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Abstract

Background:

Food contamination by pathogens poses a global health threat, affecting an estimated 600 million people annually. During afoodborne outbreak investigation, microbiological analysis of food vehicles detects responsible pathogens and tracescontamination sources. Metagenomic approaches offer a comprehensive view of the genomic composition of microbialcommunities, facilitating the detection of potential pathogens in samples. Combined with sequencing techniques like OxfordNanopore sequencing, such metagenomic approaches become faster and easier to apply. A key limitation of these approaches is thelack of accessible, easy-to-use, and openly available pipelines for pathogen identification and tracking from (meta)genomic data.
Findings:

PathoGFAIR is a collection of Galaxy-based FAIR workflows employing state-of-the-art tools to detect and track pathogens frommetagenomic Nanopore sequencing. Although initially developed for foodborne pathogen data, the workflows can be applied toany metagenomic Nanopore pathogenic data. PathoGFAIR incorporates visualisations and reports for comprehensive results. Wetested PathoGFAIR on 130 benchmark samples containing different pathogens from multiple hosts under various experimentalconditions. Workflows have successfully detected and tracked expected pathogens at least at the species rank in bothpathogen-isolated and non-pathogen-isolated samples with sufficient Colony-forming unit and Cycle Threshold values.
Conclusions:

PathoGFAIR detects the pathogens or the subspecies of the pathogens in any sample, regardless of whether the sample is isolatedor incubated before sequencing. Importantly, PathoGFAIR is easy to use and can be straightforwardly adapted and extended forother types of analysis and sequencing techniques, making it usable in various pathogen detection scenarios.PathoGFAIR homepage: https://usegalaxy-eu.github.io/PathoGFAIR/
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Introduction

Foodborne pathogens pose a significant threat to public healthworldwide, causing millions of cases of illness and even death ev-ery year [1, 2]. These diverse microorganisms, spanning bacte-ria, viruses, parasites, and fungi, can contaminate a variety offoods, leading to outbreaks and epidemics. The impact of food-borne pathogens on public health is a critical concern, and efforts

to mitigate their spread and ensure food safety are of great impor-tance. Food safety and controlling foodborne pathogens have beenkey priorities for global public health authorities [3].
Traditional methods for identifying the source of food contami-nation require isolation of the target pathogen. This process is notonly time-consuming but can be complex and lacks a guaranteedsuccess rate [4]. In contrast, shotgun metagenomic approaches pro-
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vide a solution to these challenges, as they give an overview of thegenomic composition in the sample, including the food source itself,the microbial community, and any possible pathogens and theircomplete genetic information [5]. Importantly, shotgun metage-nomic approaches eliminate the need for prior isolation of the tar-geted pathogen, as required by Whole Genome Sequencing (WGS)methods, and they are not limited to specific genes as opposed toreal-time PCR approaches [6].
The utilisation of Nanopore sequencing data, as exemplifiedin studies like [7], enhances the capabilities of metagenomic ap-proaches for outbreak investigations. Nanopore sequencing pro-vides real-time, long-read data that can capture comprehensivegenetic information, allowing for more accurate and rapid pathogendetection. This advancement becomes particularly crucial in out-break scenarios where timely responses are essential.
Once (meta)genomics data has been generated, bioinformat-ics approaches enable the rapid and accurate detection, as well asthe identification of genetic variations and potential Virulence Fac-tor (VF) genes of pathogens [8, 9]. However, using already avail-able tools and workflows requires bioinformatic and computationalknowledge and expertise. Tool arguments and parameters needto be adapted to the specific use case. End-to-end workflows andplatforms (1) that allow users to analyse their samples are eitherrestricted, require high computational resources or paid subscrip-tion (e.g. SURPI [10], OneCodex [11], Sunbeam [12]). For some ofthe free resources, the underlying workflow is not available andadaptable for the user. For example, IDseq [13] (also known asCZID [14]), a free cloud-based service for pathogen detection canonly be externally accessed through the dedicated online user inter-face. Furthermore, some of these workflows are specific to a certainhost, pathogen, or sequencing technique, lacking the flexibility forcustomisation.
Galaxy [15] is an open-source platform for FAIR data analysis.It enables users to apply a comprehensive suite of bioinformaticstools (that can be combined into workflows) through either its user-friendly web interface or its automatable Application ProgrammingInterface (API) for integrating and customising workflows, enhanc-ing user flexibility. It ensures reproducibility by capturing the nec-essary information to repeat and understand data analyses. Galaxyoffers a collection of high-quality pre-built workflows that can beeither used directly or are easily adapted to the user’s needs via theGalaxy workflow editor. Galaxy workflows can be executed on anyGalaxy server, even on the private Galaxy server, making it suitablealso for data where privacy concerns are important. Furthermore,Galaxy via the major public servers [15] freely provides a large com-puting infrastructure allowing for the execution of computationallychallenging workflows, which is often the case for metagenomicanalysis.
Here, we present PathoGFAIR, a collection of Galaxy-basedworkflows for pathogen identification and tracking from(meta)genomics Oxford Nanopore sequencing data. The workflowsare openly available on two workflow registries; Dockstore [16]and WorkflowHub [17]. They can be used directly on three majorGalaxy servers (usegalaxy.org, usegalaxy.eu, usegalaxy.org.au) orinstalled in any other Galaxy server. The workflows are createdto work agnostically, detecting all pathogens present in thesamples without prior knowledge of the target pathogen. Asthe workflows are created in Galaxy, they can be adapted, e.g.for other sequencing techniques or with various downstreamanalyses, such as differential expression analysis, or furtherstatistics and visualisations [15]. Workflows are documentedand supported by an extensive tutorial freely available via theGalaxy Training Network (GTN) [18]. Overall, PathoGFAIRoffers an easy-to-use computational solution that speeds up theprocess of sampling, detecting, and tracking pathogens. Links toworkflows and tutorials can be found on PathoGFAIR homepage:

https://usegalaxy-eu.github.io/PathoGFAIR/

Implementation

Overview

PathoGFAIR comprises a collection of 5 workflows, implemented inGalaxy (Figure 1). Each workflow serves a specific function and canbe executed independently, enabling users to tailor their analysisaccording to their requirements.The input data for PathoGFAIR comprises sequencing data gen-erated using Oxford Nanopore technologies, along with a metadatatable describing the datasets. The datasets undergo preprocessingin Workflow 1, which includes quality control and host removalprocedures.Subsequently, the preprocessed data is directed to three par-allel workflows: taxonomy profiling (Workflow 2), gene-basedpathogen identification (Workflow 3), and allele-based pathogenidentification (Workflow 4). This parallel execution allows for effi-cient analysis and flexibility in workflow selection. Notably, Work-flow 4 can optionally synchronise with Workflow 2 or Workflow 3 toleverage prior taxonomic analysis or gene-based pathogen identifi-cation results, providing users with flexibility based on specific usecases. By using detailed taxonomic identification from Workflow 2or gene-based pathogen identification from Workflow 3, Workflow4 enhances mapping and SNP detection accuracy and efficiency.This process involves selecting the correct reference genome ofthe pathogen for mapping, informed by results from Workflow 2,Workflow 3, or even Workflow 1, which performs initial taxonomyassignment during the host filtering step.Since each workflow can be executed independently, users canfocus on specific aspects of pathogen detection or analysis. Thismodular approach empowers users to utilise the full range of func-tions offered by each workflow individually or to combine them asneeded for comprehensive pathogen detection.Finally, in Workflow 5, outputs from the previous workflows andthe metadata of the dataset are aggregated and visualised for com-prehensive pathogen tracking across samples. This aggregationstep ensures a holistic view of pathogen presence and distribution,facilitating further insights and analysis.Overall, the independent nature of PathoGFAIR’s workflowsprovides users with a user-friendly and customisable approachto pathogen detection, allowing for both comprehensive analysesand targeted investigations based on specific research needs orobjectives.PathoGFAIR offers a competitive, and accessible solution (Table1) to detect and track pathogens in metagenomic Nanopore datathrough its five Galaxy-based FAIR and customisable workflows.

Workflow 1: Preprocessing

Workflow 1 encompasses essential preprocessing steps to ensurethe quality and integrity of sequencing data.Quality control and sequence filtering, based on quality, length,or low complexity, are performed using Fastp (v 0.23.2) [22]. Pore-chop (v 0.2.4) [23] trims low-quality base pairs and removes dupli-cates and adapters.Quality-controlled (QC) reads are cleaned of sequences fromthe food vehicle animal or infected host by mapping to their refer-ence genome using Minimap2 (v 2.26) (RRID:SCR_018550) [24],a tool tens of times faster than mainstream long-read mapperssuch as BLASR [25], BWA-MEM [26], NGMLR [27] and GMAP [28]and three times as fast as Bowtie2 [29] designed for Illumina shortreads [24]. A variety of reference genomes (e.g. Human, Chicken,or Cow) can be installed on Galaxy servers to work with Minimap2.Kraken2 (v 1.2) [30] is applied for further contamination detec-tion using the Kalamari database. The Kalamari database includesmitochondrial sequences of various known hosts including foodhosts [31]. Reads matched to the Kalamari database are assessed
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Table 1. Comparison table between PathoGFAIR and other similar pipelines or systems. This comparison sheds light on various features andcharacteristics, such as accessibility, technical specifications, and the scope of analyses offered by each system. It serves as a reference for users toevaluate the suitability of PathoGFAIR for their specific needs and requirements
Features PathoGFAIR IDseq SURPI OneCodex Sunbeam Innuendo [19] PAIPline [20] Victors [21]
General CharacteristicsFree of Charge ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓Open Source Code ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗Web Interface ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓*
Automatable API ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Accessibility and AvailabilitySimple end-user Modification ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗Publicly Available Web-server ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓Last Updated 2024 2023 2014 2023 2024 2018 2018 2019
User Support and DocumentationTutorial ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗Documentation ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓User support ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Technical SpecificationsWorkflow Manager Galaxy - - - Snakemake Nextflow - -
Sequencing Technique Nanopore** Illumina& Nanopore Illumina - Illumina - Illumina -
AnalysesPreprocessing ✓ ✓ ✓ ✓ ✓ ✓ ✓ -Taxonomy Profiling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗Gene-based Pathogen Identification ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓Allele-based Pathogen Identification ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗Samples aggregation and Visualisations ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

* Malfunctioned when tested.** Can be easily adapted to any other types of sequencing techniques via Galaxy, a customisable and automatable API.

and removed using Krakentools (v 1.2) [30].
The workflow returns QC reads without contamination orhost sequences as well as interactive reports, produced byFastQC (v 0.12.1) (RRID:SCR_014583), fastp and MultiQC (v 1.11)(RRID:SCR_014982) [32]. Furthermore, Nanoplot (v 1.39.0) [33] isemployed to provide detailed quality metrics specifically tailoredto the preprocessing step, enriching the suite of analytical insightsand facilitating robust data evaluation.

Workflow 2: Taxonomy Profiling

The microbial communities are profiled, for QC reads from Work-flow 1, using Kraken2 (v 1.2) [30] and the PlusPF (archaea, bacteria,viral, plasmid, human, UniVec_Core, protozoa, fungi, and plant)Refseq database (June 7, 2022). Although Kraken2 is a tool designedfor short-read sequencing and is known for its false positive taxon-omy assignments, particularly at lower microbial abundances [34],its application to long-reads can still yield a substantial overview ofthe microbial community. This is particularly true for discerningbacteria that could potentially be pathogenic at genus and speciestaxonomic ranks [35, 36]. The produced community profile isvisualised using Krona (RRID:SCR_012785) [37] and observed in-teractively for different taxonomic ranks using Phinch [38] or Pa-vian [39].

Workflow 3: Gene-based Pathogen Identification

In this workflow, the pathogens are identified by the pres-ence of genes associated with pathogenicity. QC reads fromWorkflow 1 are assembled into contigs using Metaflye (v 2.9.1)(RRID:SCR_017016) [40]. The contigs are then polished using theMedaka Consensus Pipeline (v 1.7.2) [41], which generates con-

sensus sequences using neural networks and shows improved ac-curacy over graph-based approaches for Oxford Nanopore reads.The polished contigs are afterwards screened using ABRicate (v1.0.1) [42] for virulence factors (VF) with the Virulence FactorDataBase (VFDB) [43] and for antimicrobial resistance (AMR) geneswithAMRFinderPlus [44] database.

Workflow 4: Allele-based Pathogen Identification

Another approach to identifying pathogens is to use an allelic ap-proach by detecting SNPs, i.e. markers showing evolutionary histo-ries of homogeneous strains [45]. This process includes SNP calling,aimed at identifying novel pathogen strains and elucidating discrep-ancies compared to reference sequences, thereby facilitating thetracking of emerging variants. Within Workflow 4, both complexvariants and SNPs are discerned, serving as crucial elements forsubsequent pathogen identification and variant tracking purposes.
QC reads from Workflow 1 are mapped using Minimap2 (v 2.26)to a selected reference genome of a suspected pathogen. Users canchoose the reference genome based on their prior knowledge of thetarget pathogen, the taxonomic analysis in Workflow 2, or the de-tected pathogenic genes in Workflow 3. Variant calling for mappedreads is performed using Clair3 (v 0.1.12) [46]. Clair3, a tool devel-oped for long reads, has been chosen because it is demonstratedto be faster and more accurate than the Medaka variant pipeline,which its developer has declared deprecated in favour of Clair3 [41].After that, all variants along with their information, such as type,genomics position, and quality score, are normalised using bcftoolsnorm (v 1.9) [47]. The normalised reads are filtered using SnpSiftfilter (v 4.3) (RRID:SCR_015624) [48] based on the SNP quality com-puted in the SNPs identification step with Clair3. Filtered variantsfields required for further analyses are extracted using SnpSift ex-tract fields (v 4.3) (RRID:SCR_015624) [48]. Finally, a consensus
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Figure 1. Flowchart of the PathoGFAIR workflows. Workflow 1 (olive green) takes as
input sequencing data generated by Oxford Nanopore technologies and performs
quality control and host filtering. Then three parallel workflows are executed on
the output of Workflow 1: Workflow 2 (red) for taxonomy profiling, Workflow 3
(dark cyan) for gene-based pathogen identification, and Workflow 4 (purple) for
SNP-based pathogen identification. These four workflows can run individually and
in parallel. Finally, all outputs for the different provided datasets are aggregated in
Workflow 5 (green) for PathoGFAIR Samples Aggregation and Visualisation.

sequence for each sample is built using bcftools consensus (v 1.9)(RRID:SCR_005227) [49]. In addition to the variants, this work-flow outputs tables including summary metrics like the mappingcoverage (breadth of coverage) percentages for every sample, perbase covering mean depth (depth of covering), and quality filteredcomplex variants and SNPs numbers.

Workflow 5: PathoGFAIR Samples Aggregation and Visu-
alisation

In all previously described workflows, individual samples are anal-ysed separately. Workflow 5 consolidates the outputs from Work-flows 1, 2, 3, and 4 along with sample metadata to generate variousvisualisations and reports. These reports illustrate the detectedpathogens and facilitate the visualisation and tracking of their pres-ence across all samples.Virulence Factor (VF) tables from Workflow 3 are used to gen-erate clustered heatmaps showing the VF genes using ggplot2Heatmap (v 3.4.0) (RRID:SCR_014601). VF sequences are concate-nated per sample and aligned over all samples using ClustalW (v2.1). A phylogenetic tree of the virulence gene sequences is thengenerated from the multiple sequence alignment using FASTTREE(v 2.1.10) (RRID:SCR_015501) [50] and visualised using Newick Dis-play (v 1.6). The same is performed on the antimicrobial resistance(AMR) tables from Workflow 3. From Workflows 1 and 4 outputtables, bar charts are generated.Other outputs are aggregated and processed within a JupyterNotebook [51], interactively launched in Galaxy using JupyTool (v

1.0.0). This Notebook showcases the integration of sample metadatato generate analysis-specific plots, leveraging Python (v 3.10.12)libraries such as Pandas (v 1.5.3), Matplotlib (v 3.7.1), Seaborn (v0.12.2), and Numpy (v 1.24.3) [52]. Examples of these plots includebar plots illustrating the number of reads before and after qual-ity control for all samples, scatter plots visualising relationshipsbetween different variables such as pathogen count and samplecharacteristics, and interactive cluster maps displaying the clus-tering patterns of samples based on pathogen composition. Thesevisualisation techniques are further elucidated and exemplified inthe Use Cases section of this study, where the output tables from theworkflows are aggregated with the corresponding sample metadataand visualised to facilitate comprehensive visual analysis.
Workflow Reports

As all PathoGFAIR workflows are designed to run seamlessly on theGalaxy platform, an interactive report is automatically generatedupon completion of each workflow. These reports provide a compre-hensive overview of the respective workflow’s inputs and outputs.In PathoGFAIR, special attention has been given to refining thesereports for enhanced user experience. The reports are carefullycurated to automatically showcase and emphasise only the mostinformative, easily interpretable, and accessible outputs for eachworkflow. This ensures that users can efficiently extract key in-sights from the results, facilitating a streamlined and user-friendlyanalysis experience.
Easily Adaptable Workflows

The workflows can process raw shotgun (meta)genomics sequenc-ing data from any sample, not only food.PathoGFAIR has been initially developed to take OxfordNanopore data as inputs. However, PathoGFAIR can work with Illu-mina data or other types of sequencing technique data. To adapt toIllumina sequencing only one tool needs to be changed in Workflow1: Porechop [23] with Cutadapt (RRID:SCR_011841) [53]. Workflows2, 3, 4, and 5 can be used directly with Illumina datasets withoutany adaptation. Some tools can be changed based on the tool’sknown performance towards short and long reads, such as Clair3 (v0.1.12) [46] and Metaflye (v 2.9.1) [40]. All the mentioned tools areaccessible within Galaxy, allowing for seamless interchangeability.The workflows can also be adapted to process paired-end reads,by adjusting the tools’ parameters to take paired-end read samplesinstead of single-end reads. These changes can be applied withlittle effort by using the user-friendly workflow editor in Galaxy.Users can seamlessly switch between different host referencegenomes and Kraken2 databases, as PathoGFAIR supports vari-ous pre-installed databases on the Galaxy servers. This featureenhances user convenience and efficiently explores different con-figurations to suit specific analysis requirements.Similarly, tool versions and parameters can be adapted, e.g. tocompare results with legacy versions of the workflows. New toolversions are automatically installed on public Galaxy servers usinga sophisticated update infrastructure, ensuring a straightforwardmechanism to keep the infrastructure up-to-date [54]. Every timea tool is updated, an update of the workflows is suggested, testedwith functional tests and released on the workflow registries onceaccepted.Each of the five PathoGFAIR workflows is designed for a distincttype of analysis. Workflows 2, 3, and 4 operate independently, offer-ing the flexibility to run them concurrently or skip them as per userrequirements. This modular structure allows users to tailor theanalysis to their specific needs, activating only the functionalitiesnecessary for the desired workflow outcome.
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FAIR Workflows

The FAIR principles [55], which emphasise the importance ofmaking research objects Findable, Accessible, Interoperable, andReusable, offer valuable guidance for optimising the utility and pro-moting the reproducibility and reusability of any research object(data, software [56], or workflows).
PathoGFAIR has been developed with the FAIR principle in mindand follows the ten tips for building FAIR workflows, as suggestedby de Visser etal. [57]. First, by using Galaxy as a workflow manager,the workflows are portable (Tip 6) and come with a reproduciblecomputational environment (Tip 7). The tools integrated into theworkflows use file format standards such as FASTA and FASTQfor sequence data, SAM and BAM from the Samtools project foralignment data, VCF for genetic variations, GenBank and GFF3 forgenomic annotations, and PDB for structural data (Tip 5) [55]. Asexplained in the previous section, the workflows are provided withdefault values (Tip 8) and are modular (Tip 9).
The workflows are available on the GitHub repository of IWC,the Intergalactic Workflow Commission of the Galaxy community(Tip 3) [58]. Workflows in this repository are reviewed and testedusing test data before publication and with every new Galaxy re-lease. The IWC automatically updates the workflows whenever anew version of any tool used in these workflows is released. De-posited workflows follow best practices, are versioned using GitHubreleases, and contain important metadata (e.g. License, Author, In-stitutes) (Tip 2). The workflows are automatically added to twoworkflow repositories (Dockstore [16] and WorkflowHub [17]) tofacilitate the discovery and re-use of workflows in an accessibleand interoperable way (Tip 1). Via Dockstore or WorkflowHub, thePathoGFAIR workflows can be installed on any up-to-date Galaxyserver. They are already publicly available on three main Galaxyservers (usegalaxy.org, usegalaxy.eu, usegalaxy.org.au), which anyuser can use and modify without restriction.
A thorough explanation of how to use the workflows in PathoG-FAIR including a more global description of pathogen identificationfrom Oxford Nanopore data can be found in a dedicated extensivetutorial [59] together with example input data and results (Tips 4and 10), freely available and hosted via the Galaxy Training Network(GTN) [18] infrastructure.
Finally, for every invocation of the workflows, a Research ObjectCrate (RO-Crate [60, 61]) can be created to store the data prod-ucts of the different steps, along with the run-associated metadata(including parameters, tool, and workflow version).

Use Cases

To demonstrate PathoGFAIR and its features, 130 samples fromtwo studies (without or with prior pathogen isolation) were anal-ysed. All samples contained pathogens known beforehand andwere sequenced using Oxford Nanopore technology. All workflowsof PathoGFAIR were evaluated for their main intended tasks, e.g.,the preprocessing workflow for its reads quality retaining and hostssequences removal performance, but also for their ability to identifythe correct pathogen, and how well the accuracy with respect todifferent sampling conditions is.

Samples Without Prior Pathogen Isolation

Data Generation
In this study, 46 samples have been prepared given the follow-ing protocol [62]. Chicken meat was spiked with either one ofthree Salmonella Enterica subspecies (Salmonella enterica subsp.Houtenae DSM 9221, Salmonella enterica subsp. Enterica DSM 554,Salmonella enterica subsp. Salamae DSM 9220) or a mix of them,with concentrations that give Cycle Threshold (Ct) values between

25 and 33. 15 samples were incubated at 37°C for 24 hours before DNAisolation to let the bacteria grow. All samples were incubated at 56°Cfor 1 hour with lysis buffer and 20 ng/µl Proteinase K, followed byDNA extraction according to the STAR BEADS Pathogen DNA/RNAExtraction kit (CYANAGEN SRL, Bologna, Italy) instructions. DNAconcentrations were measured with the Qubit® 4.0 Fluorometer(Thermo Fisher Scientific) using the double-stranded DNA (ds-DNA) High-Sensitivity (HS) assay kit (Thermo Fisher Scientific),following the manufacturer’s protocol. The quality was evaluatedwith a Nanodrop® 1000 (Thermo Fisher Scientific), assessing the260/280 nm and 260/230 nm ratios. 260/280 and 260/230 ratioswere close to the expected ranges 1.8–2.0 and 2.0–2.2, respectively.Extracted DNA was barcoded before sequencing using the Nativebarcoding genomic DNA (with EXP-NBD104, EXP-NBD114, andSQK-LSK109) protocol (Oxford Nanopore). DNA was then loadedon an R9.4.1 MinION Mk flow cell (Oxford Nanopore). SpotON sam-ple port cover and priming port were closed and sequencing wasstarted. The sequencing device control, data acquisition, and real-time basecalling were carried out by the MinKNOW software theMinION Mk1C device. For 6 samples, adaptive sampling to excludechicken DNA was used. Generated sequencing data is availablevia BioProject PRJNA982679. Metadata for the 46 samples is sum-marised in Supplementary Table T1 into five pieces of information:(i) expected strain(s), (ii) incubation before DNA isolation, (iii)adaptive sampling during sequencing, (iv) Colony-forming unit(CFU)/mL [63], a measure providing a quantitative assessmentof viable microbial entities within a given sample and measuredusing standard microbiological techniques such as serial dilutionand plating on agar medium, provides , (iv) Cycle Threshold (Ct)values [64], a measure inversely proportional to the the amount ofnucleic acid in the samples.
PreprocessingThe number of reads after quality control varies significantly be-tween samples (Figure 2 A), which impacts downstream analyses.For host detection using Minimap2 (v 2.26), the option
PacBio/OxfordNanopore read to referencemappingwas set here. Asexpected from the samples sequencing protocol (chicken sam-ples and not isolated pathogen), most sequences were assignedto chicken: above 90% in 31 samples and between 55% to 85% forthe remaining 15 samples (Supplementary Figure S1). However, thepercentage of identified host DNA (between 60% and 98%) is notas low as expected for the 6 samples that have undergone adaptivesampling to exclude chicken DNA during sequencing. This showsthat the adaptive sampling to exclude chicken in some samples dur-ing sequencing may not have removed all the chicken sequences.All sequences identified as chicken were removed (Figure 2 A). AfterQC and host removal, 19 samples had less than 1,000 reads. Thesesamples could only be analysed using the taxonomy profiling ashighlighted in the next sections.
Taxonomy Profiling
Salmonellawas detected in Workflow 2 for all samples, at least atthe genus taxonomic rank (Supplementary Figure S2, interactiveKRONA plot in Supplementary online Figure S3).
Gene-based Pathogen IdentificationIn Workflow 3, Metaflye (v 2.9.1) tool mode’s option is chosen tobe Nanopore-HQ, users can expand the workflow and change thisoption according to their datasets sequencing technique.No contig was built for 10 of the 27 samples with less than 2,700reads. The identification of Virulence Factors (VF) or Anti MicrobialResistance (AMR) genes is then made impossible. For the other 17samples, only 1 or 2 contigs were created not enough for identifyingVF and AMR genes.For the remaining 19 samples with created contigs (from 3 to157) and number of reads higher than 2,700, VF genes were identi-fied in 15 samples (Figure 2 B), 12 of which were incubated before

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.26.600753doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.26.600753
http://creativecommons.org/licenses/by/4.0/


Figure 2. (A) Bar plot showing the total number of quality-controlled reads per sample before (dark blue) and after (light blue) host sequences removal. On the left, the
metadata of the samples are displayed: (i) the expected Salmonella strain (Salamae in yellow, Houtenae in blue, and Enterica in light purple), (ii) incubation before DNA
isolation (incubated for 24h in pink and incubated for 1h in brown), and (iii) adaptive sampling during sequencing (chicken excluded in green and chicken not excluded in
purple)(B) Cluster-map displaying the identified VF genes’ abundances per sample. The VF genes are presented on the y-axis and all 46 non-isolated samples are on the
x-axis along with their sample information. On the top are the metadata of the samples with the same color code as in A. (C) Phylogenetic tree, using the nucleotide evolution
model; General Time Reversible (GTR) model with a CAT approximation for rate heterogeneity across sites [50]. The Phylogenetic tree is built on the VF genes consensus
sequences concatenated per sample and aligned for all samples. (D) Bar plot with the mapping coverage (breadth of coverage), i.e. the percentage of covered bases of each
sample to the reference genome, measured by calculating the percentage of positions within each bin with at least one base aligned against it. (E) Bar plot with the mean of
the mapping depth (depth of coverage) of bases mapped to corresponding bases in the reference genome for every sample. (F) Bar plot with the number of variants and SNPs
found per sample. Mapping coverage percentage and the depth mean indicate whether to trust the variants and SNPs found by the workflow or not, the higher the coverage
percentage and the depth mean, the more trusted the SNPs results for the sample.
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DNA isolation for 24 hours. 3 of the 15 samples were incubatedfor only 1 hour before DNA isolation, resulting in a few VF genes(Figure 2 B) identified, compared to the other 12 samples, mostlybecause of the low number of reads (Figure 3 E) from almost theabsence of incubation (Figure 2 A). It is for example the case for themixed samples, i.e. samples spiked with all 3 Salmonella strains,or samples spiked with Houtenae and adaptively sampled duringsequencing.Some identified VF genes were found more than once in thesame sample, with a maximum of 4 times. Common VF geneswere identified for samples expecting identical Salmonella strains(Figure 2 B), such as the mucD gene, a serine protease MucD pre-cursor, which is only found in Houtenae strains, or shdA, an AIDAautotransporter-like protein, only found in Enterica strain samplesbut not in samples spiked with Houtenae or Salamae strains.Similar results were found for AMR genes (Supplementary Fig-ure S4, 3 F). The sampling conditions affected the number of iden-tified VF and AMR genes as shown by the relationships betweenthe Ct value, CFU/mL value, or the number of remaining reads afterpreprocessing (Figure 3). The lower the Ct value, the higher thenumber of VF genes and AMR genes identified (Figure 3 A & B). NoVF or AMR genes were detected for samples with Ct values above26. For Ct values below 26, there is a negative correlation (Pearson
R = –0.85, p-value = 6 × 10–05) between the Ct value and thenumber of identified AMR genes. Similar but inverse relations areobserved for CFU/mL value (Figure 3 C & D), with a threshold for VFand AMR gene detection at 106. VF and AMR genes are then detectedif several conditions are fulfilled: a Ct value below 26, CFU/mL valueabove 106, and at least 5,000 reads after preprocessing. The furtherthe samples are from these thresholds, the higher the number ofVF genes and AMR genes identified. Indeed, the three top scattereddots with identified VF genes between 250 and 300 (Figure 3 A, D, E)are the samples with the highest number of reads, higher CFU/mLvalue, and a relatively lower Ct value compared to other samples.Allowing samples to incubate for a short period before sequencingenhances microbial growth, resulting in higher CFU/mL values andlower Ct values. This increase in microbial concentration improvesthe efficiency of direct sequencing by providing more genetic ma-terial for analysis, facilitating faster and more accurate pathogendetection.
Allele-based Pathogen IdentificationIn Workflow 4, samples were mapped against a reference genomeof an expected pathogen chosen by the user. Salmonella enterica
subspecies enterica serovar typhimarium (NC_003197.2) is chosenfor this data, as it is widely recognised and extensively used ingenomic studies due to its complete and well-annotated genomesequence [65]. However, given the diversity among Salmonellasubspecies in the samples, a high number of complex variants andSNPs were anticipated.The provided mapping statistics (mapping coverage (breadthof coverage) and mapping depth (depth of coverage) in Figure 2 D,E) serve as proxies for assessing the number and quality of iden-tified SNPs (Figure 2 F). SNPs with low mapping depth are lessreliable than those with higher depth. Reliable SNP calling typi-cally requires a depth of at least 10, achieved in 2 samples. Sampleswith the highest mean mapping depth correspond to samples withthe highest number of reads after preprocessing (Figure 2 A). Thehigher the coverage and the mean mapping depth, the more qual-ity SNPs have been identified (Figure 2 D-F). Some of the samplesspiked with Salmonella subsp. Enterica has a high breadth of cover-age but a low mean depth of coverage depth, as a result, the numberof their quality filtered identified SNPs is low.
PathoGFAIR Samples Aggregation and VisualisationFor the samples for which VF or AMR genes have been identified,phylogenetic trees are built on the concatenated genes consensussequences (Figure 2 C for VF genes, Supplementary Figure S5 for

Figure 3. Scatterplots of the number of identified VF (A, C, E) and AMR (B, D, F) genes
in relationship to proxies for sampling conditions: the Ct value (A, B), CFU/mL value
(C, D), and the number of reads after preprocessing (E, F). (A, B, C, D) The green area
highlights Ct values or CFU/mL values for which genes have been detected. Pearson
correlation for values in the pistachio light green area: (A)R = –0.33, p-value = 0.23,
(B) R = –0.85, p-value = 5.83e–05, (C) R = 0.17, p-value = 0.53, (D) R = 0.90,
p-value = 4.68e–06

AMR genes). These trees help track divergence between samplesand could then highlight the contamination point or an evolutionof the strains because of mutations. Indeed, samples spiked with
Enterica strain are found together in the VFs-based tree (Figure 2C), so the identified VF genes are unique to these samples and canclearly separate the samples from samples with other strains. Thesamples spiked with Houtenae strain are mostly clustered together,except 2 samples because of extra identified VF genes commonwith samples spiked with Enterica and/or Salamae strains. The 2samples spiked with a mix of the 3 stains are found in the middle ofthe tree (Figure 2 C), showing that a mix of VF genes related to thedifferent strains was identified. The mixed sample, S45, spiked witha higher concentration of Houtenae strain than the other strains,is close to the sample, S02, spiked with Houtenae strain only. ForAMR genes phylogenetic tree (Supplementary Figure S5), samplesare not as clearly separated as the tree for VF genes, mostly becausethe number of identified AMR genes is relatively low compared tothe number of identified VF genes.

Samples With Prior Pathogen Isolation

Data DescriptionTo benchmark PathoGFair on additional data, 84 samples (Sup-plementary Table T2), sampled in Palestine were provided by theSwiss Tropical and Public Health Institute (Supplementary FigureS6) [66]. These samples were sampled either from chicken meat,chicken stool, or human stool, in 2021 or 2022. In these samples,
Salmonella Enterica has been isolated in 19 samples, and Campy-
lobacter Jejuni in 65 samples. The wet lab procedures performedto isolate and prepare these samples for sequencing adhered tostandard microbiological techniques, including cultivation, enrich-ment, and isolation steps [66]. The generated sequencing data
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were provided under BioProjects PRJNA942086 (S. enterica [67])and PRJNA942088 (C. jejuni [68]).
PreprocessingNegligible contamination or host sequences were found between0% and 0.02% (Supplementary online Figure S7), as expected be-cause of the prior isolation of the pathogen. The number of readsranges between 3k and 217k reads per sample, after quality control.
Taxonomy ProfilingAs presented in the interactive KRONA plot (Supplementary onlineFigure S7), the first 19 samples, Salmonella Enterica isolates, areassigned correctly to Salmonella Enterica, and the remaining 65samples are assigned correctly to Campylobacter Jejuni. With theKRONA plot (Supplementary online Figure S7), the total number ofreads for each sample can be seen along with detailed percentageson the assigned taxa at each taxonomic rank.
Gene-based Pathogen IdentificationIn this workflow, we identified VF and AMR genes for all samples,thanks to the higher number of reads retained after preprocess-ing and the prior isolation of the pathogens. Consequently, VFgenes were detected in all samples, with more VF genes identifiedthan AMR genes (Supplementary Figure S8). Samples contain-ing Salmonella exhibited more VF genes (172 to 207) compared tosamples with Campylobacter (96 to 113). The opposite trend wasobserved for AMR genes, Campylobacter samples typically had 12AMR genes detected, while Salmonella samples mostly had 6 AMRgenes (Supplementary Figure S8)The analysis revealed that samples with similarly isolatedpathogens clustered together based on detected VF genes (4). Forexample, samples with Salmonella and Campylobacter formed dis-tinct clusters. Moreover, correlations were observed among samplesfrom different hosts, sampling years, and pathogenic species.Specific VF genes were found in samples with similar isolatedpathogens, indicating potential strain-specific differences. Forinstance, Cj1419c, a methyltransferase Capsule biosynthesis andtransport gene product, was exclusively found in samples with
Campylobacter sequenced in 2022, while flgB gene, encoding flag-ellar basal body rod protein, was only detected in Campylobactersequenced in 2021. flaA (flagellin), a VF gene product identifying
Campylobacter jejuni, was present in samples with Salmonella fromhuman stool sampled in 2022 and all samples with Campylobacter,but not in samples with Salmonella from chicken meat, chickenstool, or human stool sampled in 2021.Furthermore, certain VF genes such as spvC (type III secretionsystem effector SpvC phosphothreonine lyase) and pefB (plasmid-encoded fimbriae regulatory protein), associated with Salmonellasubsp. enterica serovar Typhimurium str. LT2, were exclusivelyfound in Salmonella from human stool sampled in 2022. Con-versely, fyuA, a pesticin/yersiniabactin receptor protein that identi-fies Yersiniabactin Yersinia pestis, was detected in every Salmonellasample except those from human stool sampled in 2022. Finally,some VF genes, like flif, a flagellar M-ring protein known in Yersiniaenterocolitica subsp. enterocolitica, were found in all samples, irre-spective of the pathogen species.
Allele-based Pathogen IdentificationThe 19 Salmonella Enterica samples were mapped against the ref-erence genome of the expected pathogen, Salmonella enterica sub-
species enterica serovar typhimarium (NC_003197.2 [65]), and the 65
Campylobacter Jejuni samples were mapped against Campylobacter
Jejuni (NC_002163.1).The 19 Salmonella Enterica samples have an average mappingcoverage of 94.6% and an average mean mapping depth of 31 perbase. The average total number of variants found per Salmonella
Enterica sample is 43,420. For the 65 Campylobacter Jejuni samplesthe average mapping coverage is 93.7%, the average mean map-

Figure 4. Cluster-map showing the identified VF genes on the y-axis for tested sam-
ples presented on the x-axis, clustered based on sample information such as sam-
pling year, isolated pathogen species, and the original host of the sample. Clustering
was performed using hierarchical clustering implemented in the Clustergrammer
Python package

ping depth is 42 per base and the average total number of variantsfound per sample is 26,654. These high values for the average totalnumber of variants identified for samples are expected since theused subspecies for the mapping are different than the subspeciesof the samples.
PathoGFAIR Samples Aggregation and Visualisation
The isolated samples exhibited a higher count of identified AMRgenes compared to the metagenomic samples without prior isola-tion, enabling the incorporation of additional genes into concate-nated gene consensus sequences. The resulting phylogenetic tree,constructed based on the AMR genes (Supplementary Figure S9),distinctly delineated different Salmonella strains. Similarly, thisdifferentiation was evident in the phylogenetic tree based on theVF genes.

Conclusion

In conclusion, we present PathoGFAIR, a collection of Galaxy FAIRadaptable workflows, designed for pathogens detection and track-ing. These five workflows span the entire analysis pipeline, rangingfrom preprocessing reads to advanced analyses including taxon-omy profiling, virulence and antimicrobial resistance gene iden-tification, SNP detection, and evolutionary history comparisons.The workflows generate diverse visualisations for a comprehensiveunderstanding of the results, accompanied by interactive reportsdetailing all relevant inputs and outputs.
Our workflows have successfully identified pathogens down togenus, species, or subspecies taxonomic ranks across diverse sam-ples, surpassing limitations observed in comparable pipelines. Ourworkflows facilitate comprehensive sample comparisons across di-verse types, conditions, and sequencing techniques by offering in-terpretative and publication-ready visualisations. The open-accessand user-friendly design of PathoGFAIR mitigates accessibility chal-lenges and reduces reliance on local computational resources byleveraging Galaxy’s infrastructure for computational tasks, a fea-ture that sets it apart from similar pipelines. This scalable workflow

8

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.26.600753doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.26.600753
http://creativecommons.org/licenses/by/4.0/


is a versatile solution for processing (meta)genomic samples, ex-tending its utility beyond detecting foodborne pathogens.In our findings, optimising sampling, preparation, and sequenc-ing conditions, such as a 24-hour sample incubation, significantlyenhances the identification of virulence and antimicrobial resis-tance genes. Indeed, the workflows’ performance correlates withsample characteristics, with higher CFU/mL values and read counts,and lower Ct values yielding more comprehensive results, whichcan be used to establish sampling guidelines. Moreover, as the Pre-processing workflow effectively removes host sequences, adaptivesampling during sequencing to exclude host DNA is not necessary.The workflows are still able to detect pathogens at least at genustaxonomic rank for samples without prior pathogen isolation.We further supported the scientific community by introducingnew 46 benchmark samples, making them publicly available. Thisdemonstrates our significant investment of time and resources,providing valuable assets for future research.In addition to the allele-based pathogen identification method,our workflow can be further enhanced by incorporating MLST.MLST, or Multi-Locus Sequence Typing, offers an alternative ap-proach by characterizing isolates through the sequences of house-keeping genes [45]. This method provides valuable informa-tion about the genetic diversity and evolutionary relationshipsamong isolates, allowing for more precise identification and track-ing of pathogens. By integrating MLST using MLST (v 2.22.0)tool [69]into our workflow, users can benefit from a comprehen-sive analysis that combines both alleles and variants identificationmethods, providing a more robust and accurate pathogen detectionand tracking solution.In the future, integrating PathoGFAIR with Galaxy’s automatedbot system holds the promise of ongoing updates and analyses re-quiring minimal human involvement. By establishing a dedicatedbot for PathoGFAIR, continuous results will be effortlessly refreshedwhenever new datasets are uploaded, similar to the Galaxy bot cre-ated for SARS-CoV-2 [70]. The Galaxy bot for SARS-CoV-2 automat-ically updates and reanalyses data with each new upload, maintain-ing up-to-date results and reducing the need for manual interven-tion. This automation ensures real-time, efficient data processingand analysis, enhancing the workflow’s accuracy and timeliness.Leveraging the user-friendly interface of the Galaxy platform en-sures accessibility for users of all computational skill levels, stream-lining the entire process from sample upload to result interpretationwith ease. This study not only presents a robust computational so-lution but also lays the groundwork for semi-automated, efficient,and user-friendly pathogen detection and tracking workflows.

Additional Files

Supplementary Figure S1. Violin plot with the percentage ofquality-controlled host reads detected and removed in sampleswith respect to adaptive sampling during sequencing (Hostexcluded or not) - Samples Without Prior Pathogen IsolationSupplementary Figure S2. Cluster-map for the taxonomy profilingat the subspecies taxonomic rank, created using hierarchicalclustering to group similar taxa based on their abundance profiles -Samples Without Prior Pathogen IsolationSupplementary online Figure S3. Krone Pie Chart for the taxonomyprofiling - Samples Without Prior Pathogen IsolationSupplementary Figure S4. Bar chart for the total number of VFgenes (orange) and AMR genes (blue) found in samples withrespect to incubation duration before DNA isolation - SamplesWithout Prior Pathogen IsolationSupplementary Figure S5. Phylogenetic tree, using the nucleotideevolution model; General Time Reversible (GTR) model with aCAT approximation for rate heterogeneity across sites [50], for theidentified AMR genes - Samples Without Prior Pathogen IsolationSupplementary Figure S6. Upset plot illustrating the intersections

of different metadata categories, including sampling year, pathogenspecies, and the original host of the samples, highlighting commonand unique attributes among the datasets - Samples With PriorPathogen IsolationSupplementary online Figure S7. Krone Pie Chart for the taxonomyprofiling - Samples With Prior Pathogen IsolationSupplementary Figure S8. Violin plot for the total number of VFsand AMR genes - Samples With Prior Pathogen IsolationSupplementary Figure S9. Phylogenetic tree, using the nucleotideevolution model; General Time Reversible (GTR) model with aCAT approximation for rate heterogeneity across sites [50], for theidentified AMR genes - Samples With Prior Pathogen IsolationSupplementary Table T1. Metadata for Samples Without PriorPathogen IsolationSupplementary Table T2. Metadata for Samples With PriorPathogen Isolation

Availability of Source Code and Requirements

Lists the following:
• Project name: PathoGFAIR• Workflows on public Galaxy servers: https://training.

galaxyproject.org/training-material/workflows/embed.
html?query=pathogfair• Workflows on WorkflowHub: https://workflowhub.eu/search?
utf8=%E2%9C%93&q=pathogfair• Workflows on Dockstore: https://dockstore.org/search?
organization=iwc-workflows&entryType=workflows&search=
engy• Tutorial: https://training.galaxyproject.org/
training-material/topics/microbiome/tutorials/
pathogen-detection-from-nanopore-foodborne-data/
tutorial.html• Data analysis home page: https://github.com/usegalaxy-eu/
PathoGFAIR• Operating system(s): Platform independent• Other requirements: Account on a Galaxy server• License: MIT license

Data Availability

The raw sequence reads of the 46 samples without prior isolation areavailable on Sequence Read Archive (SRA) under BioProjects [71].The protocol for the preparation of these samples is available onProtocol.io [62]. The workflows presented in the Methods sectionare available on Intergalactic Workflow Commission (IWC) and twoworkflow registries (Dockstore and WorkflowHub). The trainingmaterial to understand, learn, and try the workflows is available onthe Galaxy Training Network (GTN) [59]. The Jupyter notebook foradditional visualisations and generating the figures of this paper isavailable in a GitHub repository [72].

Declarations

List of Abbreviations

AMR: Antimicrobial resistance; API: Application Programming In-terface; CFU: Colony-forming unit; Ct: Cycle Threshold; EFSA: Eu-ropean Food Safety Authority; EU: European Union; FAIR: FindableAccessible Interoperable Resulable; GTN: Galaxy Training Network;IWC: Intergalactic Workflow Commission; MLST: Multilocus se-quence typing; NGS: Next-Generation Sequencing; QC: Quality Con-trol; RKI: Robert Koch Institute; SNP: Single-nucleotide polymor-
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phism; SRA: Sequence Read Archive; VF: Virulence Factor; VFDB:Virulence Factor database; WHO: World Health Organization; WGS:Whole Genome Sequencing.
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