of the points (xj).

When P = Qk, in the general case, numer-
ical evidence suggests that 1 is still a simple
eigenvalue and the largest in modulus. As the
quadrature is no longer exact in P , an additional
error, that can be analyzed, is committed.

Various numerical experiments will be pre-
sented at the conference.

5 A self-similar H-matrix approach

To deal with the density of the BEM matrices,
we use H-matrices, which are based on block
low-rank approximations. For our applications,
the low-rank block partitioning of the matrix is
guided by the self-similarity of the obstacle.

Moreover, we propose a method to assemble
low-rank blocks efficiently. To fix the ideas, let
us consider the case of ω = 0 and n = 3 (3d
Laplace case). The corresponding integral kernel
G satisfies the homogeneity relation

G(Sℓ(x), Sℓ(y)) = ρ−1
ℓ G(x, y), ∀ℓ ∈ IL.

This relation allows re-using low-rank approxi-
mation of a small number of large blocks to con-
struct effectively the low-rank approximation of
the remaining matrix blocks. Our current efforts
are dedicated to implementation and extending
these ideas to the low-frequency Helmholtz equa-
tion.
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