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Abstract

Based on audio recordings made once a month during the
first 12 months of a child’s life, we propose a new method for
clustering this set of vocalizations. We use a topologically aug-
mented representation of the vocalizations, employing two per-
sistence diagrams for each vocalization: one computed on the
surface of its spectrogram and one on the Takens’ embeddings
of the vocalization. A synthetic persistent variable is derived for
each diagram and added to the MFCCs (Mel-frequency cepstral
coefficients). Using this representation, we fit a non-parametric
Bayesian mixture model with a Dirichlet process prior to model
the number of components. This procedure leads to a novel
data-driven categorization of vocal productions. Our findings
reveal the presence of 8 clusters of vocalizations, allowing us to
compare their temporal distribution and acoustic profiles in the
first 12 months of life.
Index Terms: clustering, Bayesian non-parametric, Dirich-
let process, mixture model, topologically-augmented machine
learning, TDA, babbling, language development, vocalizations

1. Introduction
During the first year of life, the vocal productions of human
infants undergo a developmental trajectory, actively exploring
their acoustic environment through behaviors such as crying,
cooing, and babbling. Infants adapt the evolution and diversi-
fication of their vocalizations to a target language [1] and typ-
ically produce their first word by the end of the first year [2].
Monitoring these pre-language vocalizations is of great impor-
tance, not only for gaining a deeper comprehension of the dis-
tinct phases of language development but also for predictive in-
sights into various disorders [3, 4]. The use of advanced stor-
age and recording tools allows for the creation of extensive new
databases. When combined with innovative statistical analysis
techniques, these tools contribute to a deeper exploration of the
early stages of language development [5, 6].

In this study, we worked with a database that includes
vocalizations automatically extracted from long-form audio
recordings of a child at home. Recordings were done over her
first year, spanning from 0 to 12 months, with three days of
recordings per month. The outcome is a longitudinal vocaliza-
tion database, capturing vocalizations in a real-life setting and
diverse contexts.

Our objective is to propose a novel method to categorize vo-
cal productions, without predefining the number of categories,
but rather estimating them from the data. To achieve this, we
employ a non-parametric Bayesian model, specifically a Dirich-
let process mixture model. The clustering process is grounded
in a topologically augmented representation of the signal, al-
lowing the incorporation of additional information pertaining to

the topology of the vocalizations.

For clustering, we need to represent vocalizations in a low-
dimensional space. Topological Data Analysis (TDA), which
has demonstrated its efficacy across various domains [7, 8, 9], is
a promising candidate for enhancing the current representation
of infant vocalizations. Its stability-theoretic properties make it
particularly valuable for the examination of natural signals [10].
The integration of topological information can provide valuable
additional information for a more nuanced description of these
vocal productions.

In the subsequent sections, we provide an overview of the
database in Section 2. The computation of the augmented topo-
logical representation and the clustering model is detailed in
Section 3. Section 4 outlines the clustering results, followed
by a comprehensive discussion in Section 5. Finally, we draw
conclusions in Section 6.

2. Data

The dataset comprises vocalizations of a child, spanning from
birth to the child’s first birthday. Each vocalization is repre-
sented by a stereo-channel audio signal sampled at 44.1 kHz in
PCM format. Extracted from longer audio files, the signals are
converted to mono by averaging both channels and then rescaled
the pulse modulation signal to a range of −1 to 1.

These vocalizations originate from long-form audio record-
ings made by the parents of a female French child at home, at
regular intervals, over a one-year period. Ethical approval was
obtained, along with a declaration of conformity for experimen-
tal research involving humans, allowing for the recording of hu-
man baby vocalizations. Parents, equipped with a portable mi-
crophone located near the child, recorded audio samples three
days a month, capturing various moments throughout the day
and night. Following the methodology outlined in [11], we au-
tomatically extracted all the segments labeled as baby vocaliza-
tions from these continuous recordings, resulting in a dataset of
1924 vocalizations. Unfortunately, due to legal constraints, we
are unable to publicly share the data. Vocalizations lasting more
than 10 s were excluded, yielding a final set of 1851 vocaliza-
tions with an average duration of 2.51 s.

Table 1 provides the distribution of vocalizations detected
over the first year. It’s noteworthy that vocalizations are not
available for every month; specifically, we lack data for the first,
fourth, fifth, and tenth months. The absence of vocalizations
for these months stems from the inability to conduct recordings
during these periods or the absence of detected vocalizations in
the recordings.



Table 1: Number of vocalizations per month in the long-form
audio recordings, as well as the mean and the standard devia-
tion of the duration of the vocalizations produced per month

Month Count Mean duration Standard deviation

2 667 2.09 s 1.57 s
3 139 2.71 s 2.00 s
6 132 3.12 s 2.12 s
7 154 2.81 s 1.94 s
8 159 2.74 s 2.15 s
9 285 2.75 s 2.03 s
11 212 2.59 s 1.91 s
12 98 2.62 s 2.09 s

3. Modelling
3.1. Topologically augmented signal representation

We give here the technical details for reproducibility, we refer
the reader to [12] for more details. TDA assumes that data has a
shape [13]. We recover this shape through a filtration, a nested
sequence of simplicial complexes [14]. We then derive from the
filtration the persistent homology, which serves as a topological
descriptor of the data. In our case, we represent each vocaliza-
tion by using two different objects: the surface of its spectro-
gram and its Takens’ embeddings. Depending on the object, we
then adapt the filtration to compute the persistent homology.

For each audio recording, we first compute the spectrogram
using a Gaussian window of 11.6ms and a 90% overlap. The
spectrogram S(t, ω) = |F (t, ω)|2, where F (t, ω) denotes the
Short Time Fourier Transform, defines a surface in R3, with
dimensions representing time t, frequency ω and amplitude S.
We apply a sublevel set filtration to compute the persistent ho-
mology of the spectrogram, i.e., for f : S → R, we compute
a nested sequence of topological spaces Sr = f−1(−∞, r] for
increasing value of r.

Second, we compute the Takens’ embeddings, which em-
bed a time series into a D dimensional Euclidean space us-
ing time-delay [15]. We estimate the time delay parameter τ
such that AMI(τ) < 1/e, where AMI is the Average Mu-
tual Information. We estimate the embedding dimension D
using Cao’s algorithm [16]. We reduce the dimension D to
3 for all embeddings using UMAP [17], ensuring uniformity
across all embeddings. This yields the vocalization represen-
tation as a point cloud PD = {p1, ...pD} ⊂ RD where
pi = (xi, xi+τ , xi+2τ , ..., xi+(D−1)τ ). We apply an Alpha fil-
tration to compute the persistent homology of the embeddings,
involving a nested family of Alpha complex Alpha(r) = {σ ⊆
P|

⋂
p∈σ Rx(r) ̸= ∅}, where Rx(r) is the intersection of each

Euclidean ball with its corresponding Voronoi cell, for increas-
ing value of r.

For both objects, we have an increasing sequence of topo-
logical spaces. We compute the homology at all scales, i.e., for
all r of the sequence. We resume in a persistence diagram the
persistence homology of the object, where a point in a diagram
has two coordinates, the value r of its birth and the value r of its
death. Persistent homology then yields a multiscale topological
description of the object [18].

Persistence diagrams cannot be used directly for statistical
analysis. We therefore extract information from the diagrams by
computing a set of variables: persistent entropy [19], p-norm of
the diagram [20], persistent Betti number [21], and descriptors
of the vector collecting the lifetime of the points of the diagram

following [22, 23]. From this set of variables for each diagram,
we compute a synthetic persistent variable using PCA. The first
principal component of the PCA is retained, explaining 27.79%
of the variance of the set of variables from the persistence di-
agram of the spectrogram surface, and 65.94% of the variance
of the set of variables from the persistence diagram of Takens’
embeddings.

In addition to the topological features, we compute Mel
Frequency Cepstral Coefficients (MFCC), classical frequency
descriptors of human speech analysis [24]. We compute twelve
coefficients, with a window length of 25ms and an overlap of
40%. We take the average of the twelve coefficients to ensure a
consistent number of MFCC for all vocalizations.

The resulting topologically augmented representation of
vocalizations comprises fourteen dimensions: 12 MFCC and
2 synthetic persistent variables, with one summarizing the per-
sistence diagram computed on the surface of the spectrogram
and another summarizing the persistence diagram computed on
Takens’ embeddings.

3.2. Nonparametric Bayesian modelling for clustering

We aim to determine the number of clusters in the dataset X
using a Dirichlet process mixture model. The mixture model is
defined as p(x) =

∫
Θ
f(x; θ)dG(θ), where Θ is the parameter

space, f is a p-dimensional Gaussian kernel. Consequently, θ =
(µ,Σ), and Θ = Rp × Sp

+, where Sp
+ is the space of semi-

definite positive p×p matrices. We are interested in determining
the number K of mixture components and the assignment of
vocalizations to these components. To learn the complexity of
the model on the data, we set a Dirichlet process as a prior on
G and define the model as follows:

xi|θi ∼ f(xi; θi) i = 1, . . . , N

θi|G ∼ G

G ∼ DP (α,G0),

(1)

where DP is a Dirichlet process. See [25] for further read-
ing. We choose the concentration parameter α such that
E[K|n, α] =

∑n
i=1

α
α+i−1

[26] to favor values around K = 5,
following expectations based on prior knowledge [27].

For conjugacy, we put a normal-inverse Wishart prior on
the base measure G0, with Σj ∼ IW (ν0,Σ0) and µj |Σj ∼
N (m0,Σ0/k0). We use non-informative priors for the de-
gree of freedom of the inverse Wishart, ν0 = p, and hy-
perpriors m0 ∼ N (m1,S1), k0 ∼ Gamma(τ1, ξ1), and
Σ0 ∼ W (ν1,Σ1). We follow an empirical Bayes procedure
to calibrate the hyperparameters on the dataset: m1 is the mean
of each dimension of X , S1 is the variance-covariance matrix,
τ1 = ξ1 = 1, ν1 = p+ 2, and Σ1 = S1/2.

We utilize the collapsed Gibbs sampler of [28], based on
the Chinese Restaurant Process representation, to sample the
indicator variable z = {zi}Ni=1, which assigns each vocaliza-
tion to a latent cluster by marginalizing mixture weights and
parameters. This assignment gives us the clustering, and we run
the MCMC with 10,000 iterations, discarding the first 4,000 as
burn-in. As a Bayesian model, the posterior provides a distribu-
tion on possible clusterings rather than a single point estimate.
Following [29], we select the best clustering by specifying a
loss function of the true clustering. The loss function used is
the Variation of Information and the estimate is the one that
minimizes the posterior expected loss.



3.3. Acoustics differences between clusters

After obtaining the partition, we proceed to compare the differ-
ent clusters by computing various acoustic descriptors. Subse-
quently, we utilize these descriptors as input for a multinomial
logit model, where the cluster serves as the response variable.
We estimate one model per cluster, treating each cluster as the
referential group. For each of the eight models, we assess the
statistical differences in each acoustic descriptor between the
referential group and the other clusters. This analysis provides
insights into the distinctive acoustic characteristics associated
with each cluster, helping to characterize and differentiate them
based on the selected features.

4. Data analysis
4.1. Partition

Our model identifies 8 distinct clusters. Initially, we detected 9
clusters, but one of them comprised only 5 records, and none of
these records included baby vocalizations. This cluster essen-
tially served as a ”garbage cluster,” grouping false positives that
remained in the dataset. The Dirichlet process mixture model,
leveraging our topologically augmented representation, effec-
tively groups together recordings that differ from the rest of the
dataset. It automatically recognizes and segregates a ”garbage”
class, helping eliminate false positives.

Table 2 provides a summary of the cluster distribution by
month of the year, indicating the proportion of production for
each cluster during each month. This breakdown offers insights
into how vocalization patterns vary across different clusters and
months.

Table 2: Proportion (percentage) of production for each cluster
during the year

Month

Cluster 2 3 6 7 8 9 11 12

1 15 16 2 9 11 22 19 6
2 11 4 1 7 16 33 20 8
3 65 2 2 2 7 15 4 3
4 31 23 0 8 0 31 8 0
5 83 1 4 2 3 1 6 1
6 24 11 4 7 16 4 24 9
7 22 10 20 16 8 6 10 8
8 0 2 3 15 2 73 3 3

4.2. Comparison of clusters

The insights from Table 2 reveal distinctive temporal patterns
among the clusters. First, Cluster 2 is characterized by late vo-
calizations in the first year, with a substantial portion (a third)
produced in the ninth month and a notable increase in produc-
tion during the eighth month. About 20% of its production oc-
curs during the eleventh month, indicating that more than half
of the cluster’s production takes place after the ninth month.
Similar to Cluster 2, Cluster 8 represents late vocalizations, pri-
marily produced from the ninth month onwards. In contrast to
Clusters 2 and 8, Cluster 5 comprises vocalizations produced
predominantly in the first months of life, with over 80% occur-
ring during this period. This cluster encapsulates early vocaliza-
tions, which decrease as the child learns to produce other types
of vocalizations. Like Cluster 5, Cluster 3 also contains vocal-

Figure 1: Proportion of monthly production of vocalization per
cluster. Parents did not record during three months, yet the gap.

izations primarily produced in the first two months, constituting
65% of its production. Clusters 4 and 7 exhibit a skewed dis-
tribution towards the first few months of life, with the majority
of vocalizations produced in the first 6 months, and even just
the first three months for Cluster 4. However, there is compar-
atively more vocal production from these clusters over the rest
of the year than Clusters 3 and 5. Clusters 1 and 6 stand out for
being produced throughout the entire year, indicating a more
consistent vocalization pattern across the different months.

These temporal variations in vocalization patterns highlight
the diversity of the clusters and the developmental changes in
vocal behavior over the course of the first year of life, that we
illustrate in Figure 1. Whereas we have the proportion of vocal-
ization of each cluster per month (i.e., it sums to one per cluster)
in Table 2, we plot in Figure 1 the proportion of vocalization of
each cluster at each month (i.e., it sums to one per month).

We present a summary of median acoustic descriptors
per cluster in Table 3. Utilizing these descriptors, we em-
ployed multinomial logit models to estimate acoustic differ-
ences among the identified clusters. To enhance clarity, we pro-
vide a concise overview of the main results and distinctions be-
tween clusters. Specifically, we highlight instances where the
parameter associated with a descriptor is statistically different
from zero for the majority of other levels (i.e., from other clus-
ters).

Clusters 2 and 8, characterized as late vocalizations, exhibit
differences from other clusters. Cluster 2 differs in its propor-
tion of voiced frames, entropy level, and F3. Cluster 8, on the
other hand, varies in spectral centroid level, entropy level, F2,
and F3.

Clusters 3 and 5, representing earlier vocalizations, also
show distinctions from other clusters. Cluster 3 differs in its
proportion of voiced frames, spectral centroid level, loudness,
and F3. Cluster 5 exhibits differences in its proportion of voiced
frames, spectral centroid level, entropy level, Harmonics-to-
Noise Ratio, loudness, Frequency Modulation, and F3.

Cluster 4 stands out from others due to differences in its
proportion of voiced frames and entropy level. Cluster 7 differs
in the proportion of voiced frames, spectral centroid level, loud-
ness, F2, and F3. Cluster 1 exhibits distinctions in the propor-
tion of voiced frames, spectral centroid level, Frequency Modu-
lation, loudness, roughness, F1, and F3. Lastly, Cluster 6 varies
in its proportion of voiced frames, spectral centroid level, and
F3.



Table 3: Acoustics descriptors of each cluster. We report the median for each cluster. Unit of Pitch, Formants, Spectral Centroid and
FM is Hz, Loudness is in sone, HNR is in dB, Duration is in sec, Voiced and Roughness are proportions.

Cluster Duration Pitch F1 F2 F3 Voiced SC Entropy HNR FM Loudness Roughness

1 1.4 301 725 2374 4640 46 3084 0.33 9.57 6.23 12.4 22.7
2 2.6 334 832 2041 3757 48 2596 0.24 12.5 5.46 13.0 20.5
3 1.6 338 1534 3571 6000 17 2268 0.27 10.7 5.46 7.15 23.1
4 6.6 342 878 2610 4804 16 1870 0.35 10.5 5.00 11.2 23.3
5 1.4 316 913 3056 5685 30 3769 0.41 8.41 6.16 10.3 23.8
6 2.8 382 925 2546 4244 43 3549 0.36 8.23 5.46 13.7 22.6
7 2.2 346 856 2117 3724 28 3252 0.39 10.4 5.44 17.1 21.2
8 1.6 381 1034 2384 4065 23 8528 0.48 9.29 5.46 12.8 23.8

5. Discussion
We conducted an analysis on a unique dataset comprising 1851
vocalizations from a baby, spanning her birth to her first birth-
day. These vocalizations were extracted from longitudinal
recordings captured at home, devoid of external interactions.
Employing an innovative topologically augmented signal rep-
resentation, we adapted an unsupervised strategy to cluster the
vocalizations based on this representation.

Remarkably, certain clusters of vocalizations only emerge
after a specific period, while others exhibit a decreasing produc-
tion trend. Clusters 3 and 5, prominently generated post-birth,
experience minimal production throughout the remainder of the
year. It is plausible to hypothesize that these clusters represent
the initial vocalization classes, serving as a foundation for sub-
sequent vocalization categories.

In contrast, clusters 2 and 8 materialize towards the end
of the year, predominantly around the ninth month, with clus-
ter 8 showing distinctive formant characteristics. These late-
emerging clusters coincide with the child’s increased diversi-
fication of vocal productions and heightened babbling, a phe-
nomenon documented in the literature, peaking between the
ninth and tenth months [30, 31].

From a language development perspective, aligning with
the concept of calibration [1], the child undergoes a learning
process during the initial months, gradually mastering her vo-
cal apparatus to produce sounds resembling the phonemes of
her native language. Notably, an early vocalization cluster such
as cluster 5 also exhibits nonlinear phenomena, indicative of
strong vocal tension [32].

Cluster 5, primarily produced in the initial two months,
stands out with a notably high entropy level. On the contrary,
Cluster 2, produced later in the year, distinguishes itself from
other clusters with lower entropy. This suggests an improve-
ment in the child’s motor control of the buco-phonatory ap-
paratus over the course of the year, resulting in vocalizations
with lower entropy compared to earlier productions. The identi-
fied clusters, with diverse temporal distributions, highlight vari-
ations in precocity among vocal productions.

The incorporation of topological information in signal rep-
resentation proves effective in clustering vocalizations based on
various acoustic parameters. Notably, we observe no differ-
ences in pitch between clusters. Given that we have only one
child in this database and that pitch is a good individual marker
[33], our model does not rely on this feature for clustering.

However, our approach exhibits limitations. First, our
model treats all vocalizations as exchangeable, neglecting time
dependence. To do this, we need to consider the temporal as-
pect by employing a non-parametric regression [34], enabling

the incorporation of covariates.

Moreover, while the current topological representation aids
in identifying clusters with distinct acoustic profiles, refinement
is needed. Synthetic persistent variables are constructed to mit-
igate the curse of dimensionality, resulting in information loss,
particularly for the persistent homology of the spectrogram. Ex-
ploring methods for constructing a lower-dimensional signal
representation that incorporates topological information, such
as [35, 36] is a worthwhile avenue.

In terms of modeling, incorporating expert knowledge and
refining priors, especially the choice of α, could enhance the
clustering process. Adjusting α might impact the final cluster-
ing outcome, and its initial computation based on expecting five
clusters could be refined based on the diversity of vocalizations
observed in literature during a baby’s first year [30, 37].

Finally, the current analysis, although valuable for its lon-
gitudinal and ecological nature, pertains to a single child. The
results, while insightful, cannot propose a new categorization
of vocal productions. Future research should deepen the anal-
ysis by including more children. Introducing hierarchy in sub-
sequent analyses could facilitate comparisons of vocal produc-
tions and their evolution over the first year of life, considering
integrated covariates.

6. Conclusion

In conclusion, we investigated a novel database comprising vo-
calizations extracted from long-form audio recordings of a child
from birth to her first birthday. This dataset offers a unique per-
spective, capturing vocalizations in an uncontrolled, longitudi-
nal setting without interaction, allowing for the exploration of
new inquiries.

We introduced an innovative approach to analyze this
database, aiming to identify distinct clusters of vocalizations
produced by the child. Employing an unsupervised method-
ology, we utilized a Dirichlet process mixture model without
specifying the number of classes beforehand. By incorporating
topological information into the signal representation, we suc-
cessfully identified 8 vocalization classes throughout the year.

Acknowledging the outlined limitations, the detected clus-
ters exhibited varying production proportions over time. Fur-
thermore, our topologically augmented representation facili-
tated the identification of clusters with diverse acoustic pro-
files, illustrating the child’s evolving motor control of her buco-
phonatory apparatus.
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