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Abstract

When the direction of a potential mean shift can be anticipated, the one-sided exponentially

weighted moving average (EWMA) X̄ control chart using the truncation method (namely, the one-

sided TEWMA X̄ chart) is more efficient than those conventional one- and two-sided EWMA X̄

schemes for process monitoring. Although attractive, there are no studies on designing the one-

sided TEWMA X̄ chart by taking measurement errors into account. In this context, we investigate

the effect of measurement errors on the performance of the one-sided TEWMA X̄ chart based on

the linear covariate error model. Additionally, a Markov chain model is established to evaluate

the run length properties of the scheme in the presence of measurement errors. Then, an optimal

design procedure is developed for searching the optimal design parameters of the scheme. Based

on these mentioned studies, several tables and figures are presented to evaluate the detecting per-

formance of the scheme under different parameters of the linear covariate error model, and then
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a conventional one-sided EWMA X̄ chart with reflecting boundary is introduced to further study

the effect of the presence and absence of measurement errors on control chart comparison studies .

Simulation results show that although the detecting performance of the proposed scheme is signif-

icantly affected by measurement errors, its performance is still superior to the classic competing

chart under the same comparison conditions. Finally, an illustrative example is given to show the

implementation of the recommended scheme.

Keywords: One-sided EWMA X̄ control chart; Measurement errors; Markov chain model; Trun-

cation method; Average run length;

1 Introduction

As one of the most influential tools in statistical process control (SPC), control charts have been

extensively used in many fields, for instance, manufacturing industry (see Mukherjee & Marozzi

(2021)), service process (see Yang & Jiang (2019)), health surveillance (see García-Bustos & Zam-

brano (2022)). According to Montgomery (2012), control charts can be classified into two categories:

the memoryless-type charts (also named as the Shewhart-type charts) and the memory-type charts.

As only the current sample information is considered, Shewhart-type charts are easy to implement

and sensitive in detecting large shifts, but this fact also makes it inefficient for monitoring small to

moderate shifts in a process. Conversely, by taking both the current and past information into account,

memory-type charts (for example, the exponentially weighted moving average (EWMA) and cumu-

lative sum (CUSUM) charts) can be regarded as good alternatives to the memoryless-type charts in

monitoring small to moderate shifts. This feature makes memory-type charts to be efficient, and then

motivates more meaningful research works, for instance, readers can refer to Hossain et al. (2019), Li

et al. (2023) and Perry (2020).

Control charts are usually designed as two-sided type schemes that can monitor both upward and

downward shifts in the process. However, in practice, there are many scenarios that only need to

focus on one particular shift direction, for instance, the CDC (say, Center for Disease Control) is

usually more concerned with the increase in infection rate of a specific disease. As pointed by Chiu
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& Tsai (2013), compared with the one-sided type schemes, the conventional two-sided type schemes

may spend more time to generate an out-of-control signal when a shift occurs in the process. In this

context, it is better to develop and implement a one-sided type control chart, if the direction of the

shift can be anticipated or when the investigator is only interested in a particular directional shift.

More specifically, two commonly used one-sided EWMA charts are introduced in this paper, one is

the one-sided EWMA chart with reflecting boundary (hereafter denoted as the one-sided REWMA

chart), and the other is the one-sided EWMA chart using truncation method (hereafter denoted as the

one-sided TEWMA chart). Compared with the one-sided TEWMA chart, the one-sided REWMA

chart proposed by Gan (1993a) seems more well-studied due to its ease of understanding. According

to Shu et al. (2007) and Xie et al. (2022a), the significant difference between these two schemes is

the one-sided methodology they used, taking the upward shift monitoring as an example, the chart-

ing statistic of the upper-sided REWMA chart is W+
R,t = max{BU , λXt + (1 − λ)W+

R,t−1}, where

λ ∈ (0, 1] is the smoothing parameter, and BU represents the reflecting boundary of the upper-sided

REWMA chart. It is not difficult to find that the basic idea of the one-sided REWMA chart is to reset

the EWMA charting statistic to the value of the reflecting boundary whenever it is below (or above)

the reflecting boundary for the upper-sided (or lower-sided) REWMA chart. Up to now, the reflect-

ing boundary methodology is still widely used in many studies, for instance, Haq (2020) developed

the one-sided MEWMA charts with reflecting boundaries for monitoring the mean of a multivariate

normal process, and Hu et al. (2023) designed the one-sided EWMA charts using reflecting bound-

aries for high-quality process monitoring. Obviously, the reflecting boundaries can help to improve

the sensitivity of the one-sided REWMA chart, but the difference choices of it can lead to different

performance of the scheme. This means that for any specified shift level, if one wants to achieve good

detection results, the optimal value of the reflecting boundary needs to be searched before starting the

process monitoring. With no doubt, this procedure will complicate the solution. As a suitable alter-

native, Shu et al. (2007) proposed the one-sided TEWMA chart for monitoring normally distributed

data. Similarly, taking upward shift monitoring as an example, the charting statistic of the upper-sided

TEWMA chart can be given as W+
T,t = λX+

t + (1−λ)W+
T,t−1, where X+

t = max(µ0, Xt), and µ0 de-

notes the known in-control mean. As it can be seen, the basic idea of the one-sided TEWMA chart is

to accumulate positive (or negative) deviations from the target only, and to truncate negative (or pos-
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itive) deviations from the target to zero in the computation of the EWMA statistic at each timestep.

Based on this one-sided methodology, Xie et al. (2022a) developed a one-sided adaptive TEWMA

chart for detecting both small and large mean shifts simultaneously. Meanwhile, a new one-sided

TEWMA TBE chart is recommend by Xie et al. (2022b) to monitor high-quality processes.

Although attractive, all studies mentioned above are based on the assumption that the quality

characteristics can be accurately obtained, which seems somewhat unrealistic in practice. In indus-

trial applications, accurate measurement of quality characteristics are often difficult to achieve in

situations where humans are involved. According to Noor-ul-Amin & Riaz (2021), measurement er-

ror can be defined as the deviation between the gauged value and the actual value of an observation.

It always occurs with the same intensity and does not vary from one observation to the next. As

summarized by Maleki et al. (2017), the measurement error model can commonly be divided into

three categories: (1) the additive model, (2) the multiplicative model, and (3) two- or four-component

model. It is worth noting that, Bennett (1954) firstly investigated the effect of measurement errors

on the X̄ chart using the additive model. On the basis of this research, Linna & Woodall (2001)

proposed the most widely used linear covariate model, and then the properties of the Shewhart X̄

and the S2 charts have been investigated in the presence of measurement errors. As one of the main

conclusion of this study, using multiple measurements to compensate the negative effect of measure-

ment errors is recommended. Additionally, unlike the constant variance assumption used in linear

covariate model, Montgomery & Runger (1993) pointed out that in some circumstances, the variance

of the measurement error changes linearly with the process mean level. Hence, researchers have also

conducted some works on the model with linearly increasing variance, for instance, readers can refer

to Maravelakis (2012) and Khati Dizabadi et al. (2016).

No matter what model is used, the performance of control charts can be more or less affected

under the presence of measurement errors. For example, Tran et al. (2021) investigated the effect of

measurement errors on the performance of the VSI EWMA median chart, and proved that the mea-

surement errors can significantly affect the detecting performance of the schemes. Tang et al. (2018)

studied the performance of the adaptive EWMA X̄ chart when the measurement error is defined with
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the linear covariate error model, and then the presence of measurement error with a linearly increasing

standard deviation has also been investigated. Haq et al. (2015) investigated the effect of measurement

errors on the detecting performance of EWMA charts based on various ranked set sampling schemes.

By reviewing those related research works, it is not difficult to see that the effect of measurement

errors on many two-sided type control charts has been well investigated, but there is little research

on one-sided type control charts, especially on the one-sided EWMA type charts. Motivated by the

fact that the one-sided methodology (i.e., both the reflecting boundary and the truncation method) can

substantially improve the performance of the scheme when the direction of the shift can be antici-

pated, the goal of this study is to investigate the effect of measurement on the one-sided TEWMA X̄

chart, and then compare the performance of the one-sided TEWMA X̄ chart with that of the one-sided

REWMA X̄ chart in the presence of measurement errors. The key contributions of this study can be

summarized as following:

• To study the run length (RL) properties of the one-sided TEWMA X̄ control chart in the pres-

ence of measurement errors.

• To construct the Markov chain model for evaluating the average run length (ARL) of the one-

sided TEWMA X̄ chart based on the linear covariate error model.

• To compare the ARL performance of the one-sided TEWMA X̄ chart with that of the one-sided

REWMA X̄ chart, in the absence and presence of measurement errors, using the optimal design

parameters.

The outline of this study is organized as follows: Firstly, the linear covariate error model is pre-

sented in Section 2. Then, in Section 3, the one-sided TEWMA X̄ control chart with measurement

errors is proposed, and the Markov chain model is established to investigated the ARL performance

of the scheme. Furthermore, in the presence of measurement errors, the optimal design procedure of

the scheme is developed, and the optimal design parameters are searched. In Section 4, the compara-

tive scheme, say, the one-sided REWMA X̄ control chart, is introduced for the comparison with the

one-sided TEWMA X̄ chart, and some guidelines for using the one-sided TEWMA X̄ chart to detect

the mean shifts in the presence of measurement errors are also provided. Subsequently, an illustrative

example is given in Section 5 to demonstrate the implementation of the one-sided TEWMA X̄ chart
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with measurement errors. Finally, Section 6 concludes with some remarks and directions for future

researches.

2 The linear covariate error model

In this paper, let us assume that the Phase II subgroups {Xt,1, Xt,2 · · · , Xt,n} with n independent and

identically distributed (iid) normal random variables are available. The true value of the quality char-

acteristic Xt,i follows the normal distribution with known in-control mean µ0 and variance σ2
0 , say,

Xt,i ∼ N(µ0, σ
2
0), where i = 1, 2, · · · , n. When the process is out-of-control, the process variance

keeps unchanged, and the process mean shifts from µ0 to µ = µ0 + δσ0, where δ represents the stan-

dardized mean shift. As suggested by Linna & Woodall (2001), the true value of the quality character-

istic Xt,i may not be obtained directly, but it can be assessed from the values {Yt,i,1, Yt,i,2 · · · , Yt,i,m}

of a set of m measurement operations with each Yt,i,j being equal to

Yt,i,j = A+BXt,i + εt,i,j (1)

where j = 1, 2, · · · ,m, A and B denote two known constants, and εt,i,j is an independent normal

N(0, σ2
M) random error term. According to Tang et al. (2018), to keep the units of µ and σM the

same, the standard deviation σM , instead of the variance σ2
M , can either be change linearly with the

process mean µ (namely, σM = C +Dµ, where C and D are two known extra parameters), or it can

be a constant independent of the variable Xt,i.

In order to compensate for the adverse effect of measurement errors, many researchers suggested

to take multiple measurement operations per item in each sample, for instance, see Linna & Woodall

(2001), Costa & Castagliola (2011), Nguyen et al. (2020), and the corresponding results have shown

that the standard deviation of the measurement error component decreases as the number of mea-

surement operations m increases. At any sampling point t = 1, 2, · · · , when i = 1, 2, · · · , n, and

j = 1, 2, · · · ,m, n ×m observations Yt,i,j can be easily obtained. Based on these observations, the
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sample mean Ȳt equals to

Ȳt =
1

nm

n∑
i=1

m∑
j=1

Yt,i,j = A+
1

n

(
B

n∑
i=1

Xt,i +
1

m

n∑
i=1

m∑
j=1

εt,i,j

)
(2)

It is easy to prove that the mean E(Ȳt) and the variance V(Ȳt) of Ȳt are equal to

E(Ȳt) = A+Bµ0 (3)

V (Ȳt) =
1

n

(
B2σ2

0 +
σ2
M

m

)
(4)

respectively.

3 The one-sided TEWMA X̄ chart with measurement errors

Let us assume that the quality characteristic Xt needs to be monitored in a process, and {Xt,1, Xt,2,

· · · , Xt,n} is a sample of n > 1 independent normal random variables taken at regular sampling point

t = 1, 2, · · · . For the one-sided TEWMA X̄ chart assuming that there is no measurement errors in

the quality characteristic Xt, it is appropriate to use the sample mean X̄t =
∑n

i=1 Xt,i to plot on the

scheme for process monitoring.

3.1 The design of the one-sided TEWMA X̄ chart

In this section, the upper-sided and lower-sided TEWMA X̄ charts using the truncation method are

suggested for quickly detecting upward and downward mean shifts, respectively. According to the

basic idea of the truncation method, the upper- and lower-truncated variables X̄+
t and X̄−t can be

defined as follows:

X̄+
t = max(µ0, X̄t) (5)

X̄−t = min(µ0, X̄t) (6)

where µ0 is the known in-control mean value, and X̄t ∼ N(µ0, σ
2
0/n). Similarly, in presence of

measurement errors, based on Equation (2), the upper- and lower-truncated variables Ȳ +
t and Ȳ −t can
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be given as follows:

Ȳ +
t = max(µ0, Ȳt) (7)

Ȳ −t = min(µ0, Ȳt) (8)

respectively. According to Equation (3), it is easy to know that Ȳt ∼ N(A + Bµ0, (B
2σ2

0 +
σ2
M

m
)/n),

so the upper- and lower-truncated variables with measurement errors can be rewritten as,

S̄+
t = max

(
µ0 − E(Ȳt)√

V (Ȳt)
, S̄t

)
(9)

S̄−t = min

(
µ0 − E(Ȳt)√

V (Ȳt)
, S̄t

)
(10)

where

S̄t =
Ȳt − E(Ȳt)√

V (Ȳt)
∼ N(0, 1) (11)

In this paper, if we define

µ0 − E(Ȳt)√
V (Ȳt)

=

√
n(µ0 − (A+Bµ0))√

B2σ2
0 +

σ2
M

m

= µM (12)

Then, the upper- and lower-truncated variables S̄+
t and S̄−t are simply restated as follows:

S̄+
t = max

(
µM , S̄t

)
(13)

S̄−t = min
(
µM , S̄t

)
(14)

For the monitoring process, if it is deemed to be in-control, the mean and variance of the upper-

truncated variable S̄+
t are

E(S̄+
t ) = µMΦ(µM) + φ(µM) (15)

V (S̄+
t ) = 1− Φ(µM) + µMφ(µM) + µ2

MΦ(µM)− (µMΦ(µM) + φ(µM))2 (16)
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respectively, where φ(·) and Φ(·) represent the probability density function (p.d.f.) and the cumulative

distribution function (c.d.f.) of the standard normally distributed random variable S̄t presented in

Equation (11). Similarly, the in-control mean and variance values of the lower-truncated variable S̄−t

are

E(S̄−t ) = µM (1− Φ(µM))− φ(µM) (17)

V (S̄−t ) = µ2
M (1− Φ(µM)) + Φ(µM)− µMφ(µM)− (µM − µMΦ(µM)− φ(µM))2 (18)

respectively. For more details about the derivation of the mean and variance values of the upper- and

lower-truncated variables S̄+
t and S̄−t , readers can refer to Appendix A. Furthermore, in this study, the

standard form of normal variable Z̄t = (S̄t − E(S̄t)/
√
V (S̄t) can be used to simplify the design of

the proposed chart. More Specifically, let us define the standard upper- and lower-truncated variables

Z̄+
t and Z̄−t as follows:

Z̄+
t =

S̄+
t − E(S̄+

t )√
V (S̄+

t )
(19)

Z̄−t =
S̄−t − E(S̄−t )√

V (S̄−t )
(20)

Based on these two standard upper- and lower-truncated variables, the upper- and lower-sided TEWMA

X̄ charts can be designed with the following charting statistics:

• For the upward mean shift detection, the charting statistic Q+
t of the upper-sided TEWMA X̄

chart, at sampling point t = 1, 2, · · · , is defined as:

Q+
t = λZ̄+

t + (1− λ)Q+
t−1 (21)

• Meanwhile, for detecting downward mean shifts, the charting statistic Q−t of the lower-sided

TEWMA X̄ chart can be written as:

Q−t = λZ̄−t + (1− λ)Q−t−1 (22)
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where λ ∈ (0, 1] represents the smoothing parameter of the schemes, and the initial values of Q+
0 =

Q−0 = E(Z+
t ) = E(Z−t ) = 0. In process monitoring, the upper-sided (or lower-sided) TEWMA X̄

chart triggers an out-of-control signal whenever the charting statistic Q+
t > H+ (Q−t < H−), where

H+ (H−) is the upper (lower) control limit of the proposed scheme.

3.2 The Markov chain model for the one-sided TEWMA X̄ chart

To evaluate the run length (RL) properties of control charts, there are commonly three ways: (1)

the Monte Carlo simulation, (2) the Markov chain model, and (3) the integral equations. Among

them, the Monte Carlo simulation and the Markov chain model are more widely used and easier to

understand. So far, there are many representative and classic studies on these two methods. For ex-

ample, for Monte Carlo simulation, reader can refer to Schaffer & Kim (2007) and Dickinson et al.

(2014). Meanwhile, for Markov chain model, reader can refer to Gan (1993b), Shu & Jiang (2006)

and Castagliola et al. (2016). In this study, a Markov chain model is proposed to evaluate the average

run length (ARL) performance of the one-sided TEWMA X̄ chart with measurement errors. Due to

the space limitation, only the upper-sided TEWMA X̄ chart with measurement errors is discussed

here for illustration.

Without loss of generality, the basic idea of constructing a Markov chain model is to define the

transition states by dividing the in-control region into a finite number of subintervals, and then using

the midpoint value of each subinterval to approximate the transient state of charting statistic at sam-

pling point. In this paper, the in-control region is divided into M subintervals, and according to Li

et al. (2014), the ARL value of the one-sided TEWMA X̄ chart can be computed using

ARL = pT(I−Q)−11, (23)

where p = (p1, p2, · · · , pM)T is the initial probability vector, and Q is theM×M -dimensional matrix

that contains the transition probability elements qi,j of the charting statistic Q+
t from state i to state

j. Besides, 1 represents an M × 1-dimensional vector of 1’s, and I denotes an M ×M -dimensional

identity matrix. For the upper-sided TEWMA X̄ chart, it is easy to verify that the standard upper-
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truncated variable

Z̄+
t =

S̄+
t − E(S̄+

t )√
V (S̄+

t )
≥ µM − E(S̄+

t )√
V (S̄+

t )
(24)

Furthermore, if we define
(
µM − E(S̄+

t )
)
/
√
V (S̄+

t ) = H+
U , the in-control region can be denoted as

[H+
U , H

+], whereH+ is the upper control limit of the scheme. Based on the fact that the width of each

subinterval is ∆+ = (H+−H+
U )/M , the midpoint value L+

i = H+
U + (i−∆+/2) of each subinterval

is considered to approximate the transient state i of the charting statisticQ+
t at sampling pointt, where

i = 1, 2, · · · ,M . Furthermore, the transient probability elements qi,j of Q can be computed using

qi,j = Pr
(
Q+
t ∈ State j

∣∣∣ Q+
t−1 ∈ State i

)
= Pr

(
L+
j −

∆+

2
< Q+

t 6 L+
j +

∆+

2

∣∣∣∣∣ Q+
t−1 = L+

i

) (25)

After some algebraic operations, the transient probability elements qi,j are given as follows:

qi,j = Pr

(
L+
i +

L+
j − L+

i − ∆+

2

λ
< Z+

t ≤ L+
i +

L+
j − L+

i + ∆+

2

λ

)

= Pr

(
E(S̄+

t ) +
√
V (S̄+

t )

(
L+
i +

L+
j − L+

i − ∆+

2

λ

)
< S+

t ≤ E(S̄+
t )+

√
V (S̄+

t )

(
L+
i +

L+
j − L+

i + ∆+

2

λ

)) (26)

where E(S̄+
t ) and V (S̄+

t ) can be obtained from Equations (15) and (16), respectively. For the upper-

sided TEWMA X̄ chart, if we define

A1 = E(S̄+
t ) +

√
V (S̄+

t )

(
L+
i +

L+
j − L+

i − ∆+

2

λ

)
(27)

A2 = E(S̄+
t ) +

√
V (S̄+

t )

(
L+
i +

L+
j − L+

i + ∆+

2

λ

)
(28)

then, the transient probability elements qi,j of matrix Q can be calculated using the following equa-

tions,

qi,j =


0 A2 < µM

Φ(A2 − δM) A1 < µM and A2 > µM

Φ(A2 − δM)− Φ(A1 − δM) A1 > µM and A2 > µM

(29)
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where

δM =

√
nBδσ0√

B2σ2
0 +

σ2
M

m

(30)

and Φ(·) represents the c.d.f. of the standard normal distribution N(0, 1), δ is the magnitude of the

standardized mean shift, n is the sample size, and m denotes the number of measurement operations.

Finally, for the initial probability vector p, the elements pj could be obtained as follows:

pj =


1, L+

j −
∆+

2
< Q+

0 ≤ L+
j +

∆+

2

0, otherwise

(31)

where Q+
0 = E(Z+

t ) = 0.

4 Effect of measurement errors on the one-sided TEWMA X̄

chart

As one of the most extensively used RL characteristics for control chart, the ARL is defined as the

average number of observations required for the scheme to trigger a signal. Generally, investigators

believe that the smaller the out-of-control ARL (named as ARL1), the better the performance of the

control chart. Hence, when designing a control chart, an acceptable in-control ARL (i.e., ARL0)

should be specified firstly at the beginning of the process monitoring, and then the aim of this scheme

is to obtain the minimum ARL1 (denoted as ARLmin) for a predetermined mean shift value δopt. In

this paper, the following optimal design procedure is given for searching the optimal design parame-

ters λ∗ and H+
∗ of the upper-sided TEWMA X̄ chart with measurement errors, say:



{λ∗, H+
∗ } = arg min

{λ,H+}
ARL1(B, η, λ,H+,m, n, δopt)

Subject to :

ARL(B, η, λ,H+,m, n, δopt = 0) = ARL0

(32)
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where η = σM/σ0 is a commonly considered index (namely, the ratio of the standard deviation of

measurement error σM and the in-control standard deviation σ0 of the process, hereafter denoted as

the standard deviation ratio) for evaluating the effect of measurement errors on the performance of the

control chart. With the constraint on the desired ARL0 = 370, the ARL performance of the upper-

sided TEWMA X̄ chart is discussed here for illustration. According to the optimal design procedure

described in (32), the optimal design parameters {λ∗, H+
∗ } of the upper-sided TEWMA X̄ chart are

listed in Table 1, for different prespecified mean shifts δopt ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3},

when A = 0, B = 1, µ0 = 0, σ0 = 1, σM = 1, m ∈ {1, 6} and n ∈ {3, 5, 7, 9}.

(Please insert Table 1 here)

Before investigating the effect of measurement errors on the ARL performance of the upper-sided

TEWMA X̄ chart, some comparisons of ARL computed using the proposed Markov chain model and

the Monte Carlo simulation are given in Table 2. Due to the space limitation, only four sets of optimal

design parameters {λ∗, H+
∗ } are provided here for illustration. For instance, when δopt = 0.1, m = 1,

n = {3, 7}, the optimal design parameters of the proposed scheme are {λ∗, H+
∗ } = {0.0716, 0.5011}

and {0.2281, 1.1949}, respectively. Meanwhile, when δopt = 1.0, m = 6, n = {5, 9}, the correspond-

ing optimal design parameters are {λ∗, H+
∗ } = {0.3212, 1.5486} and {0.5793, 2.4770}, respectively.

It is noted that the number M of subintervals used in the Markov chain model is 500, and the num-

ber of runs employed in the Monte carlo simulation is 5 × 104. As we can see from Table 2, the

largest discrepancy among the presented results is less than 1% of the ARLmin. This fact means that

the Markov chain model established in this study can be satisfactorily verified with the Monte Carlo

simulation, and this confirms that the Markov chain model is effective.

(Please insert Table 2 here)

With the constraint on the ARL0 = 370, the ARL1 performance of the upper-sided TEWMA X̄

chart with the measurement errors is investigated, for several prespecified standard deviation ratios

η ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, by setting fixed value of m ∈ {1, 6}, δopt = 0.5,

and n ∈ {3, 5, 7, 9}. As it can be seen from Figure 1, for the fixed value of n, the ARL1 values of the

upper-sided TEWMA X̄ chart with measurement errors are generally larger than the ARL1 value of

the scheme with no measurement error (i.e., the standard deviation ratio η = 0). Additionally, it can
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be observed that the ARL1 values increase as the standard deviation ratio η increases. For instance,

in the case of m = 1, when there is no measurement error in the process, the ARL1 value is 10.46

for n = 3, but as the standard deviation ratio η increase from 0.4 to 0.9, the corresponding ARL1

values of the scheme increases from 11.20 to 16.50, respectively. Similar results can also be observed

in the case of m = 6, but the increasing trend of ARL1 is significantly smaller than that in the case of

m = 1. According to the results presented above, we can draw a conclusion that with the increase of

the standard deviation ratio η, the detective efficiency of the scheme can be strongly affected.

(Please insert Figure 1 here)

Not only the standard deviation ratio η, but the effect of B on the performance of the scheme is

also investigated in this paper. The ARL1 performances of the upper-sided TEWMA X̄ chart with

measurement errors are given in Figure 2, for different values of B ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.75,

0.85, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, by setting fixed value of m ∈ {1, 6}, η = 1, δopt = 0.5, and

n ∈ {3, 5, 7, 9}. As we can see from Figure 2, for a fixed value of n, when the value of B is smaller

than 1, the change of parameter B has a significant effect on the ARL1 performance of the scheme.

Contrarily, if the value of B is greater than 1, the effect of B on ARL1 is relatively small . For

example, in the case of m = 1 and n = 3, when B changes from 0.2 to 0.5, the corresponding ARL1

values decreases from 136.07 to 32.39. However, for m = 1 and n = 5, if B changes from 2 to 3, the

corresponding ARL1 values only shifts from 8.31 to 7.67. Similar results can also be obtained in the

case ofm = 6. Without loss of generality, in terms of the overall performance of the scheme, it can be

concluded that for a fixed value of n, if the value of B increases, the negative effect of measurement

errors on the upper-sided TEWMA X̄ chart gradually decreases until it is comparable to the case of

no measurement error.

(Please insert Figure 2 here)

Whatever Figures 1 or 2, the same phenomenon can be observed that the use of multiple measure-

ments can effectively reduce the negative effect of measurement errors on the upper-sided TEWMA X̄

chart. For instance, from Figure 1, when a fixed n is selected, withm = 6 measurements per item, the

upper-sided TEWMA X̄ chart has almost similar properties for all values of η, and the negative effect

of measurement errors on the scheme can be overlooked. This fact motivates us to further investigate
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the effect of multiple measurements m on the detecting performance of the upper-sided TEWMA X̄

chart. In this context, Figure 3 illustrates the ARL1 performance of the upper-sided TEWMA X̄ chart

for different measurement operationsm ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, whenB = 1, η = 1, δopt = 0.5,

and n ∈ {3, 5, 7, 9}. According to our observation from Figure 3, as the values of measurements m

increases, the negative effect of measurement error on the upper-sided TEWMA X̄ chart decreases,

especially when m varies from 1 to 2, the results are most significant. For instance, in the case of

n = 3, when m changes from 1 to 2, the ARL1 value of the upper-sided TEWMA X̄ chart decreases

from 20.70 to 13.93. It is worth noting that taking multiple measurements is a good idea to diminish

the negative effect of measurements errors on the one-sided TEWMA X̄ chart, but the extra costs and

time associated with it should also be considered.

(Please insert Figure 3 here)

5 Effect of measurement errors on performance comparison of

one-sided EWMA-type charts

The goal of this section is to investigate the effect of measurement errors on ARL performance com-

parison of one-sided EWMA-type charts, more specifically, the one-sided REWMA X̄ chart is in-

troduced here for comparison with the one-sided TEWMA X̄ chart in the presence of measurement

errors. To provide a fair comparison, these two schemes are investigated in the same condition: for

instance, both ARL0 values of these two schemes are set as 370. Also, the ARL values for the one-

sided REWMA X̄ chart are computed using the Markov chain model, rather than the Monte Carlo

simulation or the integral equation method.

5.1 The one-sided REWMA X̄ chart with measurement errors

As a competing scheme, the one-sided REWMA X̄ chart is introduced here for detecting process

mean shifts. Based on Gan (1993a), the charting statistics of the one-sided REWMA X̄ chart with

measurement errors can be respectively given as follows:

• In the presence of measurement errors, the charting statistic W+
t of the upper-sided REWMA
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X̄ chart is written as:

W+
t = max (BU , λS̄t + (1− λ)W+

t−1) (33)

• For downward shift detection, the charting statistic W−
t of the lower-sided REWMA X̄ chart

with measurement errors can be given as:

W−
t = min (BL, λS̄t + (1− λ)W−

t−1) (34)

where S̄t is defined in Equation (11), BU and BL are the reflecting boundaries of the upper- and

lower-sided REWMA X̄ charts, respectively. Commonly, the reflecting boundary values of the one-

sided REWMA X̄ chart can be defined as BU = BL = E(S̄t). For the process monitoring, if the

charting statistic W+
t (W−

t ) exceeds (or falls below) the upper (lower) control limit h+ (h−), the

one-sided REWMA X̄ chart triggers an out-of-control signal, and then the corresponding corrective

action(s) should be taken to remove the assignable cause(s). In the presence of measurement errors,

the Markov chain model of the upper-sided REWMA X̄ chart is also established here for providing a

fair comparison with the upper-sided TEWMA X̄ chart. Due to the space limitation, reader can see

Appendix B for more detail.

5.2 Performance comparison under measurement errors

The goal of this section is to show how the measurement errors affect the ARL performance of

one-sided EWMA-type schemes in comparative studies. More specifically, we compare the ARL

performance of the upper-sided TEWMA X̄ and REWMA X̄ charts in the absence and presence of

measurement errors. To provide a fair comparison, the number M of subintervals of these two charts

is defined as 500. Meanwhile, the same optimal design procedure is used in this section for searching

the optimal design parameters of the scheme, and the prespecified mean shifts δopt = {0.5, 1} are

given for illustration.

In order to show the effect of measurement errors in comparative studies, Tables 3 and 4 re-

spectively present the ARL1 values of the upper-sided TEWMA X̄ and REWMA X̄ charts for de-

tecting different mean shift values δ ∈ {0.1, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.7, 2, 2.5}, when m = {1, 6},
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n ∈ {3, 5, 7, 9}, and δopt ∈ {0.5, 1}. Furthermore, according to the optimal design procedures men-

tioned above, the optimal design parameters of these two charts can be searched. For example, for Ta-

ble 4, whenm = 1, n = 3 and δopt = 0.5, the optimal design parameters of these two charts with mea-

surement errors are {λ∗, H+
∗ } = {0.1220, 0.7484} and {λ∗, h+

∗ } = {0.1483, 0.7673}. Meanwhile, the

corresponding parameters in the absence of measurement errors are {λ∗, H+
∗ } = {0.0950, 0.6207}

and {λ∗, h+
∗ } = {0.1554, 0.7896}, respectively. To sum up, as we can see from Tables 3 and 4, the

following conclusions can be drawn:

• Firstly, as we can see from those ARL1 values presented in Tables 3 and 4, regardless of

measurement error, the upper-sided TEWMA X̄ chart performs better than the upper-sided

REWMA X̄ chart in terms of the overall detection effectiveness.

• Additionally, no matter for the upper-sided TEWMA X̄ chart or the upper-sided REWMA X̄

chart, if the scheme does not take multiple measurement operations per item in each sample

(i.e., m = 1 in this paper), there will be a significant difference between ARL1 values with and

without measurement errors. For example, for the upper-sided TEWMA X̄ chart, when m = 1,

n = 3, and δopt = 0.5, the ARL1 values with and without measurement errors are 154.53 and

105.66 for δ = 0.1.

• On the other hand, by observing from Tables 3 and 4, it is easy to know that, taking multiple

measurement operation can not only reduce the negative effect of measurement errors on both

schemes, but this approach also reduces the difference between ARL1 values in the presence

and absence of measurement errors. For example, for the upper-sided TEWMA X̄ chart, when

m = 1, n = 3, and δopt = 0.5, the ARL1 values with and without measurement errors are

154.53 and 105.66 for δ = 0.1. But when m = 6, n = 3, and δopt = 0.5, the corresponding

ARL1 values are 117.54 and 110.41 for δ = 0.1.

(Please insert Tables 3 and 4 here)

The above conclusions verify the following facts again that, in the comparative studies, irrespective of

the δopt value, taking multiple measurement operation will reduce the negative effect of measurement

errors on both the one-sided TEWMA X̄ chart and one-sided REWMA X̄ chart. Meanwhile, relative

17



to m, the value of n has a little effect on the overall performance of these two charts in comparative

studies.

Furthermore, the ARLmin performance of the upper-sided TEWMA X̄ chart and upper-sided

REWMA X̄ charts for prespecified mean shift values δopt ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3} are

also illustrated here to study the effect of measurement errors in comparative studies, where Table

5 lists the ARLmin performance of these two schemes in the absence of measurement errors (i.e.,

A = 0, B = 1, σM = 0). For instance, when m = 1, n = 5, and δopt = 0.5, the ARLmin value of

the upper-sided TEWMA X̄ and upper-sided REWMA X̄ charts are 7.0200 and 7.6289, respectively.

Meanwhile, Table 6 presents the corresponding ARL1 performance of these two schemes in the pres-

ence of measurement errors (i.e., A = 0, B = 1, σM = 1), for example, when m = 6, n = 3, and

δopt = 1, the ARLmin value of the upper-sided TEWMA X̄ and upper-sided X̄ REWMA charts are

4.0253 and 4.4039, respectively.

(Please insert Tables 5 and 6 here)

Through the analysis of the ARL performance in Tables 5 and 6, it is not difficult to find that when

there is no measurement error in the monitoring process (although some studies are often carried out

based on this assumption, it is almost impossible to occur in the actual process), the upper-sided

TEWMA X̄ chart using the optimal design parameters is uniformly superior to the corresponding

upper-sided REWMA X̄ chart. But when the measurement errors exist in the monitoring process

(this situation is relatively more common in the actual process), the ARLmin performance compari-

son in some circumstances (most one occur when m = 1, but none in the case of m > 1) is contrary

to the above conclusion that “the upper-sided TEWMA X̄ chart performs better than the upper-sided

REWMA X̄ chart”. For instance, when m = 1, n = 3, and δopt = 0.5, for the case without mea-

surement errors, the upper-sided TEWMA X̄ chart performs better than the upper-sided REWMA

X̄ chart, but under the same condition, for the case with measurement errors, the ARLmin value of

the upper-sided TEWMA X̄ chart is lager than the corresponding ARLmin value of the upper-sided

REWMA X̄ chart.

In summary, although there are some negative effects, the presence of measurement errors does
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not change the conclusion that the one-sided TEWMA X̄ chart is more efficient than the one-sided

REWMA X̄ chart for detecting mean shifts, especially in the case where multiple measurement op-

erations are considered.

6 A numerical example

A 125 g yogurt cup filling process adapted from Costa & Castagliola (2011) is used here to illus-

trate the implementation of the one-sided TEWMA X̄ chart in detecting process mean shifts, where

the quality characteristic Yt is the weight of each yogurt cup. This example is also employed in

many studies involving measurement errors, for example, in Cheng & Wang (2018) and Saha et al.

(2022). Before starting the process monitoring, the in-control mean µ0 = 124.9 and the in-control

standard deviation σ0 = 0.76 have been respectively estimated in Phase I. The standard devia-

tion of measurement error σM = 0.24 can be estimated from an independent R&R (Repeatability

and Reproducibility) research. Based on this parameter, the standard deviation ratio η is equal to

σM/σ0 = 0.24/0.76 = 0.316. Meanwhile, for the linear covariate error model, the parameters A = 0

and B = 1 corresponding to the most common scenario are used in this example.

As it can be obtained from Costa & Castagliola (2011), the practitioner in charge of this process

decides to take n = 5 yogurt cups every hours, and then taking m = 2 independent measurement

operations per item. In this example, the first 10 subgroups are measured from in-control situation,

where the data used directly from Cheng & Wang (2018). Then, the last 10 subgroups are considered

as out-of-control, see column 2 to 11 in Table 7. In addition, the sample mean values Ȳ are also

listed in column 12 of Table 7. During process monitoring, the practitioner pays more attention to the

scenario that the product is less than the process mean. This means that the lower-sided scheme is

suitable for monitoring this yogurt cup filling process. Furthermore, let us assume that the practitioner

are interested in detecting a prespecified small downward shift 0.5 × θ0. According to the optimal

design procedure introduced above, the lower-sided TEWMA X̄ chart with the optimal design pa-

rameters {λ∗, H−∗ } = {0.1978,−0.9515}, and the lower-sided REWMA X̄ chart with the optimal

design parameters {λ∗, h−∗ } = {0.1748,−0.7746} are employed here for process monitoring.
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(Please insert Table 7 here)

As we can see from Table 7, all charting statistics of these two schemes are listed in columns 13

and 14, respectively. It should be noted that, for these two lower-sided schemes, an out-of-control

signal is triggered when the charting statistic falls below the corresponding lower control limit. For

instance, when t = 15, the charting statistic W−
t of the lower-sided TEWMA X̄ chart falls below the

control limit H−∗ , and then an out-of-control signal is given and the corresponding actions should be

taken to identify and remove the downward mean shift. Meanwhile, the charting statistic Q−t of the

lower-sided REWMA X̄ chart generates an out-of-control signal at t = 19 observation. Furthermore,

all these two scheme are shown in Figure 4 for illustrating the detailed monitoring process.

(Please insert Figure 4 here)

7 Conclusion

In this paper, the effect of measurement errors on the one-sided TEWMA X̄ chart with linear covari-

ate error model was investigated. Meanwhile, a Markov chain model was established to evaluate the

RL properties of the suggested scheme in the presence of measurement errors. Furthermore, an op-

timal design procedure was given to search the optimal design parameters of the scheme. According

to the presented results, the efficiency of the one-sided TEWMA X̄ chart with measurement errors is

strongly affected compared to the case with no measurement error. To compensate for the negative

effect of measurement errors, it is suggested to take multiple measurement operations per item in

each sample. Finally, in the presence of measurement errors, the ARL performance of the one-sided

TEWMA X̄ chart was compared with that of the conventional one-sided REWMA X̄ chart, and the

conclusions from the presented results shown that, regardless of the presence or absence of measure-

ment errors, the one-sided TEWMA X̄ chart had a better overall ARL performance than the one-sided

REWMA X̄ chart. In addition, irrespective of the δopt value, taking multiple measurement operation

can significantly reduce the negative effect of measurement errors on both the one-sided TEWMA X̄

chart and one-sided REWMA X̄ chart. Besides, relative to m, the sample size n has little effect on

the overall performance of these two charts in comparative studies.
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In this paper, the upper- and lower-truncated variables X̄+
t and X̄−t are all built based on the trun-

cation point µ0. However, µ0 is not always the best choice for process monitoring. Similarly, for the

one-sided REWMA X̄ chart, the best value of reflecting boundary is not always E(X̄t). Therefore, a

possible future extension for the current research is to investigate the effect of measurement errors on

the one-sided TEWMA X̄ chart (or the one-sided REWMA X̄ chart) with the optimized truncation

point (the optimized reflecting boundary). Furthermore, using real-life data to demonstrate the imple-

mentation of control charts, for example, as done in Netshiozwi et al. (2023), will be more persuasive

than the simulated ones.
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Appendix A

Let us assume that the random variable X follows a normal distribution N(µ0, σ
2
0). Also, let us

denote φ(x, µ0, σ
2
0) and Φ(x, µ0, σ

2
0) as the probability density function (p.d.f.) and the cumulative

distribution function (c.d.f.) of the normal distribution N(µ0, σ
2
0), respectively. Meanwhile, simplify

φ(x) = φ(x, 0, 1) and Φ(x) = Φ(x, 0, 1) to be their standardized counterparts. If the upper truncated

random variable X+ = max(c,X) is given, where c is a truncation point. It is not difficult to prove

that the p.d.f. fX+(x, µ0, σ
2
0, c) of X+ is equal to

fX+(x, µ0, σ
2
0, c) = Φ(c, µ0, σ

2
0)× I(x = c) + φ(x, µ0, σ

2
0)× I(x > c)

where I(K) is an indicator function that is equal to 1 if the condition K holds and 0 otherwise. By

definition, the expectance E(X+) of X+ is equal to

E(X+) = c× Φ(c, µ0, σ
2
0) +

∫ +∞

c

xφ(x, µ0, σ
2
0)dx

For more details about the integral
∫ +∞
c

xφ(x, µ0, σ
2
0)dx in the above equation, we can give it as,

∫ +∞

c

xφ(x, µ0, σ
2
0)dx =

∫ +∞

c

(x− µ0 + µ0)φ(x, µ0, σ
2
0)dx

=

∫ +∞

c

(x− µ0)φ(x, µ0, σ
2
0)dx+

∫ +∞

c

µ0φ(x, µ0, σ
2
0)dx

= −σ2
0

∫ +∞

c

−(x− µ0)

σ2
0

φ(x, µ0, σ
2
0)dx+ µ0

∫ +∞

c

φ(x, µ0, σ
2
0)dx

= −σ2
0

∫ +∞

c

φ′(x, µ0, σ
2
0)dx+ µ0

[
1− Φ(c, µ0, σ

2
0)
]

= −σ2
0

[
φ(+∞, µ0, σ

2
0)− φ(c, µ0, σ

2
0)
]

+ µ0

[
1− Φ(c, µ0, σ

2
0)
]

= σ2
0φ(c, µ0, σ

2
0) + µ0

[
1− Φ(c, µ0, σ

2
0)
]

Hence, the mean E(X+) of X+ is,

E(X+) = µ0 + (c− µ0)Φ(c, µ0, σ
2
0) + φ(c, µ0, σ

2
0)σ2

0
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Similar to E(X+),

E((X+)2) = c2Φ(c, µ0, σ
2
0) +

∫ +∞

c

x2φ(x, µ0, σ
2
0)dx

For more details about the integral
∫ +∞
c

x2φ(x, µ0, σ
2
0)dx, it is not difficult to see that,

∫ +∞

c

x2φ(x, µ0, σ
2
0)dx =

∫ +∞

c

x(x− µ0 + µ0)φ(x, µ0, σ
2
0)dx

=

∫ +∞

c

x(x− µ0)φ(x, µ0, σ
2
0)dx+

∫ +∞

c

xµ0φ(x, µ0, σ
2
0)dx

=− σ2
0

∫ +∞

c

x
−(x− µ0)

σ2
0

φ(x, µ0, σ
2
0)dx+ µ0

∫ +∞

c

xφ(x, µ0, σ
2
0)dx

=− σ2
0

∫ +∞

c

xφ′(x, µ0, σ
2
0)dx+ µ0

{
σ2

0φ(c, µ0, σ
2
0) + µ0

[
1− Φ(c, µ0, σ

2
0)
]}

=− σ2
0

[
−cφ(c, µ0, σ

2
0)−

(
1− Φ(c, µ0, σ

2
0)
)]

+ µ0×{
σ2

0φ(c, µ0, σ
2
0) + µ0

[
1− Φ(c, µ0, σ

2
0)
]}

=µ2
0 + σ2

0 − (µ2
0 + σ2

0)Φ(c, µ0, σ
2
0) + (µ0 + c)σ2

0φ(c, µ0, σ
2
0)

Based on this,

E((X+)2) = µ2
0 + σ2

0 +
(
c2 − µ2

0 − σ2
0

)
Φ(c, µ0, σ

2
0) + (µ0 + c)σ2

0φ(c, µ0, σ
2
0)

Furthermore, the variance V (X+) of X+ is,

V ((X+)2) = E((X+)2)− E2(X+)

=
[
1− Φ(c, µ0, σ

2
0)
]

(µ2
0 + σ2

0) + (c+ µ0)σ2
0φ(c, µ0, σ

2
0) + c2Φ(c, µ0, σ

2
0)

−
[
µ0 + (c− µ0)Φ(c, µ0, σ

2
0) + φ(c, µ0, σ

2
0)σ2

0

]2
On the other side, for the lower-truncated variable X− = min(c,X), the p.d.f. fX−(x, µ0, σ

2
0, c)

of X− can be given as

fX−(x, µ0, σ
2
0, c) = φ(x, µ0, σ

2
0)× I(x < c) +

[
1− Φ(c, µ0, σ

2
0)
]
× I(x = c)
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Based on this equation, the expectation E(X−) of X− is,

E(X−) = c+ (c− µ0)Φ(c, µ0, σ
2
0)− φ(c, µ0, σ

2
0)σ2

0

In addition,

E((X−)2) = c2[1− Φ(c, µ0, σ
2
0)] +

∫ c

−∞
x2φ(x, µ0, σ

2
0)dx

= c2 +
(
µ2

0 + σ2
0 − c2

)
Φ(c, µ0, σ

2
0)− (µ0 + c)σ2

0φ(c, µ0, σ
2
0)

Furthermore, the variance V (X−) of X− is,

V ((X−)2) = E((X−)2)− E2(X−)

= c2 +
(
µ2

0 + σ2
0 − c2

)
Φ(c, µ0, σ

2
0)− (µ0 + c)σ2

0φ(c, µ0, σ
2
0)

−
[
c+ (µ0 − c)Φ(c, µ0, σ

2
0)− φ(c, µ0, σ

2
0)σ2

0

]2
Finally, according to the above derivation, for the standard normally distributed random variable

S̄ ∼ N(0, 1), when c = µM , it is not difficult to obtain the mean and variance of the upper- and

lower-truncated variables S+ and S− in Equations (15) to (18).

Appendix B

Due to the space limitation, only the Markov chain model of the upper-sided REWMA X̄ chart, with

the presence of measurement errors, is established here for illustration. Similar to the case of upper-

sided TEWMA X̄ chart, the in-control region of the scheme is also divided into M subintervals.

According to Equation (33), the in-control region is denoted as [BU , h
+], and then the width of each

subintervals can be written as ∆+
R = (h+ − BU)/M . Based on this, the midpoint value R+

i =

BU + (i −∆+
R/2) is used here to approximate the transient state i of the charting statistic W+

t . The
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transient probability elements q′i,j in upper-sided REWMA X̄ chart are denoted as follows:

q′i,j =Pr
(
W+
t ∈ State j

∣∣∣W+
t−1 ∈ State i

)
=

 Pr
(
W+
t 6 R+

j +
∆+

R

2

∣∣∣W+
t−1 = R+

i

)
j = 1

Pr
(
R+
j −

∆+
R

2
< W+

t 6 R+
j +

∆+
R

2

∣∣∣W+
t−1 = R+

i

)
j = 2, 3, · · · ,M

After some algebraic operations, the transient probability elements q′i,j can be written as follows:

q′i,j =

 Pr
(
S̄t 6 R+

i +
R+

j −R
+
i +∆+

R/2

λ

)
j = 1

Pr
(
R+
i +

R+
j −R

+
i −∆+

R/2

λ
< S̄t 6 R+

i +
R+

j −R
+
i +∆+

R/2

λ

)
j = 2, 3, · · · ,M

If we set the following variables as

U1 = R+
i +

R+
j −R+

i −∆+
R/2

λ

U2 = R+
i +

R+
j −R+

i + ∆+
R/2

λ

the transient probability elements q′i,j of matrix Q′ can be defined as follows:

q′i,j =

 Φ(U2 − δM) j = 1

Φ(U2 − δM)− Φ(U1 − δM) j = 2, 3, · · · ,M

where δM has been defined in Equation (30). Additionally, the elements of initial probability vector

p′ is:

p′j =


1, R+

j −
∆+
R

2
< W+

0 ≤ R+
j +

∆+
R

2

0, otherwise

(A.1)

where W+
0 = E(S̄t) = 0. Finally, the ARL value of the upper-sided REWMA X̄ chart can be

computed using ARL = p
′T(I−Q′)−11.
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Table 1: The optimal design parameters {λ∗, H+
∗ } of the upper-sided TEWMA X̄ chart for different

prespecified mean shifts δopt ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3}.
(A = 0, B = 1, µ0 = 0, σ0 = 1, σM = 1, m ∈ {1, 6}, and n ∈ {3, 5, 7, 9})

m n
δopt

0.1 0.25 0.5 0.75 1 1.5 2 2.5 3

1

3
λ∗ 0.0716 0.1590 0.1792 0.2062 0.1028 0.2677 0.5004 0.6581 0.8353
H+
∗ 0.5011 0.9121 0.9976 1.1077 0.6585 1.3482 2.1944 2.7625 3.4272

5
λ∗ 0.1438 0.0936 0.1066 0.1902 0.3385 0.4731 0.6166 0.8702 0.8735
H+
∗ 0.8464 0.6137 0.6766 1.0429 1.6123 2.0972 2.6115 3.5627 3.5754

7
λ∗ 0.1113 0.0661 0.0980 0.2457 0.3581 0.5441 0.7921 0.8222 0.8853
H+
∗ 0.6985 0.4709 0.6350 1.2635 1.6838 2.3508 3.2618 3.3766 3.6219

9
λ∗ 0.0939 0.1063 0.0938 0.3164 0.3797 0.7082 0.9300 0.9197 0.9326
H+
∗ 0.6149 0.6750 0.6144 1.5309 1.7621 2.9470 3.7988 3.7577 3.8090

6

3
λ∗ 0.0135 0.0591 0.1063 0.2772 0.2289 0.4492 0.7361 0.8282 0.8875
H+
∗ 0.1248 0.4320 0.6751 1.3843 1.1981 2.0118 3.0507 3.3998 3.6306

5
λ∗ 0.0716 0.0857 0.2366 0.1990 0.3212 0.7127 0.8587 0.9159 0.9826
H+
∗ 0.5011 0.5739 1.2282 1.0788 1.5486 2.9636 3.5176 3.7424 4.0106

7
λ∗ 0.0241 0.0411 0.1625 0.3081 0.4719 0.7929 0.9336 0.7232 0.8469
H+
∗ 0.2097 0.3253 0.9273 1.5002 2.0928 3.2646 3.8130 3.0025 3.4721

9
λ∗ 0.0716 0.0987 0.0968 0.4221 0.5793 0.8873 0.8757 0.8996 0.9473
H+
∗ 0.5011 0.6386 0.6293 1.9147 2.4770 3.6295 3.5843 3.6782 3.8680

Table 2: ARLmin values of the upper-sided TEWMA X̄ chart computed using the Markov chain
model versus those values obtained using the Monte Carlo simulation.

δopt m n {λ,H+} Monte Carlo Markov Chain

0.1 1
3 {0.0716,0.5011} 138.0941 137.9637

7 {0.2281,1.1949} 125.7980 126.2962

1 6
5 {0.3212,1.5486} 2.7347 2.7513

9 {0.5793,2.4770} 1.7578 1.7540
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Table 3: The ARL1 comparisons between the upper-sided TEWMA X̄ chart and the upper-sided
REWMA X̄ chart in the absence of measurement errors.

m n δopt Scheme λ H+(h+)
δ

0.1 0.3 0.5 0.7 1 1.3 1.5 1.7 2 2.5

1

3
0.5

TEWMA 0.0950 0.6207 105.66 23.05 10.33 6.29 3.89 2.84 2.43 2.14 1.84 1.45
REWMA 0.1554 0.7896 121.69 25.95 11.16 6.81 4.31 3.19 2.75 2.43 2.11 1.79

1
TEWMA 0.2879 1.4244 145.43 33.50 12.50 6.56 3.58 2.45 2.04 1.76 1.45 1.15
REWMA 0.3421 1.2843 153.87 36.55 13.51 7.07 3.90 2.71 2.28 1.98 1.66 1.28

5
0.5

TEWMA 0.1463 0.8574 89.59 16.40 7.02 4.26 2.69 2.01 1.74 1.52 1.26 1.04
REWMA 0.2258 0.9923 104.01 18.59 7.63 4.63 2.95 2.24 1.96 1.75 1.47 1.12

1
TEWMA 0.3978 1.8276 129.11 24.92 8.56 4.40 2.43 1.70 1.43 1.24 1.08 1.01
REWMA 0.5865 1.8354 152.21 33.59 11.09 5.25 2.65 1.77 1.46 1.26 1.09 1.01

7
0.5

TEWMA 0.1806 1.0034 78.05 12.79 5.41 3.32 2.15 1.62 1.38 1.20 1.05 1.00
REWMA 0.3528 1.3096 102.26 16.35 6.09 3.53 2.22 1.66 1.41 1.22 1.06 1.00

1
TEWMA 0.4357 1.9634 112.79 18.74 6.29 3.31 1.90 1.37 1.18 1.07 1.01 1.00
REWMA 0.6067 1.8801 132.77 24.58 7.77 3.78 2.02 1.41 1.20 1.08 1.01 1.00

9
0.5

TEWMA 0.1850 1.0215 66.37 10.28 4.47 2.81 1.86 1.40 1.19 1.07 1.01 1.00
REWMA 0.3105 1.2086 82.53 12.02 4.87 3.01 1.99 1.51 1.27 1.11 1.02 1.00

1
TEWMA 0.4062 1.8576 94.17 13.71 4.79 2.68 1.63 1.21 1.08 1.02 1.00 1.00
REWMA 0.6470 1.9696 121.14 19.97 6.14 3.02 1.67 1.20 1.07 1.02 1.00 1.00

6

3
0.5

TEWMA 0.1133 0.7080 110.41 23.84 10.40 6.23 3.81 2.76 2.36 2.08 1.78 1.39
REWMA 0.1434 0.7516 118.97 25.39 11.11 6.86 4.38 3.26 2.80 2.48 2.15 1.83

1
TEWMA 0.2469 1.2681 138.58 31.03 11.83 6.38 3.58 2.49 2.08 1.80 1.50 1.18
REWMA 0.3330 1.2628 152.68 36.00 13.35 7.03 3.91 2.72 2.29 2.00 1.68 1.30

5
0.5

TEWMA 0.1255 0.7644 85.27 15.91 7.00 4.31 2.74 2.07 1.79 1.58 1.30 1.05
REWMA 0.1583 0.7986 92.39 16.92 7.62 4.86 3.20 2.45 2.16 1.96 1.72 1.29

1
TEWMA 0.3931 1.8105 128.42 24.71 8.51 4.39 2.43 1.70 1.43 1.24 1.08 1.01
REWMA 0.5060 1.6572 142.64 29.52 9.90 4.91 2.64 1.82 1.52 1.31 1.12 1.01

7
0.5

TEWMA 0.2171 1.1515 83.64 13.40 5.44 3.27 2.08 1.55 1.32 1.16 1.04 1.00
REWMA 0.2486 1.0527 88.12 14.09 5.88 3.65 2.40 1.86 1.62 1.40 1.14 1.01

1
TEWMA 0.4128 1.8815 110.04 18.07 6.16 3.29 1.91 1.38 1.19 1.08 1.01 1.00
REWMA 0.6321 1.9364 135.60 25.61 8.03 3.84 2.02 1.40 1.19 1.08 1.01 1.00

9
0.5

TEWMA 0.2280 1.1944 72.18 10.77 4.46 2.75 1.79 1.34 1.15 1.05 1.01 1.00
REWMA 0.3458 1.2931 86.78 12.58 4.90 2.97 1.94 1.45 1.22 1.09 1.01 1.00

1
TEWMA 0.4373 1.9691 97.77 14.37 4.90 2.69 1.61 1.20 1.07 1.02 1.00 1.00
REWMA 0.5480 1.7502 110.16 17.02 5.54 2.93 1.72 1.25 1.10 1.03 1.00 1.00
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Table 4: The ARL1 comparisons between the upper-sided TEWMA X̄ chart and the upper-sided
REWMA X̄ chart in the presence of measurement errors.

m n δopt Scheme λ H+(h+)
δ

0.1 0.3 0.5 0.7 1 1.3 1.5 1.7 2 2.5

1

3
0.5

TEWMA 0.1220 0.7484 154.53 42.39 18.45 10.62 6.12 4.23 3.50 3.00 2.49 1.98
REWMA 0.1483 0.7673 163.11 45.17 19.45 11.31 6.75 4.81 4.06 3.52 2.95 2.37

1
TEWMA 0.1028 0.6585 148.81 40.38 17.94 10.52 6.18 4.31 3.58 3.07 2.55 2.04
REWMA 0.1617 0.8088 165.93 46.49 19.81 11.36 6.69 4.74 3.98 3.45 2.89 2.32

5
0.5

TEWMA 0.1066 0.6766 119.31 27.27 11.96 7.14 4.32 3.10 2.63 2.30 1.96 1.57
REWMA 0.1231 0.6842 125.03 28.39 12.69 7.88 5.03 3.73 3.21 2.82 2.41 2.03

1
TEWMA 0.3385 1.6123 164.81 43.10 16.20 8.18 4.20 2.76 2.26 1.92 1.57 1.22
REWMA 0.4296 1.4864 177.37 49.58 18.60 9.19 4.61 3.01 2.45 2.08 1.71 1.32

7
0.5

TEWMA 0.0980 0.6350 97.77 20.46 9.19 5.63 3.52 2.59 2.23 1.98 1.70 1.31
REWMA 0.1628 0.8121 113.69 23.03 9.92 6.10 3.89 2.91 2.51 2.24 1.97 1.62

1
TEWMA 0.3581 1.6838 146.27 32.91 11.79 5.99 3.19 2.17 1.80 1.55 1.28 1.06
REWMA 0.3947 1.4069 151.38 34.69 12.43 6.37 3.47 2.40 2.02 1.74 1.45 1.13

9
0.5

TEWMA 0.0938 0.6144 83.64 16.67 7.64 4.77 3.04 2.29 1.99 1.78 1.50 1.14
REWMA 0.0835 0.5378 82.34 17.31 8.76 5.87 3.99 3.07 2.67 2.37 2.09 1.87

1
TEWMA 0.3797 1.7621 133.29 26.83 9.35 4.80 2.63 1.83 1.53 1.32 1.13 1.01
REWMA 0.5377 1.7275 153.30 34.47 11.63 5.60 2.88 1.93 1.60 1.37 1.15 1.02

6

3
0.5

TEWMA 0.1063 0.6751 117.54 26.65 11.70 7.00 4.25 3.05 2.59 2.27 1.94 1.55
REWMA 0.1435 0.7517 128.17 28.84 12.51 7.62 4.80 3.54 3.04 2.67 2.29 1.94

1
TEWMA 0.2289 1.1981 145.15 34.40 13.38 7.23 4.03 2.77 2.31 2.00 1.66 1.29
REWMA 0.2753 1.1213 153.53 37.24 14.33 7.76 4.40 3.09 2.61 2.27 1.93 1.53

5
0.5

TEWMA 0.2366 1.2282 114.88 21.93 8.40 4.72 2.79 2.02 1.71 1.49 1.24 1.04
REWMA 0.3414 1.2827 131.09 26.12 9.51 5.18 3.03 2.19 1.87 1.63 1.35 1.08

1
TEWMA 0.3212 1.5486 128.15 25.46 9.16 4.85 2.73 1.92 1.62 1.40 1.18 1.02
REWMA 0.4823 1.6046 149.72 33.06 11.34 5.61 2.98 2.04 1.69 1.45 1.21 1.03

7
0.5

TEWMA 0.1625 0.9273 82.91 14.31 6.09 3.72 2.38 1.79 1.54 1.33 1.12 1.01
REWMA 0.2064 0.9392 90.44 15.35 6.61 4.15 2.72 2.11 1.86 1.66 1.36 1.06

1
TEWMA 0.4719 2.0928 126.89 23.36 7.70 3.87 2.12 1.48 1.26 1.12 1.03 1.00
REWMA 0.6003 1.8660 142.04 28.59 9.18 4.39 2.29 1.56 1.30 1.15 1.04 1.00

9
0.5

TEWMA 0.0968 0.6293 59.62 10.97 5.20 3.36 2.26 1.76 1.52 1.30 1.09 1.00
REWMA 0.2946 1.1695 89.03 13.66 5.48 3.35 2.19 1.68 1.43 1.23 1.06 1.00

1
TEWMA 0.5793 2.4770 123.46 21.26 6.63 3.24 1.76 1.25 1.10 1.03 1.00 1.00
REWMA 0.6375 1.9484 129.94 23.29 7.23 3.50 1.87 1.31 1.14 1.05 1.01 1.00
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Table 5: The ARLmin comparisons between the upper-sided TEWMA X̄ chart and the upper-sided
REWMA X̄ chart in the absence of measurement errors.

m n Scheme Control Limits
δopt

0.1 0.25 0.5 0.75 1 1.5 2 2.5 3

1

3

TEWMA
λ∗ 0.0462 0.0454 0.0950 0.1350 0.2879 0.4172 0.4280 0.4060 0.4211
H+
∗ 0.3568 0.3518 0.6207 0.8074 1.4244 1.8972 1.9360 1.8570 1.9113

ARLmin 90.1454 27.6980 10.3338 5.5871 3.5766 1.9592 1.3600 1.1044 1.0159

REWMA
λ∗ 0.1250 0.0916 0.1554 0.2919 0.3421 0.6321 0.6156 0.4615 0.5067
h+
∗ 0.6907 0.5698 0.7896 1.1627 1.2843 1.9365 1.8999 1.5581 1.6589

ARLmin 114.5886 30.9037 11.1583 6.1065 3.9033 2.0801 1.3912 1.1710 1.0272

5

TEWMA
λ∗ 0.1013 0.0903 0.1463 0.2407 0.3978 0.3985 0.4071 0.4375 0.3340
H+
∗ 0.6513 0.5971 0.8574 1.2442 1.8276 1.8301 1.8608 1.9699 1.5955

ARLmin 80.1199 20.3781 7.0200 3.7576 2.4305 1.4277 1.0803 1.0052 1.0002

REWMA
λ∗ 0.1166 0.1047 0.2258 0.2996 0.5865 0.5977 0.5943 0.5166 0.6394
h+
∗ 0.6619 0.6193 0.9923 1.1819 1.8354 1.8602 1.8526 1.6808 1.9527

ARLmin 84.2254 21.2928 7.6289 4.1105 2.6536 1.4578 1.0883 1.0097 1.0001

7

TEWMA
λ∗ 0.1033 0.0162 0.1806 0.3252 0.4357 0.3791 0.3915 0.4122 0.3865
H+
∗ 0.6606 0.1477 1.0034 1.5636 1.9634 1.7600 1.8047 1.8792 1.7866

ARLmin 64.7983 15.6131 5.4119 2.9099 1.9040 1.1991 1.0138 1.0002 1.0000

REWMA
λ∗ 0.1036 0.1576 0.3528 0.4141 0.6067 0.6048 0.6233 0.6600 0.5384
h+
∗ 0.6151 0.7961 1.3096 1.4513 1.8801 1.8760 1.9169 1.9984 1.7290

ARLmin 65.4351 17.2928 6.0876 3.1737 2.0250 1.1992 1.0133 1.0002 1.0000

9

TEWMA
λ∗ 0.1439 0.0690 0.1850 0.4014 0.4062 0.4251 0.4133 0.4251 0.3909
H+
∗ 0.8469 0.4868 1.0215 1.8404 1.8576 1.9254 1.8831 1.9253 1.8028

ARLmin 60.5551 12.7962 4.4667 2.4086 1.6283 1.0732 1.0016 1.0000 1.0000

REWMA
λ∗ 0.2142 0.2916 0.3105 0.5256 0.6470 0.5932 0.6458 0.5888 0.6443
h+
∗ 0.9607 1.1620 1.2086 1.7005 1.9696 1.8503 1.9669 1.8405 1.9635

ARLmin 70.1897 16.6650 4.8652 2.6126 1.6699 1.0841 1.0016 1.0000 1.0000

6

3

TEWMA
λ∗ 0.0462 0.0428 0.1133 0.1882 0.2469 0.3351 0.3811 0.3969 0.3709
H+
∗ 0.3568 0.3359 0.7080 1.0345 1.2681 1.5999 1.7670 1.8242 1.7303

ARLmin 90.1454 27.5792 10.3964 5.5727 3.5774 2.0030 1.3841 1.1065 1.0191

REWMA
λ∗ 0.1830 0.2041 0.1434 0.2155 0.3330 0.6412 0.4736 0.6226 0.6083
h+
∗ 0.8724 0.9326 0.7516 0.9643 1.2628 1.9566 1.5852 1.9153 1.8837

ARLmin 127.2120 38.8986 11.1147 6.0502 3.9058 2.0796 1.4906 1.1062 1.0178

5

TEWMA
λ∗ 0.0301 0.1062 0.1255 0.2548 0.3931 0.4010 0.3772 0.4310 0.4281
H+
∗ 0.2527 0.6747 0.7644 1.2986 1.8105 1.8390 1.7530 1.9467 1.9364

ARLmin 62.6425 20.9048 7.0034 3.7562 2.4304 1.4254 1.0871 1.0053 1.0001

REWMA
λ∗ 0.0735 0.1019 0.1583 0.3071 0.5060 0.5851 0.6190 0.5371 0.6588
h+
∗ 0.4966 0.6090 0.7986 1.2002 1.6572 1.8322 1.9074 1.7262 1.9958

ARLmin 75.1245 21.2275 7.6193 4.1060 2.6387 1.4648 1.0827 1.0087 1.0001

7

TEWMA
λ∗ 0.0664 0.1495 0.2171 0.3420 0.4128 0.4281 0.3959 0.3883 0.3575
H+
∗ 0.4725 0.8715 1.1515 1.6251 1.8815 1.9361 1.8208 1.7932 1.6817

ARLmin 58.0558 16.8974 5.4388 2.9087 1.9126 1.1799 1.0136 1.0002 1.0000

REWMA
λ∗ 0.1615 0.1991 0.2486 0.4344 0.6321 0.5939 0.6178 0.5102 0.4757
h+
∗ 0.8082 0.9187 1.0527 1.4973 1.9364 1.8518 1.9047 1.6665 1.5898

ARLmin 75.0261 18.3184 5.8797 3.1727 2.0210 1.2036 1.0136 1.0004 1.0000

9

TEWMA
λ∗ 0.0602 0.2059 0.2280 0.3854 0.4373 0.4307 0.4271 0.4254 0.4422
H+
∗ 0.4383 1.1066 1.1944 1.7828 1.9691 1.9457 1.9326 1.9266 1.9867

ARLmin 47.9762 14.6630 4.4626 2.4112 1.6138 1.0722 1.0015 1.0000 1.0000

REWMA
λ∗ 0.1227 0.0557 0.3458 0.5314 0.5480 0.6055 0.6170 0.4832 0.5463
h+
∗ 0.6828 0.4162 1.2931 1.7135 1.7502 1.8775 1.9029 1.6065 1.7465

ARLmin 57.6001 14.2727 4.8973 2.6133 1.7182 1.0813 1.0018 1.0000 1.0000
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Table 6: The ARLmin comparisons between the upper-sided TEWMA X̄ chart and the upper-sided
REWMA X̄ chart in the presence of measurement errors.

m n Scheme Control Limits
δopt

0.1 0.25 0.5 0.75 1 1.5 2 2.5 3

1

3

TEWMA
λ∗ 0.0716 0.1590 0.1792 0.2062 0.1028 0.2677 0.5004 0.6581 0.8353
H+
∗ 0.5011 0.9121 0.9976 1.1077 0.6585 1.3482 2.1944 2.7625 3.4272

ARLmin 138.3041 60.8934 20.3150 10.1285 6.1795 3.2739 2.1213 1.5275 1.2149

REWMA
λ∗ 0.2733 0.1236 0.1483 0.1431 0.1617 0.3962 0.5819 0.6571 0.4593
h+
∗ 1.1162 0.6860 0.7673 0.7506 0.8088 1.4104 1.8253 1.9920 1.5530

ARLmin 186.8310 56.0892 19.4518 10.1708 6.6898 3.5695 2.2859 1.6185 1.4032

5

TEWMA
λ∗ 0.1438 0.0936 0.1066 0.1902 0.3385 0.4731 0.6166 0.8702 0.8735
H+
∗ 0.8464 0.6137 0.6766 1.0429 1.6123 2.0972 2.6115 3.5627 3.5754

ARLmin 129.0396 35.2880 11.9614 6.4592 4.2038 2.2269 1.4640 1.1328 1.0256

REWMA
λ∗ 0.3703 0.1266 0.1231 0.2318 0.4296 0.5466 0.6388 0.6529 0.6487
h+
∗ 1.3506 0.6963 0.6842 1.0085 1.4864 1.7471 1.9513 1.9826 1.9732

ARLmin 169.5184 38.3267 12.6903 6.9586 4.6145 2.4062 1.5542 1.1868 1.0445

7

TEWMA
λ∗ 0.1113 0.0661 0.0980 0.2457 0.3581 0.5441 0.7921 0.8222 0.8853
H+
∗ 0.6985 0.4709 0.6350 1.2635 1.6838 2.3508 3.2618 3.3766 3.6219

ARLmin 101.2541 25.6774 9.1899 4.9791 3.1931 1.7340 1.1919 1.0304 1.0024

REWMA
λ∗ 0.0403 0.2043 0.1628 0.3254 0.3947 0.5999 0.5272 0.5898 0.6330
h+
∗ 0.3375 0.9333 0.8121 1.2446 1.4069 1.8650 1.7041 1.8427 1.9383

ARLmin 84.1534 34.1450 9.9182 5.4368 3.4708 1.8567 1.3194 1.0603 1.0054

9

TEWMA
λ∗ 0.0939 0.1063 0.0938 0.3164 0.3797 0.7082 0.9300 0.9197 0.9326
H+
∗ 0.6149 0.6750 0.6144 1.5309 1.7621 2.9470 3.7988 3.7577 3.8090

ARLmin 83.6528 22.7692 7.6396 4.1257 2.6322 1.4490 1.0765 1.0059 1.0002

REWMA
λ∗ 0.0393 0.1049 0.0835 0.2976 0.5377 0.6487 0.6019 0.6173 0.5720
h+
∗ 0.3320 0.6198 0.5378 1.1770 1.7275 1.9732 1.8695 1.9037 1.8033

ARLmin 72.5934 23.0900 8.7593 4.4437 2.8766 1.5371 1.1297 1.0132 1.0007

6

3

TEWMA
λ∗ 0.0135 0.0591 0.1063 0.2772 0.2289 0.4492 0.7361 0.8282 0.8875
H+
∗ 0.1248 0.4320 0.6751 1.3843 1.1981 2.0118 3.0507 3.3998 3.6306

ARLmin 81.8784 31.7378 11.7016 6.6045 4.0253 2.1798 1.4350 1.1200 1.0218

REWMA
λ∗ 0.0507 0.0760 0.1435 0.2140 0.2753 0.5600 0.4982 0.5622 0.6586
h+
∗ 0.3919 0.5070 0.7517 0.9602 1.1213 1.7768 1.6398 1.7817 1.9955

ARLmin 102.7650 33.7205 12.5081 6.7924 4.4039 2.3532 1.6136 1.2055 1.0375

5

TEWMA
λ∗ 0.0716 0.0857 0.2366 0.1990 0.3212 0.7127 0.8587 0.9159 0.9826
H+
∗ 0.5011 0.5739 1.2282 1.0788 1.5486 2.9636 3.5176 3.7424 4.0106

ARLmin 80.6521 22.8235 8.4013 4.2385 2.7346 1.5004 1.0934 1.0084 1.0003

REWMA
λ∗ 0.2480 0.0747 0.3414 0.3493 0.4823 0.5305 0.5307 0.4404 0.5907
h+
∗ 1.0512 0.5018 1.2827 1.3014 1.6046 1.7116 1.7120 1.5107 1.8448

ARLmin 116.9214 23.2366 9.5090 4.6333 2.9750 1.6544 1.1830 1.0403 1.0010

7

TEWMA
λ∗ 0.0241 0.0411 0.1625 0.3081 0.4719 0.7929 0.9336 0.7232 0.8469
H+
∗ 0.2097 0.3253 0.9273 1.5002 2.0928 3.2646 3.8130 3.0025 3.4721

ARLmin 54.8394 17.0811 6.0902 3.2715 2.1190 1.2144 1.0174 1.0005 1.0000

REWMA
λ∗ 0.0605 0.0764 0.2064 0.4017 0.6003 0.6508 0.6563 0.6433 0.6251
h+
∗ 0.4391 0.5089 0.9392 1.4229 1.8660 1.9780 1.9902 1.9613 1.9208

ARLmin 64.5338 18.2950 6.6096 3.5702 2.2858 1.2826 1.0310 1.0010 1.0000

9

TEWMA
λ∗ 0.0716 0.0987 0.0968 0.4221 0.5793 0.8873 0.8757 0.8996 0.9473
H+
∗ 0.5011 0.6386 0.6293 1.9147 2.4770 3.6295 3.5843 3.6782 3.8680

ARLmin 55.3801 14.6096 5.2029 2.7141 1.7579 1.0888 1.0028 1.0000 1.0000

REWMA
λ∗ 0.1207 0.0721 0.2946 0.4424 0.6375 0.5572 0.6493 0.6395 0.6271
h+
∗ 0.6760 0.4905 1.1695 1.5153 1.9484 1.7706 1.9746 1.9528 1.9252

ARLmin 63.9414 15.4095 5.4832 2.9462 1.8741 1.1639 1.0060 1.0000 1.0000
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Table 7: A real example for detecting the downward mean shift of the yogurt cup filling process.

t
Yt,1 Yt,2 Yt,3 Yt,4 Yt,5

Ȳt W−
t Q−t

Yt,1,1 Yt,1,2 Yt,2,1 Yt,2,2 Yt,3,1 Yt,3,2 Yt,4,1 Yt,4,2 Yt,5,1 Yt,5,2

1 124.78 125.33 124.19 124.22 124.55 124.22 123.98 124.25 124.97 125.42 124.59 -0.1654 -0.1551
2 124.54 124.51 124.39 124.85 125.00 124.91 124.82 124.73 123.81 123.20 124.48 -0.4100 -0.3408
3 124.25 124.33 124.48 124.42 123.10 123.80 125.74 125.59 123.34 123.45 124.25 -0.8261 -0.6075
4 125.25 125.62 124.78 124.52 124.52 124.58 125.42 125.31 124.89 124.77 124.97 -0.5275 -0.4682
5 124.44 124.55 124.74 124.33 125.93 126.20 125.43 125.56 125.71 125.22 125.21 -0.2881 -0.2302
6 125.39 124.87 125.46 125.26 125.67 125.43 125.00 125.45 125.13 125.61 125.33 -0.0959 0
7 124.98 124.38 125.06 124.60 125.63 125.77 124.42 124.22 124.85 124.69 124.86 0.0193 -0.0201
8 124.17 124.88 126.13 125.77 125.50 124.68 125.21 125.72 125.37 124.92 125.24 0.1506 0
9 125.62 125.58 125.95 125.21 125.25 125.07 124.14 124.17 125.06 124.92 125.10 0.2560 0

10 127.00 127.15 124.77 124.88 125.32 124.93 125.18 125.70 123.47 123.85 125.23 0.3405 0
11 124.30 123.85 125.41 124.47 124.41 124.53 124.12 124.20 124.87 125.08 124.52 0.0425 -0.1887
12 125.16 125.18 123.80 123.91 124.57 124.12 124.40 124.57 123.58 123.62 124.29 -0.4231 -0.4614
13 125.18 124.86 125.47 125.06 125.47 125.50 125.02 125.23 125.61 125.59 125.30 -0.2043 -0.1805
14 125.20 124.68 123.16 123.07 124.76 124.73 123.58 123.45 123.51 123.41 123.96 -0.9480 -0.6233
15 123.72 123.53 125.22 124.82 124.77 124.37 125.08 125.00 124.48 124.11 124.51 -1.0047 -0.7101
16 123.73 123.81 127.45 126.98 124.32 123.39 124.19 124.79 123.87 124.22 124.68 -0.8897 -0.6989
17 124.00 123.55 125.12 125.00 126.51 126.42 124.41 124.83 124.66 123.97 124.85 -0.6302 -0.6033
18 123.47 123.79 124.53 124.87 124.18 124.30 125.05 124.74 124.54 124.37 124.38 -0.8723 -0.7569
19 124.47 124.52 124.47 124.08 122.82 123.28 124.94 125.04 124.37 124.50 124.25 -1.1979 -0.9513
20 123.86 124.07 125.48 125.37 125.76 125.89 125.67 125.62 125.69 125.78 125.32 -0.8259 -0.5747
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Figure 1: The effect of η on the overall performance of the upper-sided TEWMA X̄ scheme with
measurement errors for n ∈ {3, 5, 7, 9} when A = 0, B = 1, δopt = 0.5, m ∈ {1, 6}, and

ARL0 = 370.
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Figure 2: The effect of B on the overall performance of the upper-sided TEWMA X̄ scheme with
measurement errors for n ∈ {3, 5, 7, 9} when A = 0, η = 1, δopt = 0.5, m ∈ {1, 6}, and

ARL0 = 370.
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Figure 3: The effect of m on the overall performance of the upper-sided TEWMA X̄ scheme with
measurement errors for n ∈ {3, 5, 7, 9} when A = 0, B = 1, η = 1, δopt = 0.5, and ARL0 = 370.
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Figure 4: The monitoring procedure of the lower-sided TEWMA X̄ and lower-sided REWMA X̄
schemes for detecting the downward mean shift of the yogurt cup filling process.
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