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Secure State Estimator for Uncertain Discrete-Time Linear Systems
Based on Set-Valued Consistency Techniques

Nacim Meslem and Ahmad Hably and Nacim Ramdani

Abstract— In a bounded error context, a secure set-valued
state estimator for a class of systems described by a linear
discrete-time difference inclusion is introduced in this con-
tribution. The proposed design approach is based on set-
valued computation combined with elimination by consistency
techniques. More formally, we will show that a fusion between
data provided by a set-valued predictor and those generated
by a set-valued estimator allows one: (i) To obtain guaranteed
state enclosures in the presence of additive and bounded state
disturbance and measurement noise; (ii) To be able to detect
faulty behaviors of the system and (iii) To be insensitive
to a certain class of cyber-attacks. A numerical example is
introduced to illustrate the performance of the proposed secure
set-valued state estimator.

I. INTRODUCTION

Security against malicious attacks is a crucial issue in nowa-
day networked and cyber-physical systems [24], [8], [26], [23],
[5], [7], [14]. Cyber-physical systems refer to large platforms
composed by an interconnection of physical entities, digital
calculators and smart sensors. The interaction between these
heterogeneous elements is made possible thanks to a communi-
cation network. In this context, several actuators are operated
remotely by control laws computed from remotely collected
data. Cyber-physical systems are used in industry as well as
in the domestic and urban life (self-driving cars, etc.). As
for a network of computers that could be attacked by viruses
(malware), a cyber-physical system can be vulnerable due to
its communication network. Indeed, a malicious attacker can
unlawfully access and affect the system data that defines its
desired behavior, which leads to degrade its performance. The
consequence of a such interference could be fatal for the system
safety. In fact, the corrupted data can be used to remotely
operate the critical entities of the system, which could render
the cyber-system completely unstable leading to explosion or
disintegration. Some famous examples of cyber-attacks can be
found in [12], [3], [11], [25].

This work aims at contributing to design novel state esti-
mation strategies that are resilient against adversarial attacks,
robust in the presence of process and measurement noise and
are able to detect fault occurrences. Notice that, an attack
can be defined as a discrete action taken by an agent and
intended to significantly disrupt the normal behavior of the
cyber-physical system without being detected by the classical
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monitoring system. Indeed, a typical characteristic of a cyber-
attack is the concealment. That is, an attacker will tend to mask
their intrusion by trying to mislead the supervision process of
the cyber-physical system. For instance, by generating a faulty
but plausible scenario of the system behavior. In this work,
we will combine set-valued state estimation and prediction ap-
proaches [22], [19], [21] with consistency techniques to tackle
the following key points in a bounded error context:

• Guarantee: Despite the presence of additive uncertainties,
the objective is to provide reliable and bounded enclosures
of the actual state vector of the considered class of dynam-
ical systems.

• Fault detection: Based on set-membership tests, the occur-
rence of faults has to be detected and distinguished from
cyber-attacks.

• Resilience: The designed set-valued estimator has to keep
providing guaranteed state enclosure in the presence of
adversarial attacks.

• Accuracy: Improve the tightness of the computed state en-
closure by discarding inconsistent part between predicted
and estimated data.

The remaining parts of this note are organized as follows. In
Section II, first, we introduce the class of considered systems.
Then, a set-valued predictor and a set-valued state estimator are
presented, respectively. Section III is dedicated to introduce the
main contribution of this work. The structure of the proposed
algorithm is presented and its working principle is discussed.
In addition, the performance of the introduced secure set-valued
state estimator is illustrated in Section IV through a numerical
example. Section V ends this paper with a conclusion and some
perspectives.

II. SET-VALUED ESTIMATION

Consider the class of discrete-time systems whose dynamics
can be described by the following difference inclusion

xk+1 ∈ Axk +Buk +EW
yk ∈ Cxk + FV
x0 ∈ X0

(1)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny stand for the state
vector, input vector and output of the system, respectively. The
matrices A, B , C , D, E and F are assumed constant with
appropriate dimensions. The sets W , V and X0 are assumed
known a priori and defined as follows,

• W the feasible bounded set of the modeling error, which
includes the state disturbances and process noise.

• V the feasible bounded set of the output error, which
includes measurement noise and sensors inaccuracy.

• X0 the feasible bounded set of the initial state of the
system. That is at k = 0.



Unlike the classical point-valued state estimation approaches
[16], [17], [10], set-valued methods [18], [4], [19], [20] aim at
estimating a guaranteed enclosure of the actual state vector of
the system without requiring any statistical property about the
uncertain parts of the system. This objective is introduced more
formally in the next subsection.

A. Objective
From a mathematical point of view, set-valued state estima-

tion consists in characterizing outer approximations X̄k of the
reachable sets Xk of the uncertain system (1) that are consistent
with the available measurements. That is, we have to determine
at each time instant k the following set:

X̄k ⊇ Xk =



xk |
Consistency with system dynamics
xk = Axk−1 +Buk−1 +Ewk−1,

xk−1 ∈ Xk−1

wk−1 ∈ W
and

Consistency with measurements
Cxk ∈ ym

k − FV


(2)

where ym
k stands for the measured value of the system output

at the time instant k. Moreover, set-valued state estimators have
to guarantee the boundedness of the computed outer enclosure
X̄k of the actual state vector xk.

B. Set-valued predictor
The state enclosure defined in (2) can be over-approximated

without using measurement as stated in the following proposi-
tion.

Proposition 1: [21] Let b0 = Bu0 and F̄0 is a set satisfy-
ing F̄0 ⊇ EW . Then, for all k ≥ 1, the following set-valued
predictor,

X̄ p
k = AkX̄0 ⊕ F̄k−1 + bk−1

F̄k = AkF̄0 ⊕ F̄k−1

bk = Abk−1 +Buk,
(3)

provides a tight over approximation of the reachable set of
the uncertain discrete-time system (1). That is, ∀wk ∈ W and
x0 ∈ X0 ⊆ X̄0, the actual state vector of system (1) is inside
the computed set X̄ p

k (∀k ≥ 0, Xk ⊆ X̄ p
k ). Moreover, if A is a

Schur stable matrix, the generated sets X̄ p
k by (3) are bounded

and their size is converging.
Remark 1: Notice that, the symbol ⊕ used in (3) stands for

the Minkowski sum between two sets. That is, the returned set
by this operation is formed by adding each vector in the first set
to each vector in the second set. ◦

Remark 2: In Proposition 1 and throughout the paper, by a
size of a set we mean the largest distance between its center
and its endpoints. Moreover, by convergence we mean that at
the steady state, when k goes towards infinity, this size is lower
than a given constant. ◦

Case of closed-loop systems: For the sake of simplicity, the
proposed secure estimation strategy is presented in the case of
open-loop linear systems. However, it is worth pointing out that,
any closed-loop linear system with a measured state feedback
control law,

uk = −Kxmes
k +Hyref

k (4)

where K ∈ Rnu×nx stand for the state feedback gain, H ∈
Rny×nu is the pre-filter gain and the measured state vector
xmes
k satisfies

xmes
k ∈ xk ⊕ Vx (5)

with Vx is the feasible set of the measurement error, can be
also considered by Proposition (1). Indeed, it is straightforward
to show the closed -loop dynamics can be written in the suitable
form

xk+1 ∈ Aclxk +Bcly
ref
k +EclWcl (6)

where Acl = A − BK, Bcl = BH and Ecl = [E, −BK].
Notice that by Wcl = {W;Vx} one denotes a Cartesian set
product in which the component Vx is related to the mea-
surement error introduced in (5). Thus, in this case, under the
controllability assumption on the pair (A,B) one can state that
there always exists state feedback gains K such matrix Acl is
Schur stable. That is, the convergence property of Proposition
1 is guaranteed.

C. Set-valued estimator

In the case where measurement are available, under the
observability assumption of the pair (A,C), Proposition 2
introduces a set-valued state estimator that characterizes the set
defined in (2).

Proposition 2: [22] Let M = A−LC, Ē0 = X̄0 ⊕ (−x̂0)
and R̄0 ⊇ GD where G = [E−LF] and D = {W;V}. Then,
for all k ≥ 1, the following set-valued estimator,

x̂k+1 = Mx̂k +Buk + Lym
k

Ēk+1 = Ak+1Ē0 ⊕ R̄k

R̄k+1 = Ak+1R̄0 ⊕ R̄k

(7)

generates accurate enclosures X̄ e
k+1 = x̂k+1 ⊕ Ēk+1 of the

reachable set of the uncertain discrete-time system (1). That is,
∀wk ∈ W , vk ∈ V and x0 ∈ X0 ⊆ X̄0, the actual state vector
of system (1) is enclosed inside the estimated set X̄ e

k .
Remark 3: Note that, matrix L ∈ Rnx×ny used in (7)

stands for the observer gain that is applied to ensure the Schur
stability of the matrix M. ◦

III. MAIN RESULTS

Based on the generated state enclosures X̄ p
k and X̄ e

k , we
propose in this section a data fusion strategy that allows one
to achieve the following objectives:

• Objective 1: Increase the accuracy of the computed enclo-
sure of the actual state vector of the uncertain system. To
reach that, inconsistent parts between the sets X̄ p

k and X̄ e
k

has to be discarded.
• Objective 2: Detect adversarial attacks and remove cor-

rupted data to be able to preserve the guarantee of the esti-
mated state enclosure. That is, the designed state estimator
has to be resilient against this kind of anomaly.

• Objective 3: Detect faults and alert the user about their
presence. Furthermore, the designed estimator has to be
able to distinguish between faults and adversarial attacks.

At this stage, it is worth pointing out that in this work
faults and adversarial attacks are differentiated in the following
manner:

• Cyber-attacks case: A malicious agent can inject cor-
rupted data in the state estimation algorithm. That is, in
this case, the Luenberger observer in (7) is supplied by
wrong inputs defined by,

ua
k = uk + auk

ya
k = ym

k + ayk

x̂k+1 = Mx̂k +Bua
k + Lya

k

(8)



where auk and ayk stand for the wrong data injected
by an hacker. In this framework, the considered attacks
are stealthy. That is, these attacks cannot be detectable by
applying the classical analysis of the residual signal,

eyk = ym
k − ŷk. (9)

where ŷk = Cx̂k. Notice that the ability of attacks to
be stealthy is their main characteristic that allows one to
distinguish them from classical faults.

• Faulty case: In this context, we consider the case where
physical faults (breakdowns or deterioration) appear on
the system actuators and sensors. That is, the actual inputs
of the system are no more valid and the measured value
of its outputs via the sensors are not correct. The faulty
inputs/outputs of the system are defined by,

uf
k = uk + fak

yf
k = ym

k + fsk
(10)

where fak stands for the actuators faults while fsk stands
for the sensor faults. In these situations one can represent
the real system as follows,

xk+1 = Axk +Buf
k +Ewk

yf
k = Cxk + Fvk + fsk

(11)

Moreover, we assume that these faults are detectable from
the residual signal (9). Notice that, in the introduced set-
valued framework, the detection test is defined as follows,
that is:

ym
k /∈ Ȳp

k = CX̄ p
k (12)

Remark 4: It is worth pointing out that, in this setting, when
the system is subject to attacks, the set-valued estimator (7) uses
wrong data (ua

k, ya
k); and in the case of the faults occurrence

it utilizes the faulty data (uf
k , yf

k ). However, the set-valued
predictor (3) does not depend either on the faulty data nor on
the corrupted data by an malicious attacker. This difference
between the two state enclosure generators (7) and (3) is the
cornerstone on which the proposed secure state estimator in this
work is designed. ◦

The proposed secure set-valued state estimator is structured
in the following algorithm,
Algorithm 1: Secure set-valued state estimator

• Require: A, B, C, E, F, L, M, uk, ym
k , X̄0, V , W

• While k ≥ 0

1. Compute the predicted state set X̄ p
k by (3)

2. Compute the predicted output set Ȳp
k = CX̄ p

k
3. If ym

k /∈ Ȳp
k

• Display: a faulty behavior is detected
• Shut down the system

4. end
5. Compute the estimated state set X̄ e

k by (7)
6. If ym

k ∈ Ȳp
k and ∃i ∈ {1, . . . , n} such that

X̄ e
k (i) ∩ X̄ p

k (i) = ∅

• Display: an attack is detected
• Set: X̄ e

k = X̄ p
k

7. end
8. Compute X̄ c

k = X̄ e
k ∩ X̄ p

k
9. Return X̄ c

k

• end
and the main contribution of this work is stated in the next
proposition.

Proposition 3: Let assumptions used in Proposition 1 and
2 hold. Then, for any stealthy attack that deviates at least one
component of the estimated state enclosure from the predicted
state enclosure,

∃i ∈ {1, . . . , n}, X̄ e
k (i) ∩ X̄ p

k (i) = ∅ (13)

Algorithm 1 is a secure set-valued state estimator for system
(1) that satisfies the requirements defined in Objectives 1, 2 and
3.

Proof. For sake of simplicity, the achievement of each ob-
jective by Algorithm 1 is separately shown in the next three
paragraphs.

a) Proof of Objective 1: By construction, both set-
valued predictor (Line 1 of Algorithm 1) and set-valued estima-
tor (Line 5 of Algorithm 1) provide guaranteed state enclosures
of the actual state vector X̄ p

k and X̄ e
k , respectively. That is, for

all k ≥ 0 one has xk ∈ X̄ p
k and xk ∈ X̄ e

k . Thus, the following
intersection operator (Line 8)

X̄ c
k = X̄ e

k ∩ X̄ p
k (14)

returns guaranteed and tighter set enclosures X̄ c
k by discarding

all inconsistent parts between the sets X̄ e
k and X̄ p

k . That is, for
all k ≥ 0, Algorithm 1 preserves the guarantee of the estimated
state enclosure (xk ∈ X̄ c

k ) and increases its tightness X̄ c
k ⊆

X̄ p
k and X̄ c

k ⊆ X̄ e
k .

b) Proof of Objective 2: First, note that in the proposed
approach the predicted set X̄ p

k (Line 1) does not depend on
the online knowledge of the system outputs and therefore, if
necessary, can be computed offline. Consequently, the predicted
set of outputs Ȳp

k = CX̄ p
k (Line 2) is not subjected to

system faults and attacks. Second, in the considered set-valued
framework, the classical residual detection test ∥eyk∥ > ϵ,
where ϵ stands for the detection threshold, is substituted by the
reliable set-membership test (12) (Line 3). Thus, if an attacker
manages to deceive this fault detection output test by supplying
the observer with wrong data such that ym

k ∈ Ȳp
k , the proposed

state test (13) (Line 6) is able to detect its impact on the internal
behavior of the system. In this case, to ensure the resilience of
Algorithm 1, the estimated set X̄ e

k is discarded and replaced by
the predicted one X̄ p

k . It is worth stressing that the attacks which
do not violate the set-membership test (13) are considered as
sensor uncertainties.

c) Proof of Objective 3: The presence of faults is char-
acterized by the violation of the belonging test (12) (Line 3).
That is, when the measured output value is outside of the
predicted range. Notice that, the faults that do not deviate the
measurement from the predicted output set Ȳp

k (Line 2) are
considered as state disturbances or measurement noise. In this
situation, the user could stop the system to preserve its safety.

•

A. Discussion about Algorithm 1
As highlighted in Remark 4, the predicted state enclosures

are computed from the system’s model and its assumed perfect
input uk, while the estimated state enclosures are provided
from the system’s model and its inputs/outputs available data
(uk, ym

k ). However, in real world environments the available
data can be: (i) subjected to faults and thus the set-valued
estimator will be driven by imperfect data (uf

k , yf
k ); or cor-

rupted by malicious attacks and in this situation the set-valued



estimator will be steered by wrong data (ua
k, ya

k). Therefore,
based on a comparison between the predicted state enclosures
and the estimated state enclosures, Algorithm 1 has to provide
secure estimates of the actual state vectors of the system in
the presence of state disturbance, measurements noise, sensor
or actuator faults and cyber-attacks. Indeed, Algorithm 1 starts
by computing the current predicted state enclosure by applying
the set-valued reachable set predictor defined in (3), then in
Line 2 it computes a predicted enclosure of the system out-
puts. A fault detection condition is evaluated in Line 3. This
condition is based on a set-membership test. Indeed, since the
set-valued predictor does not need external data, the computed
state enclosure X̄ p

k is reliable. Thus, if the measured output
ym
k is not inside the predicted output set Ȳp

k , Algorithm 1
generates a failure occurrence alert and the user can stop or keep
running the system. In the case where no failure is detected, an
estimated state enclosure of the real state vector of the system
is computed by applying the set-valued estimator (7). To detect
the presence of a cyber-attack Algorithm 1 implements a set-
intersection test in Line 6. That is, if the fault detection test does
not observe any wrong behavior from the measured output but
the intersection between the estimated and predicted enclosure
returns an empty set, one can alert of the presence of a cyber-
attack. In other words, in this case the hacker has succeed to
inject wrong data into the estimation algorithm to deviate the
estimated state enclosure but thanks to the predicted set the de-
viation is detected and eliminated by setting X̄ e

k = X̄ p
k . Finally,

in order to improve the tightness of the state enclosure the result
of the intersection between the predicted and estimated set is
considered as a corrected state enclosure X̄ c

k that contains the
actual state vector of the system.

B. Numerical implementation

In this subsection, we use interval analysis [2], [9] to im-
plement all the procedures of Algorithm 1. However, to get
more accurate results, other geometrical forms like zonotopes
[1], [13], ellipsoids [15], [6] could be also applied.

1) Interval analysis: By definition an interval vector (box)
of dimension n denoted by [a] is a subset of Rn,

[a] := {a ∈ Rn | a ≤ a ≤ a, a, a ∈ Rn} = [a, a] (15)

The real vectors a and a in (15) represent respectively the lower
and upper bounds the box [a]. The sum between two boxes [a]
and [b] in Rn returns a box [c] in Rn with endpoints c = a+b
and c = a + b. For a given real matrix A in Rm×n and a box
[x] of dimension n, one has

[z] := A[x] = [A+x−A−x, A+x−A−x] (16)

where, M+ and M− are non-negative matrices computed by
M+ = max(0,M) and M− = M+ − M. Notice that, the
max operator is applied component-wise.

2) Prediction algorithm: Let [x0] = X̄0 and [f0] = F̄0.
Then, the use of interval analysis allows one to rewrite the
algorithm in Proposition 1 in the following technical form:
Algorithm 1.1 (Set-valued predictor)

• Require: A, B, b0, [x0], [f0], T
• while k < T

◦ [xp
k] := Ak[x0] + [fk−1] + bk−1

◦ [fk] := Ak[f0] + [fk−1]
◦ bk := Abk−1 +Buk

• End
Remark 5: It is worthy to notice that this algorithm is not

demanding in terms of computational resources. Indeed, all the
used matrices and boxes are of constant dimensions and at each
iteration only 1 matrix/matrix multiplication, 10 matrix/vector
multiplications and 9 vector/vector sums are to be executed. ◦

3) Estimation algorithm: Considering the following outer
approximations of the sets [r0] = R̄0 and [e0] = Ē0. Then,
based on interval analysis the algorithm in Proposition 2 can be
rewritten in the following more technical form:
Algorithm 1.2 (Set-valued state estimator)

• Require: M, B, L, [e0], [r0], T
• while k < T

◦ x̂k+1 := Mx̂k +Buk + Lyk

◦ [ek+1] := Mk+1[e0] + [rk]
◦ [rk+1] := Mk+1[r0] + [rk]
◦ [xe

k] := x̂k + [ek]

• End
Remark 6: In terms of complexity, Algorithm 1.2 is almost

equivalent to Algorithm 1.1. Indeed, compared to Algorithm
1.1, Algorithm 1.2 requires only a few additional arithmetic
operations at each iteration (1 matrix/vector multiplication and
3 vector/vector sum). ◦

4) Intersection operator: Based on interval analysis the
intersection operator used in Algorithm 1 (Line 8) can be
implemented as follows: ∀i = {1, . . . , n}

[xc
k(i)] = [max{xp

k(i),x
e
k(i)}, min{xp

k(i),x
e
k(i)}] (17)

5) Fault detection test: Let define by [yp
k] = C[xp

k], then
the fault detection test in Line 3 of Algorithm 1 can be carried
out as follows,

ym
k /∈ [yp

k] ⇐⇒

 ∃i ∈ {1, . . . , ny}
such that

ym
k (i) < yp

k
(i) or ym

k (i) > yp
k(i)

 (18)

6) Attack detection test: Notice that, cyber-attack detection
step is preceded by the fault detection test. That is, if no fault is
detected,

ym
k ∈ [yp

k] ⇐⇒


∀i ∈ {1, . . . , ny}

such that(
ym
k (i) > yp

k
(i)

)
or

(
ym
k (i) < yp

k(i)
)


(19)

the intersection test in Line 6 of Algorithm 1 is performed.
Based on interval analysis, this set-membership test can be
carried out as follows: ∀i ∈ {1, . . . , n}
[xe

k(i)] ∩ [xp
k(i)] = ∅ ⇐⇒ xe

k(i) < xp
k(i) or xp

k(i) < xe
k(i) (20)

IV. ILLUSTRATIVE EXAMPLE

Consider an unmanned aircraft system (UAS) borrowed from
[14], the dynamics of the UAS can be defined by the following
matrices,

A =

 1 ϵ 0 0
0 1 0 0
0 0 1 ϵ
0 0 0 1

 , B =

 ϵ2/2 0
ϵ 0
0 ϵ2/2
0 ϵ

 ,E =

 0
0
0
1

 ,

(21)

C =

(
1 0 0 0
0 0 1 0

)
, F =

(
1 0
0 1

)
(22)

where ϵ = 0.2s is the sampling period. This system is
controlled by a measured state feedback law (4) where,

K =

(
0.5 1 0 0
0 0 0.5 1

)
, H =

(
40.5 0
0 40.5

)
(23)



and the set-point is defined by

yref
k =

(
0.1 sin(k/(5π)), 0.1 cos(k/(5π))

)T (24)

The feasible domains of the unknown but bounded state
disturbance, measurement noise and initial state of this system
are defined as follows: ∀k ≥ 0, wk ∈ W = [−0.01, 0.01],

vk ∈ V = ([−0.01, 0.01], [−0.01, 0.01])T ,

vx
k ∈ Vx = ([−0.01, 0.01], [−0.1, 0.1], [−0.01, 0.01], [−0.1, 0.1])T ,

x0 ∈ X0 = ([−10, 10], [−3, 3], [−10, 10], [−4, 4])T .

Notice that, since A − BK is a Schur stable matrix and
the pair (A, C) is observable, the set-valued predictor and the
set-valued estimator, (3) and (7), respectively, applied on this
system provide bounded state enclosures of the actual state
vector with converging sizes. Then, the estimation performance
of Algorithm 1 can be evaluated on this system.

For simulation purpose the state disturbance and measure-
ment noise are considered as uniformly distributed random
variables. The initial state of the system is set at x0 =
(5, 0, 5, 0)T . On the other hand, the initial state of the Luen-
berger observer in (7) is set at x̂0 = (9, 0,−9, 0)T and the
applied observer gain is

L =

 0.9715 0
0.7188 0
0 0.9715
0 0.7188


Hereafter, three simulations are carried out to show the

performance of the proposed secure set-valued estimation al-
gorithm with respect to each aforementioned objective.

Remark 7: Notice that, interval computation introduced in
Subsection III-B are applied to perform Algorithm 1. ◦

A. Simulation results and discussions
1) First study case: For this first test, we consider the case

where the system is not subject to any cyber-attack or faults.
The objective is just to show that by merging the predicted
and estimated data one can obtain tighter state enclosure. The
simulation results are depicted in Figures 1 and 2. In Figure 1,
the actual state vector is plotted together with the estimated and
predicted state enclosures. Thus, from the observed curves in
this figure, it is clear that the tightness of the state enclosure
can be improved by considering only the intersection results
between [xp

k] and [xe
k]. This set-membership filtering operation

is carried out by Algorithm 1 at Line 8 and its results are shown
in Figure 2.
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Fig. 1. State enclosures. Solid lines correspond to the predicted enclosure
while the dashed blue ones represent the estimated enclosure. Dotted red
lines plot the actual state variables of the system.
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Fig. 2. Dotted red lines plot the actual state variables of the system while
the solid lines show the corrected state enclosure.

2) Second study case: In this second simulation test, we
consider the case of a cyber-attack. More precisely, we consider
the case where a malicious agent succeeds to inject corrupted
data in the measured output that is used by the Luenberger
observer. That is, this latter is feed by ym

k + ayk rather than
ym
k . This attack appears at k = 100. At this time instant the

hacker starts adding the value ayk = 3 to the measurement ym
k

sent to the observer. This attack is not observable from the set
membership test ym

k /∈ [yp
k] as shown in Figure 3. However,

its effect is detectable thanks to the intersection test [xp
k]∩ [xe

k]
as illustrated in Figure 4. In this situation, Algorithm 1 alerts
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Fig. 3. Dotted red lines show the measured output vector of the system
and the solid lines represent the predicted output enclosure.
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Fig. 4. State enclosures in the presence of cyber-attack. Solid lines
correspond to the predicted enclosure while the dashed blue ones represent
the estimated enclosure. Dotted red lines plot the actual state variables of
the system.

the user about the presence of an adversarial attack and keep
providing a guaranteed enclosure [xc

k] of actual stat vector as
shown in Figure 5. This fact illustrates the resilient capacity of
the proposed estimator.

3) Third study case: Now, in this third simulation test, we
show the performance of Algorithm 1 against the occurrence
of an actuator fault. More precisely, we consider the case where
the input of the system is subjected to a degradation represented
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Fig. 5. Secure estimation in the presence of a cyber-attack. Dotted red
lines plot the actual state variables of the system while the solid lines show
the corrected state enclosure.

by fak = 1 that occurs at time instants k = 100. As illustrated
in Figure 6, Algorithm 1 detects the occurrence of a faulty
behavior at the time instant k = 103 and generates an alert
signal to stop running the system.
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Fig. 6. Solid lines show the predicted output enclosure while the dotted
red lines illustrate the measured output of the system.

V. CONCLUSION

In this work, a new methodology to design a secure set-
valued state estimator has been proposed for the class of
discrete-time linear systems described by a difference inclu-
sion. Based on a set-valued predictor and a set-valued state
estimator, different set-membership tests have been introduced
to detect the occurrence of faulty behaviors on the system and
to reveal the presence of some types of stealthy cyber-attacks.
Simulation results have been given to support to proposed
methodology and to show the performance of the designed
algorithm. It is worth pointing out that the proposed method
deals with open loop systems. Thus, it is of great interest to be
able to consider the case of closed loop systems. This a more
challenging problem will be tackled in forthcoming works.
Moreover, in the future Algorithm 1 can be improved by new
detection and isolation anomalies tests.
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