
HAL Id: hal-04638005
https://hal.science/hal-04638005

Submitted on 8 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic unsplittable flows with path-change penalties:
New formulations and solution schemes for large

instances
François Lamothe, Emmanuel Rachelson, Alain Haït, Cédric Baudoin,

Jean-Baptiste Dupé

To cite this version:
François Lamothe, Emmanuel Rachelson, Alain Haït, Cédric Baudoin, Jean-Baptiste Dupé. Dynamic
unsplittable flows with path-change penalties: New formulations and solution schemes for large in-
stances. Computers and Operations Research, 2023, 152, pp.106154. �10.1016/j.cor.2023.106154�.
�hal-04638005�

https://hal.science/hal-04638005
https://hal.archives-ouvertes.fr

Computers & Operations Research 152 (2023) 106154

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Dynamic unsplittable flows with path-change penalties: New formulations
and solution schemes for large instances
François Lamothe a,∗, Emmanuel Rachelson a, Alain Haït a, Cédric Baudoin b, Jean-Baptiste Dupé c

a ISAE-SUPAERO, Université de Toulouse, France
b Thales Alenia Space, Toulouse, France
c Centre national d’études spatiales (CNES), Toulouse, France

A R T I C L E I N F O

Keywords:
Routing
Unsplittable flows
Mixed Integer Linear Programming
Column generation
Heuristics

A B S T R A C T

In this work, we consider the dynamic unsplittable flow problem. This variation of the unsplittable flow
problem has received little attention so far. The unsplittable flow problem is an NP-hard extension of the
multi-commodity flow problem where each commodity sends its flow on only one path. In its dynamic version,
this problem features several time steps and a penalty is paid when a commodity changes its path from one
time step to the next. We present several mixed-integer linear programming formulations for this problem and
compare the strength of their linear relaxation. These formulations are embedded in several solvers which are
extensively compared on small to large instances. One of these formulations must be solved through a column
generation process whose pricing problem is more difficult than those used in classical flow problems. We
present limitations of the pricing schemes proposed in earlier works and describe two new schemes with a
better worst-case complexity. Overall, this work lays a strong algorithmic baseline for the resolution of the
dynamic unsplittable flow problem, proposes original formulations, and discusses the compared advantages of
each, thus hopefully contributing a step towards a better understanding of this problem for both OR researchers
and practical applications.
1. Introduction

The unsplittable flow problem is a well-known variant of the multi-
commodity flow problem. In this problem, one is given a directed or
undirected graph together with capacities on its arcs, and a family
of commodities, each characterized by an origin, a destination, and a
demand. Each commodity has to route its demand from its origin to
its destination through a unique path. The routing must ensure that
capacities on the arcs are not exceeded by the flow of the commodities
(or at least minimize the capacity overflow).

In this work, we take interest in a dynamic version of this problem
which appears in several applications. Our practical application is the
routing of communications inside constellations of satellites which
is a central concern for the increasingly complex telecommunication
constellations currently under development. In this context, a con-
stellation manager would like to route the internet throughput of
its users through the constellation while respecting the capacities of
the telecommunication links. Because the constellation is orbiting the
earth, its topology may be slightly changing over time and the users on
the ground will not always be able to connect to the same satellites.
Additionally, any modification to a user’s path results in traffic disrup-
tion. Such path changes must thus be minimized. This dynamic problem

∗ Corresponding author.
E-mail address: francois.lamothe@isae-supaero.fr (F. Lamothe).

can be modeled by a sequence of unsplittable flow problems represent-
ing different time steps. Each time step introduces a few changes to
the underlying graph; some arcs are added or deleted hence chang-
ing the possible paths through the graph. Moreover, the commodities
also become dynamic as their characteristics (origin, destination, and
demand) may change over time. However, each commodity’s charac-
teristics and its time-dependent evolution remain associated with the
same real-world object, e.g. the same user in the context of satellite
communications. This sequence of unsplittable flow problems features
two possibly conflicting objectives: (1) minimize the flow exceeding
the capacities (overflow), (2) the commodities have to use the same
path for consecutive time steps if possible (i.e. minimize the number of
path changes over time). In applications, this problem might feature a
very large number of time steps. The problem may then be approached
through a rolling horizon by considering only a few time steps at a
time. Because the previous horizons fixed a path for each commodity
for the time-step preceding the current horizon and because these paths
must be kept if possible to avoid path changes, each instance of the
dynamic unsplittable flow problem is given with an initial path for each
commodity. This initial path corresponds to the path used in the last
time-step preceding the current horizon.
vailable online 16 January 2023
305-0548/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2023.106154
Received 1 July 2022; Received in revised form 10 January 2023; Accepted 11 Jan
uary 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:francois.lamothe@isae-supaero.fr
https://doi.org/10.1016/j.cor.2023.106154
https://doi.org/10.1016/j.cor.2023.106154
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106154&domain=pdf

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.
Our contributions are summarized as follows:

• In the literature, Gamvros and Raghavan (2012) solved the dy-
namic unsplittable flow problem using a Mixed Integer Linear
Program (MILP) inside a Branch and Price approach. After recall-
ing the principle of their approach, we highlight that their pricing
scheme has an exponential worst-case complexity. We then de-
scribe two new resolution approaches to the pricing problem with
a polynomial worst-case complexity.

• We introduce two new formulations for the dynamic unsplittable
flow problem. The first one is a mixed integer linear program that
is shown to have a linear relaxation as strong as the formulation
of Gamvros and Raghavan (2012). This formulation yields good
empirical results when the paths allowed for each commodity
are heuristically restrained to a small carefully chosen set. The
second formulation is a linear program that uses and links two
types of flow variables that are not commonly seen at the same
time in flow formulations: arc variables satisfying flow conser-
vation constraints and path variables. This formulation can be
rather competitive because the arc variables can be aggregated
for commodities that share the same origin. However, because
of this aggregation, this formulation can only be used to solve
the linear relaxation of the dynamic unsplittable flow problem
when only one time step is considered at a time (one decision
time step where paths used in the previous time step are favored).
Nevertheless, this formulation is used with a heuristic to obtain
integer solutions of the problem, and yields, in our tests, better
results than the formulations relying only on path variables.

• Finally, we describe several solvers for the dynamic unsplittable
flow problem that use the presented formulations directly in
MILP solvers or as a basis for heuristics. These solvers are ex-
tensively compared on a test-bed of small to large instances and
several key aspects of the solvers explaining their performance
are highlighted.

This paper is structured as follows. Related works on unsplittable
flow problems are presented in Section 2. In Section 3 we recall the
formulation of Gamvros and Raghavan (2012) and describe the two
new formulations. One of them is shown to have a linear relaxation as
strong as the one of Gamvros and Raghavan (2012). In Section 4 we
explain how the formulation of Gamvros and Raghavan (2012) may be
solved through column generation. Then, after recalling their pricing
scheme for this formulation, we highlight its shortcomings and describe
two new pricing schemes that have a lower worst-case complexity.
Section 5 discusses how the formulations presented in the previous
sections can be embedded in solvers. Computational results for these
solvers are presented in Section 6. Finally, we conclude in Section 7.

2. Related work

To the best of our knowledge, the dynamic version of the unsplit-
table flow problem with path change penalties has only been studied in
the work of Gamvros and Raghavan (2012). They proposed a Branch
and Price and Cut algorithm based on a new formulation named the
path-sequence formulation. Their main contribution, besides this new
formulation, is a pricing problem, which enables them to solve to
optimality the linear relaxation of the path-sequence formulation. Al-
though they studied a problem also containing network design features
(decisions need to be taken about which arcs or arc configurations are
allowed), their algorithm is valid for the dynamic unsplittable flow
problem. They showed that their approach provides up to 13% better
results than one-step lookahead methods when exact solvers are used
in both cases.

Other similar problems have been studied in their dynamic variant.
For instance, approaches for solving multiple time steps network design
have been proposed by Lee and Dong (2009), Contreras et al. (2011),
2

Fragkos et al. (2017). In these approaches, opening and closing of arcs
and nodes of the network has a cost. These costs are very similar to
the path change penalties studied in the dynamic unsplittable flow
problem. Similarly, vehicle routing problems have a variant where
serving a user with the same vehicle over time is valued (Kovacs et al.,
2014; Luo et al., 2015; Stavropoulou et al., 2019). This persistence of
vehicle choice over time recalls the incentive to keep the same path in
the dynamic unsplittable flow problem.

Contrarily to its dynamic variant, the static unsplittable flow prob-
lem has been largely studied. This section does not aim at providing
an extensive overview of this literature but focuses on recalling the
most successful approaches among exact methods, approximation al-
gorithms, and meta-heuristics. The seminal exact method is the one
of Barnhart et al. (2000). They presented a Branch and Price and Cut
procedure applied to a formulation called the path formulation. Most
posterior works use this baseline as a comparison. A major contribution
of their work is their branching strategy which is used in most subse-
quent exact methods such as those of Alvelos and De Carvalho (2003),
Park et al. (2003), Gamvros and Raghavan (2012). They also included
lifted cover inequalities of the capacity constraints to strengthen the
linear relaxation of their formulation. Park et al. (2003) mixed a path
formulation and a knapsack formulation to derive a new linear formu-
lation of the problem. The linear relaxation of this formulation yields
a stronger lower bound which in turn decreases the time needed to
complete the branching procedure. Belaidouni and Ben-Ameur (2007)
presented a cutting plane method based on superadditive functions to
generate strong cuts for their Branch and Price method. It appears in
small instances that the addition of such cuts provides integer solutions
without using a Branch and Bound procedure. Finally, Fortz et al.
(2016, 2017) studied an unsplittable flow problem where the cost of
using each arc is convex and piece-wise linear which is also the case
for the costs used in our formulation.

The approximation properties of the static unsplittable flow problem
are also well-known. We recall here some results when the objective
function is the congestion, i.e. the smallest number by which it is
necessary to multiply all the capacities to fit all the commodities. This
objective function is the closest to the one studied in this work. We
refer to the Handbook of approximation algorithms (Gonzalez, 2007)
for a detailed survey on approximation algorithms in the context of
unsplittable flows. The algorithm with the best approximation factor for
congestion is a randomized rounding method introduced by Raghavan
and Tompson (1987). This procedure is a 𝑂

(

ln |𝐸|

ln ln |𝐸|

)

-approximation
algorithm that works for directed and undirected graphs, where |𝐸|

is the number of arcs in the network. This algorithm was extended
by Coudert and Rivano (2002) even though the approximation proper-
ties were not proven for the extended algorithm. Lamothe et al. (2021)
further extended the previous randomized rounding algorithm to yield
better results in practice while keeping the same approximation factor.
This algorithm is called Sequential Randomized Rounding (SRR) and
will be used in this work to create integer solutions from the linear
relaxation of randomized rounding algorithms.

Finally, various meta-heuristics were investigated in the unsplittable
flow literature. We refer to the work of Li et al. (2010) and Santos et al.
(2013) for the most efficient meta-heuristics. Li et al. (2010) showed
that their ant colony optimization method compared favorably with the
CPLEX solver, and was able to solve instances with up to 60 nodes, 400
arcs, and 3500 commodities to optimality in less than 900 s. Santos
et al. (2013) created an algorithm that solves the linear relaxation of
the problem with column generation and uses the paths created during
the column generation inside a Greedy Randomized Adaptive Search
Procedure (GRASP). They solve all their instances (26 nodes, 80 arcs,
500 commodities) in less than 180 s with values close to the linear

relaxation’s lower bound.

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

o
t
e
o
N
a
t
o
a

b
n
t
w
l
o
o
H
a
p
c
p
n
c

3

b
n
v
b
i
a
f
i
t

3. Formulations for the dynamic unsplittable flow problem

The dynamic unsplittable flow problem is a variation of the un-
splittable flow problem where several time steps are considered. This
variation features two conflicting objectives: respecting as much as
possible the arc capacities and minimizing the number of times each
commodity changes the path it uses. The path changes are modeled
with penalties. For the sake of simplicity, we consider that penalties
are uniform over all commodities and time steps. The price of a penalty
will be denoted 𝛼 and can be used as a scaling factor between the
two objective functions. The extension to the general case of heteroge-
neous penalties does not involve major changes in the algorithms and
formulations.

Note that the objective function used in this work differs slightly
from the objective function classically used for the unsplittable flow
problem. Herein, we focus on minimizing the violation of the capac-
ities. In this context, one classically minimizes the congestion which
is the smallest number by which it is necessary to multiply all the
capacities in order to fit all the commodities. Minimizing the congestion
puts no restrictions on the flow going through the arcs that do not have
maximal congestion. In particular, it induces no incentive to minimize
the congestion on those arcs. This becomes problematic when an arc is
largely more congested in every solution than any other arc because
it lifts all restrictions for the other arcs. Since in our constellation
application, we would like to minimize the violation on all parts of the
graph independently of the congestion of the other parts, we instead
consider an objective function penalizing the sum of overflow on the
arcs. Moreover, it was shown by Lamothe et al. (2021) that this objec-
tive function enables the SRR heuristic to create solutions with both a
lower cumulated overflow and better congestion. We consider that, for
each time step, the cumulated overflow over the arcs is not penalized
until it reaches a threshold denoted 𝐵. After this allowed amount, the
verflow is heavily penalized compared to the path changes (because
he penalty price 𝛼 of a path change is set to a small value). This
ncourages the algorithms to find solutions with a minimum number
f path changes among the ones with less than 𝐵 cumulated overflow.
ote that no preference is given on how the overflow is distributed
mong the arcs as long as its sum in each time step is lower than
he threshold 𝐵. In general, any piecewise linear penalization of the
verflows can be considered with the methods proposed in this work,
nd extension to the general case is quite straightforward.

In this section, we present a variation of the formulation introduced
y Gamvros and Raghavan (2012) to our specific version of the dy-
amic unsplittable flow problem and present a new MILP formulation
hat is shown to have a linear relaxation as strong as theirs. Then,
e present a new linear programming formulation that models the

inear relaxation of the dynamic unsplittable flow problem when only
ne time step is considered. This formulation uses an aggregation
f the commodities that drastically reduces its number of variables.
owever, because of this aggregation, it cannot be transformed into
mixed-integer linear formulation of the dynamic unsplittable flow

roblem. It will thus be used in our experiments inside a heuristic that
reates integer solutions from the linear relaxation of unsplittable flow
roblems. For the remainder of this paper, we will use the following
otations where 𝑡 ∈ 𝑇 is the time step index and 𝑘 ∈ 𝐾 is the index of
ommodities:

• 𝐺 = (𝑉 ,𝐸, (𝐸𝑡)𝑡∈𝑇) is a directed or undirected dynamic graph
where 𝑉 and 𝐸 are the sets of nodes and arcs and where (𝐸𝑡)𝑡∈𝑇
are the sets of allowed arcs at each time step;

• (𝑂𝑘
𝑡 , 𝐷

𝑘
𝑡 , 𝑑

𝑘)𝑡∈𝑇 ,𝑘∈𝐾 is a set of commodities defined by their origin
node 𝑂𝑘

𝑡 ∈ 𝑉 , destination node 𝐷𝑘
𝑡 ∈ 𝑉 at each time-step, and a

fixed demand 𝑑𝑘 ∈ R+;
• (𝑐𝑒𝑡)𝑒∈𝐸𝑡 , 𝑡∈𝑇 are capacities on the arcs of the dynamic graph at
3

each time step.
.1. The path-sequence formulation

The following formulation is a variation of the one introduced
y Gamvros and Raghavan (2012) to our specific version of the dy-
amic unsplittable flow problem. In the model of Gamvros and Ragha-
an (2012), arc capacities cannot be exceeded while the use of each arc
y a commodity has a cost. The objective is then to minimize the total
nduced cost. In our case, we allow the arc capacities to be exceeded
nd minimize some of the excess flow. The number of variables in this
ormulation is not polynomial, neither in the number of nodes/arcs nor
n the number of time steps, and its linear relaxation must be solved
hrough column generation.

In this formulation, the meaning of the variables is the following:

• 𝑥𝑘𝑠 decides if commodity 𝑘 uses the path-sequence 𝑠 over the
considered horizon. If a path-sequence 𝑠 = (𝑝1,… , 𝑝

|𝑇 |) is used,
then path 𝑝𝑗 is used at time step 𝑗. Each path-sequence induces a
number of path-changes 𝑛𝑘𝑠 ;

• 𝑜𝑒𝑡 represents the overflow on arc 𝑒 at time step 𝑡;
• 𝑜𝑡 represents the amount of overflow that exceeds at time step 𝑡

the amount 𝐵 of unpenalized overflow.

We denote 𝑆𝑘 the set of all path-sequences usable by commodity 𝑘
while 𝑆𝑘

𝑒𝑡 denotes the set of all path-sequences usable by commodity
𝑘 for which the path at time step 𝑡 is going through arc 𝑒 ∈ 𝐸𝑡. The
path-sequence formulation is given by:

min
𝑥𝑘𝑠 ,𝑜𝑒𝑡 ,𝑜𝑡

𝛼
∑

𝑘∈𝐾

∑

𝑠∈𝑆𝑘

𝑛𝑘𝑠 𝑥𝑘𝑠 +
∑

𝑡∈𝑇
𝑜𝑡 (1a)

subject to
∑

𝑠∈𝑆𝑘

𝑥𝑘𝑠 = 1 ∀𝑘 ∈ 𝐾 (1b)

∑

𝑘∈𝐾

∑

𝑠∈𝑆𝑘
𝑒𝑡

𝑥𝑘𝑠 𝑑𝑘 ≤ 𝑐𝑒 + 𝑜𝑒𝑡 ∀𝑒 ∈ 𝐸𝑡, ∀𝑡 ∈ 𝑇 (1c)

∑

𝑒∈𝐸𝑡

𝑜𝑒𝑡 ≤ 𝐵 + 𝑜𝑡 ∀𝑡 ∈ 𝑇 (1d)

𝑥𝑘𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝑆𝑘, ∀𝑘 ∈ 𝐾 (1e)

𝑜𝑒𝑡 ∈ R+, 𝑜𝑡 ∈ R+ ∀𝑒 ∈ 𝐸𝑡, ∀𝑡 ∈ 𝑇 (1f)

The objective function (1a) is composed of two terms: the sum of the
path-change penalties and the sum over the time steps of the overflow
exceeding the threshold 𝐵. Note that even though there is a very large
number of path-sequences, because each commodity is limited to only
one path-sequence by the Eqs. (1b) and each path-sequence induces
at most |𝑇 | − 1 path-changes, the number of path-change penalties is
upper-bounded by |𝐾|(|𝑇 |−1). The Eqs. (1c) and (1d) are the capacity
constraints; they ensure that 𝑜𝑒𝑡 represents the overflow on arc 𝑒 at time
step 𝑡 and that 𝑜𝑡 represents the amount of overflow that exceeds the
threshold 𝐵 at time step 𝑡. The variables 𝑥𝑘𝑠 being binary in the Eqs. (1e)
ensures that the flow is unsplittable.

3.2. Extended arc-path formulation

The static unsplittable flow problem has two classical formula-
tions, the arc-node formulation and the arc-path formulation, which
can be found in Barnhart et al. (2000). These two formulations can
be extended to the dynamic unsplittable flow problem. For the arc-
path formulation, the obtained formulation is presented below. This
formulation uses a polynomial number of variables and constraints in
the number of commodities and time steps but not in the number of
nodes and arcs because of the exponential number of paths in a graph.
The variables of this formulation have the following meaning:

• 𝑥𝑘𝑝𝑡 decides if commodity 𝑘 uses path 𝑝 at time step 𝑡;

• 𝑜𝑒𝑡 represents the overflow on arc 𝑒 at time step 𝑡;

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

t

i
𝑝

s

t

a
r
e
w

b
s
p
e
c
i
p
v
t
h
a
t
t
d
c
s
t
f

t
n
b
t

• 𝑜𝑡 represents the amount of overflow that exceeds, at time step 𝑡,
the amount 𝐵 of unpenalized overflow;

• 𝑛𝑘𝑝𝑡 takes value one if commodity 𝑘 uses path 𝑝 at time step 𝑡 but
not at time step 𝑡 − 1.

We denote 𝑃 𝑘
𝑡 the set of all the paths usable by commodity 𝑘 at

ime step 𝑡. The set of time steps 𝑇 is extended to include a time step
0 to take into account imposed initial commodity paths. The set 𝑃 𝑘

0 of
usable paths at time step zero contains only one path which is the one
taken by commodity 𝑘 before the decision time interval. Note that the
variables 𝑥𝑘𝑝𝑡 are considered to exist for both admissible (𝑝 ∈ 𝑃 𝑘

𝑡) and
nadmissible (𝑝 ∉ 𝑃 𝑘

𝑡) paths but a variable 𝑥𝑘𝑝𝑡 is set to zero when path
is inadmissible. The extended arc-path formulation is given by:

min
𝑥𝑘𝑝𝑡 ,𝑛

𝑘
𝑝𝑡 ,𝑜𝑒𝑡 ,𝑜𝑡

𝛼
∑

𝑘∈𝐾,𝑡∈𝑇
𝑛𝑘𝑝𝑡 +

∑

𝑡∈𝑇
𝑜𝑡 (2a)

ubject to
∑

𝑝∈𝑃 𝑘
𝑡

𝑥𝑘𝑝𝑡 = 1 ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (2b)

∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘
𝑡 |𝑒∈𝑝

𝑥𝑘𝑝𝑡 𝑑
𝑘 ≤ 𝑐𝑒𝑡 + 𝑜𝑒𝑡 ∀𝑒 ∈ 𝐸𝑡, ∀𝑡 ∈ 𝑇 (2c)

∑

𝑒∈𝐸𝑡

𝑜𝑒𝑡 ≤ 𝐵 + 𝑜𝑡 ∀𝑡 ∈ 𝑇 (2d)

𝑥𝑘𝑝𝑡 − 𝑥𝑘𝑝,𝑡−1 ≤ 𝑛𝑘𝑝𝑡 ∀𝑝 ∈ 𝑃 𝑘
𝑡 , ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 ⧵ {0} (2e)

𝑥𝑘𝑝𝑡 ∈ {0, 1}, 𝑛𝑘𝑝𝑡 ∈ R+ ∀𝑝 ∈ 𝑃 𝑘
𝑡 , ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (2f)

𝑜𝑒𝑡 ∈ R+, 𝑜𝑡 ∈ R+ ∀𝑒 ∈ 𝐸𝑡, ∀𝑡 ∈ 𝑇 (2g)

The objective function (2a) is composed of two terms: the sum of the
path-change penalties and the sum over the time steps of the overflow
exceeding the threshold 𝐵. Note that even though there is a large num-
ber of paths at each time-step, because each commodity is limited to
only one path per time-step by the Eqs. (2b), the number of path-change
penalties is upper-bounded by |𝐾|(|𝑇 | − 1). The Eqs. (2c) and (2d) are
the capacity constraints: they ensure that 𝑜𝑒𝑡 represents the overflow on
arc 𝑒 at time step 𝑡 and that 𝑜𝑡 represents the amount of overflow that
exceeds the threshold 𝐵 at time step 𝑡. The Eqs. (2e) ensure that 𝑛𝑘𝑝𝑡
akes value 1 when a change of path occurs for commodity 𝑘 between

time step 𝑡 and time step 𝑡 − 1. The variables 𝑥𝑘𝑝𝑡 being binary in the
Eqs. (2f) ensures that the flow is unsplittable.

The above formulation is an adaptation of the arc-path formulation
for unsplittable flows to the multi-timestep setting with path change
penalties. It is to be noted that a similar adaptation can be achieved
with an arc-node formulation. The resulting formulation is compact
which enables an exact resolution method with a commercial solver.
However, due to the very high number of variables of this compact
formulation, this method does not scale well even in relatively small
instances. The extended arc-node formulation is given in Appendix A
together with the computational results for small instances.

3.3. Equivalence of the relaxation of the two MILP models

Combinatorial problems can often be mathematically described us-
ing several MILP models. These models are usually compared through
their number of variables and number of constraints but also through
the strength of their linear relaxation. Indeed, the stronger the linear
relaxation, the more suited the MILP model is for a resolution using
a Branch-and-Bound procedure, and the more information the linear
relaxation provides on the integer problem. In this section, we show
that the two MILP formulations presented above for the dynamic
unsplittable flow problem have equally strong linear relaxations.

Proposition 1. Let 𝑉1 be the value of the linear relaxation of the extended
arc-path formulation and 𝑉2 be the value of the linear relaxation of the
4

path-sequence formulation, then 𝑉1 = 𝑉2. a
Proof of the above proposition is given in Appendix B. The two
formulations can thus be used interchangeably and the main criterion
for choosing one over the other should be its resolution time.

3.4. Aggregated arc-node formulation for one time step

The aggregated arc-node formulation below models the linear re-
laxation of a dynamic unsplittable flow problem (which is the same
problem except that each commodity can use several paths to route its
flow since the integrality of the variables is relaxed) when one time step
is considered. It uses and links two types of flow variables that are not
commonly seen at the same time in flow formulations: arc variables
satisfying flow conservation constraints that are common in arc-node
formulations and path variables that are used in arc-path formulations.
This formulation is especially relevant because path-change penalties
are better represented with path variables while flows can be efficiently
represented with arc-node formulations when commodities are grouped
by origin to create super-commodities. A super-commodity 𝑘′ contains
several commodities 𝑘, and its demand is the sum of their demands
between their common origin and their destinations. Because this
formulation considers splittable flows and because the flow of each
commodity is indistinguishable except for their origin and destination,
grouping the commodities can be done without loss of generality and
without changing the flow distribution represented by the optimal
solution. However, it forces the formulation to provide aggregated flow.
Thus, after solving the formulation, it is necessary to compute which
exact paths are used by each commodity. This can be done exactly
and quickly in 𝑂(|𝑉 |(|𝐸| + |𝐾|)) operations with a flow decomposition
lgorithm (Ford, 1956). Moreover, grouping the commodities greatly
educes the number of variables of the arc-node formulations and
nables the computation of linear relaxations for large instances that
ould otherwise be intractable with such formulations.

Note however that, because of this grouping, the linear formulation
elow cannot be converted into a mixed-integer linear program repre-
enting the dynamic unsplittable flow problem. Indeed, the grouping
revents the formulation from choosing a unique path separately for
ach commodity which is necessary to ensure that the flow of each
ommodity is unsplittable. Moreover, considering only one time step
n the formulation (one decision time step where paths used in the
revious time step are favored) enables the use of only one path
ariable per commodity; a simplification that cannot be generalized
o longer time horizons. This simplification allows the formulation to
ave a polynomial number of variables in the number of nodes and
rcs of the graph. In compensation, the formulation can only model
he linear relaxation of a dynamic unsplittable flow problem when one
ime step is considered. In order to create unsplittable solutions to the
ynamic unsplittable flow problem, this formulation will be used in
onjunction with the SRR heuristic of Lamothe et al. (2021). For the
ake of readability, we will drop for this section the index 𝑡 indicating
he considered time step. The variables of this formulation have the
ollowing meaning:

• 𝑓𝑘′
𝑒 indicates how much flow the super-commodity 𝑘′ pushes on

arc 𝑒;
• 𝑥𝑘

𝑝𝑘
decides the proportion of the flow of commodity 𝑘 which is

sent on the path 𝑝𝑘 used in the previous time step;
• 𝑜𝑒 represents the overflow on arc 𝑒;
• 𝑜 represents the amount of overflow that exceeds the amount 𝐵

of unpenalized overflow.

Since only one time step is considered, if 𝑝𝑘 is the path used in
he previous time step by commodity 𝑘, in the current time step the
umber of path changes is equal to 1−𝑥𝑘

𝑝𝑘
. Thus, the path changes can

e taken into account in the objective by the term ∑

𝑘∈𝐾 (1 − 𝑥𝑘
𝑝𝑘
). In

his formulation we also use the Kronecker notation: 𝛿𝑥𝑦 = 1 if 𝑥 = 𝑦
𝑥 − +
nd 𝛿𝑦 = 0 otherwise. Moreover, 𝐸 (𝑣) and 𝐸 (𝑣) will denote the set

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

s

k
o
𝑝
b
p
𝑐
i
t
t

u
s
n
s
b
a
b
o
k

R
c
s
c
T

m
m
b
c
m
s
f
p
t

of incoming and outgoing arcs of a node 𝑣. The aggregated arc-node
formulation is given by:

min
𝑥𝑘
𝑝𝑘

,𝑓𝑘′
𝑒 ,𝑜𝑒 ,𝑜

𝛼
∑

𝑘∈𝐾
(1 − 𝑥𝑘

𝑝𝑘
) + 𝑜 (3a)

ubject to
∑

𝑒∈𝐸+(𝑣)
𝑓𝑘′
𝑒 −

∑

𝑒∈𝐸−(𝑣)
𝑓𝑘′
𝑒 =

∑

𝑘∈𝑘′
𝑑𝑘𝛿𝑂

𝑘
𝑣 −

∑

𝑘∈𝑘′
𝑑𝑘𝛿𝐷

𝑘
𝑣 ∀𝑘′ ∈ 𝐾 ′, ∀𝑣 ∈ 𝑉 (3b)

∑

𝑘∈𝑘′|𝑒∈𝑝𝑘
𝑥𝑘
𝑝𝑘
𝑑𝑘 ≤ 𝑓𝑘′

𝑒 ∀𝑘′ ∈ 𝐾 ′, ∀𝑒 ∈ 𝐸 (3c)

∑

𝑘′∈𝐾′
𝑓𝑘′
𝑒 ≤ 𝑐𝑒 + 𝑜𝑒 ∀𝑒 ∈ 𝐸 (3d)

∑

𝑒∈𝐸
𝑜𝑒 ≤ 𝐵 + 𝑜 (3e)

𝑓𝑘′
𝑒 ∈ R+, 𝑥𝑘

𝑝𝑘
∈ [0, 1], 𝑜𝑒 ∈ R+, 𝑜 ∈ R+ ∀𝑘′ ∈ 𝐾 ′, ∀𝑒 ∈ 𝐸, ∀𝑘 ∈ 𝐾

(3f)

The objective function (3a) is composed of two terms: the sum of the
path-change penalties and the overflow exceeding the threshold 𝐵. The
Eqs. (3b) is the flow conservation constraint for the super-commodity
𝑘′. The Eqs. (3c) are a linking constraint between the flow variables
𝑓𝑘′
𝑒 and the path variables 𝑥𝑘

𝑝𝑘
. The Eqs. (3d) and (3e) are the capacity

constraints: they ensure that 𝑜𝑒 represents the overflow on arc 𝑒 and
that 𝑜 represents the amount of overflow that exceed the threshold 𝐵.

4. Pricing schemes for the path-sequence formulation

The path-sequence formulation was introduced by Gamvros and
Raghavan (2012) to solve the dynamic unsplittable flow problem. Be-
cause of its large number of variables 𝑥𝑘𝑠 , a column generation process is
required to solve its linear relaxation. This process relies on a so-called
pricing scheme that must be tailored to the problem at hand. In this
section, we start by briefly recalling the concept of column generation
and present how the pricing problem particularizes to the context of
dynamic flows. An algorithm solving this problem is given in the work
of Gamvros and Raghavan (2012) which relies on the computation of
k-shortest paths. We partially recall their method and highlight the
fact that this pricing scheme has an exponential worst-case complexity.
This is mainly because there might exist an exponential number of
paths of the same length/cost in a graph. To alleviate this problem, we
propose two new pricing schemes that do not rely on k-shortest path
computation and have a polynomial worst-case complexity.

4.1. Column generation for the path-sequence formulation

Column generation is a technique applied when the number of
variables is very large. In this case, applying a standard simplex pro-
cedure and computing the reduced cost of each variable is intractable.
However, it can be tractable to compute the variable with the small-
est reduced cost through an optimization problem called the pricing
problem. Recall that the reduced cost of a variable 𝑥𝑖 is 𝑟𝑖 = 𝑐𝑖 − 𝑢 ⋅ 𝐴𝑖
where 𝑐𝑖 is the cost of 𝑥𝑖 in the objective function, 𝑢 is the vector of
dual variables (one dual variable per constraint) and 𝐴𝑖 is the vector of
coefficients associated with 𝑥𝑖 in the constraints.

In the context of the path-sequence formulation, the cost of a vari-
able 𝑥𝑘𝑠 in the objective function (1a) is 𝑛𝑘𝑠 the number of path-changes
induced by the path-sequence 𝑠. As for the constraints, considering
only the constraints with non a zero coefficient, a variable 𝑥𝑘𝑠 has a
unit coefficient in the constraint (1b) associated with commodity 𝑘.
Moreover, it appears in several constraints of type (1c). If the path-
sequence 𝑠 uses an arc 𝑒 at time-step 𝑡 then 𝑥𝑘𝑠 appears in the associated
constraint with coefficient 𝑑𝑘.

This means that a variable 𝑥𝑘𝑠 with 𝑠 = (𝑝1,… , 𝑝
|𝑇 |) has the following

reduced cost:

𝑟𝑘𝑠 = 𝑛𝑘𝑠 − 𝑢𝑘 − 𝑑𝑘
∑ ∑

𝑢𝑒𝑡
5

𝑡∈𝑇 𝑒∈𝑝𝑡
m

where 𝑢𝑘 is the dual variable of the constraint (1b) associated with
commodity 𝑘, and 𝑢𝑒𝑡 is the dual variable of the constraint (1c) as-
sociated with arc 𝑒 ∈ 𝐸𝑡 at time step 𝑡. Note that the coefficients for
the constraints (1b) are the same for all path-sequences of the same
commodity. Because, the methods used to solve the pricing problem
search for the best path-sequence for each commodity separately, the
term −𝑢𝑘 is constant in the pricing problem of a commodity. It can
thus be removed from the pricing problem and added separately to the
reduced cost after the computation.

Thus, the problem of finding the path-sequence of smallest reduced
cost for a commodity 𝑘 is the following: choose the path-sequence with
the smallest cost such that choosing a path 𝑝𝑡 at time step 𝑡 induces a
cost −𝑑𝑘 ∑

𝑒∈𝑝𝑡 𝑢𝑒𝑡 and not keeping the same path from 𝑡 to 𝑡+1 induces
a cost of one.

4.2. The pricing method of Gamvros and Raghavan (2012) and its limita-
tions

As shown by Gamvros and Raghavan (2012), the pricing problem
of the path-sequence formulation can be decomposed into two parts.
First, determine a set of candidate paths 𝑃 𝑘

𝑡 for each time step. Second,
using the paths in 𝑃 𝑘

𝑡 , construct a path-sequence of smallest reduced
cost. This second part can be solved through dynamic programming.
Indeed, choosing the best path for a time step 𝑡 depends on the path
chosen at time step 𝑡−1 but not on all the previously chosen paths. For
more details, see the work of Gamvros and Raghavan (2012).

The set 𝑃 𝑘
𝑡 of usable paths cannot be the entire set 𝑃 𝑘

𝑡 of valid paths
because the cardinality of 𝑃 𝑘

𝑡 is exponential in the size of the graph.
Thus, Gamvros and Raghavan (2012) restrain 𝑃 𝑘

𝑡 to be the result of a
-shortest path algorithm on the graph 𝐺𝑡 = (𝑉 ,𝐸𝑡), where the cost
f each arc 𝑒 ∈ 𝐸𝑡 is equal to −𝑑𝑘𝑢𝑒𝑡. Let us denote the returned paths
1,… , 𝑝𝜅 where 𝑝1 is the shortest path and 𝑝𝜅 the longest path returned
y the algorithm. The number of paths 𝜅 calculated by the k-shortest
ath algorithm is fixed such that it is the maximum integer satisfying
(𝑝𝜅) ≤ 𝑐(𝑝1)+2𝛼 where 𝑐(𝑝) denotes the cost of a path 𝑝 and the value 2𝛼
s the cost of two path-change penalties. In other words, it is guaranteed
hat all the paths having a cost difference with the shortest path of less
han 2𝛼 have been calculated.

A sequence of paths of minimum reduced cost can be calculated
sing only the paths satisfying this condition. Indeed, suppose that a
equence of paths of minimum reduced cost uses at time step 𝑡 a path 𝑝
ot satisfying 𝑐(𝑝) ≤ 𝑐(𝑝1) + 2𝛼. We can then replace 𝑝 by 𝑝1 to create a
equence of paths of lower cost. Indeed, the exchange can only increase
y two the number of path changes made in the sequence of paths,
nd this increase is compensated by a decrease in the cost of the path
y an amount of at least 2𝛼. The new sequence of paths is therefore
f minimum reduced cost and uses one of the paths returned by the
-shortest path algorithm.

emark. if the set of paths allowed at each time-steps for each
ommodity is restricted to a specific set (as this will be the case for
everal algorithms of the experimental section), then this restricted set
an be used as the set of candidate paths 𝑃 𝑘

𝑡 in the pricing problem.
his makes the pricing problem easier to solve.

In their work, Gamvros and Raghavan (2012) proposed enhance-
ents of the above method to create the sets 𝑃 𝑘

𝑡 . However, these
ethods use a k-shortest path algorithm with a stopping condition

ased on the cost difference between the shortest and the longest
omputed path. These methods all have the following drawback: there
ight be an exponential number of paths whose cost difference with the

hortest path is less than a constant. This may happen in at least the two
ollowing situations. First, the constant is the penalty induced by two
ath changes. If the price of a path change is rather large compared
o the (reduced) costs of the paths then all the paths of the graph

ust be computed. Secondly, if the graph on which the k-shortest path

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

C
o
o
c
R
t
d
I

s
c
t
b
m
𝑂

m
f
p
d
a

5

d
r
u
I
t
u
p
r
t

5

R
c
i
c
h
t

computations are made contains a lot of zero-cost arcs then there might
be a lot of equally shortest paths that must all be computed. In the
limit where all arcs have a zero cost, all the paths of the graph must
be computed. This second case tends to happen in our version of the
path-sequence formulation if only a few arcs are overloaded. However,
this was not the case in the tests of Gamvros and Raghavan (2012)
because, in their formulation, the commodities have to pay a positive
price to use an arc. Thus in their cases, the cost of each arc of the k-
shortest path graph is positive. Nevertheless, their pricing algorithm
has an exponential worst-case complexity.

4.3. New pricing schemes without k-shortest paths

In this section, we introduce two new pricing schemes that do not
rely on k-shortest path computations and have a polynomial worst-case
complexity.

Pricing with only shortest paths. In a path-sequence, let us denote
𝑡1...𝑡2 any sequence of consecutive time steps such that the path-
sequence changes its path before 𝑡1 and after 𝑡2, but not between 𝑡1 and
𝑡2. Let 𝑝𝑡1 ...𝑡2 be the path yielding the lowest total reduced cost on this
sequence of time steps if it exists. The method is based on the following
statement. The path 𝑝𝑡1 ...𝑡2 is independent of the paths chosen outside
of 𝑡1...𝑡2 and can be computed with a single call to a shortest path
algorithm on a graph 𝐺𝑡1 ...𝑡2 . The nodes of 𝐺𝑡1 ...𝑡2 are 𝑉𝑡1 ...𝑡2 = 𝑉 , its arcs
are 𝐸𝑡1 ...𝑡2 =

⋂𝑡2
𝑡=𝑡1

𝐸𝑡 and the cost on an arc 𝑒 ∈ 𝐸𝑡1 ...𝑡2 is 𝑐𝑒 =
∑𝑡2

𝑡=𝑡1
𝑢𝑒𝑡.

Note that there may not exist a valid path for a commodity on 𝐺𝑡1 ...𝑡2 .
In that case, the commodity must change its path between 𝑡1 and 𝑡2. If
𝑃 𝑘
𝑡 is set to {𝑝𝑡1 ...𝑡2 | ∀𝑡1...𝑡2 such that 𝑡1 ≤ 𝑡 ≤ 𝑡2} then a path-sequence

of smallest reduced cost can be computed using only the paths in 𝑃 𝑘
𝑡 .

Indeed, suppose that a path-sequence of smallest reduced cost uses at
time step 𝑡 a path 𝑝 that is not in 𝑃 𝑘

𝑡 . Path 𝑝 is kept on a sequence 𝑡1...𝑡2
and can be replaced by 𝑝𝑡1 ...𝑡2 on this sequence to create a path-sequence
of smaller reduced cost.

We now discuss the complexity of the pricing method presented
above. First, we consider the complexity of computing the paths 𝑝𝑡1 ...𝑡2 .
Let us denote |𝐸| = max𝑡 |𝐸𝑡|. For a sub-sequence 𝑡1...𝑡2, the method
starts by computing 𝐺𝑡1 ...𝑡2 . Note that 𝐺𝑡1 ...𝑡2 has the same nodes as
𝐺𝑡1 ...𝑡2−1 and its arcs are 𝐸𝑡1 ...𝑡2 = 𝐸𝑡1 ...𝑡2−1 ∩ 𝐸𝑡2 . Thus, except when
𝑡1 = 𝑡2 in which case 𝐺𝑡1 ...𝑡2 = (𝑉 ,𝐸𝑡1), the graph 𝐺𝑡1 ...𝑡2 can be
computed from 𝐺𝑡1 ...𝑡2−1 and 𝐺𝑡2 in 𝑂(|𝐸𝑡1 ...𝑡2−1|) time which is equal
to 𝑂(|𝐸|) time. Using a Dijkstra algorithm, the computation of 𝑝𝑡1 ...𝑡2
from 𝐺𝑡1 ...𝑡2 takes 𝑂(|𝐸𝑡1 ...𝑡2 | ln |𝐸𝑡1 ...𝑡2 |) time which is also 𝑂(|𝐸| ln |𝐸|)
time. Overall, as there are |𝑇 |(|𝑇 |−1)

2 paths of this form to compute,
the complexity of computing all the paths 𝑝𝑡1 ...𝑡2 is 𝑂(|𝑇 |2|𝐸| ln |𝐸|).

ompared to the method of Gamvros and Raghavan (2012), the number
f paths computed is quadratic in the number of time steps instead
f linear. However, in this method, the number of paths computed is
onstant in the size of the graph, while the method of Gamvros and
aghavan (2012) might compute an exponential number of paths in

he size of the graph. The second part of the pricing method is the
ynamic programming algorithm of Gamvros and Raghavan (2012).
t has a complexity of 𝑂(

∑

𝑡∈𝑇 |𝑃 𝑘
𝑡 |) which is equal in our case to

𝑂(
∑

𝑡∈𝑇 𝑡(|𝑇 |−𝑡)) which is equal to 𝑂(|𝑇 |3). Thus the overall complexity
of the above method is 𝑂(max{|𝑇 |3, |𝑇 |2|𝐸| ln |𝐸|}). We now describe
an all-in-one method to solve the pricing problem that does not use the
dynamic programming algorithm of Gamvros and Raghavan (2012) and
has an even better complexity.

Pricing all-in-one. This method uses the paths 𝑝𝑡1 ...𝑡2 as defined
and constructed in the paragraph ‘‘Pricing with only shortest paths’’.
This method makes a case disjunction on the position of the first path
change. Indeed, if the first path-change occurs after just time step 𝑡
then the best path-sequence can be created by using the path 𝑝0...𝑡 for
the time steps 0 to 𝑡 and juxtaposing the optimal path-sequence for
the sub-sequence of time steps 𝑡 + 1,… , |𝑇 |. The latter optimal path-
sequence can be computed by a recursive call of the method on the
sub-sequence of time steps 𝑡 + 1,… , |𝑇 |. Note that this recursive call
6

Fig. 1. Illustration of the case disjunction made by the All-in-one pricing on the
position of the first path change.

might have already been made in another part of the algorithm. In this
case, the algorithm does not need to re-make the computation and can
just use the already computed path-sequence. Once all positions for the
first time step have been considered, the optimal path-sequence for the
whole horizon is the best among the ones created in each case. The case
disjunction of this method is illustrated in Fig. 1.

We now study the complexity of this last method. First, from the
complexity study of the previous pricing scheme, we know that all
the paths 𝑝𝑡1 ...𝑡2 can be computed in 𝑂(|𝑇 |2|𝐸| ln |𝐸|) time. Secondly,
there are |𝑇 | + 1 (recursive) calls to the algorithm, one for each sub-
equence of time steps of the form 𝑡...|𝑇 |. Each call considers |𝑇 | − 𝑡
ases that are treated in constant time if we assume the paths 𝑝𝑡1 ...𝑡2 and
he recursive calls for smaller sub-sequences of time steps have already
een computed. Thus all the recursive calls and case disjunctions are
ade in 𝑂(|𝑇 |2) time. The total complexity of the method is thus
(|𝑇 |2|𝐸| ln |𝐸|).

For the clarity of the presentation, we described all the pricing
ethods as if no initial path was given to each commodity. To account

or the initial paths, just add the initial paths in the set of considered
aths 𝑃 𝑘

𝑡 in the methods relying on Gamvros and Raghavan (2012)
ynamic programming algorithm, and in the last method make an
dditional case disjunction on how long the initial path should be kept.

. Solving the dynamic unsplittable flow problem

In the previous sections, we presented several formulations for the
ynamic unsplittable flow problem and new ways to solve the linear
elaxation of the path-sequence formulation. We now describe how to
se these formulations to create resolution methods for the problem.
n particular, most of the solvers presented in the experimental sec-
ion create integer solutions of the problem from its linear relaxation
sing the Sequential Randomized Rounding heuristic (SRR) which is
resented in the following sub-section. We then discuss the concept of
estriction of the set of usable paths in a solver. Finally, we summarize
he solvers that will be compared in the experimental section.

.1. The SRR heuristic

Proposed and analyzed by Lamothe et al. (2021), the Sequential
andomized Rounding heuristic (SRR) is a greedy heuristic shown to
reate very good solutions of the static unsplittable flow problem from
ts linear relaxation. Thus we will apply it to various formulations to
reate solutions of the dynamic unsplittable flow problem. The SRR
euristic initially computes the linear relaxation of the problem and
hen alternates between two actions to find an integer solution:

• select the unfixed commodity with the largest demand; use ran-

domized rounding to fix this commodity to a single path;

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

T
c
r
𝑝
𝑝

t
s
f

a
c
a
a
l
g
r
l
g
i

5

c
f
H
q
s
m
p
a
a
t
t
m
𝑘
v
s
a
h
f
M
r
s

5

e
s
c
i
o
u
b
f
i

h
S

6

e
S
h
i
s
d
t
p
t
8
E
s

6

t
(
p
T

U
a

t

• compute the linear relaxation of the modified problem where the
chosen commodities have been fixed to their single path;

The randomized rounding step was introduced by Raghavan and
ompson (1987). It consists in choosing a path for a commodity ac-
ording to the information given in the linear relaxation. In the linear
elaxation, a proportion 𝑥𝑘𝑝 of the flow of commodity 𝑘 is sent on path
. A randomized rounding step consists in fixing commodity 𝑘 to path
in the integer solution with probability 𝑥𝑘𝑝 .

The linear relaxation is updated at a certain frequency which is con-
rolled by a hyper-parameter 𝜃. In the solution of the linear relaxation,
ome commodities use multiple paths. After 𝜃 of these commodities are
ixed to a single path, the linear relaxation is updated.

In the case of the path-sequence formulation, note that a blunt
pplication of the heuristic would recommend making all the necessary
olumn generation iterations to find the optimal linear solution before
pplying randomized rounding steps. However, as the SRR algorithm is
heuristic, it is reasonable to work with an approximate solution of the

inear relaxation. This means that we can perform only a few column
eneration iterations before applying randomized rounding steps. In
eturn, we can update the linear relaxation more often. At first, a
arge number of column generation iterations are made to obtain a
ood approximation of the linear relaxation. Then, the SRR heuristic
s applied by alternating between two types of actions:

• update the linear relaxation through column generation itera-
tions;

• choose a path for a commodity and a time step through random-
ized rounding.

.2. Restriction of the usable paths

At each time step, a large number of paths is usable by each
ommodity. If all these paths are considered, the dynamic unsplittable
low problem is challenging to solve due to its huge solution space.
owever, it is not necessary to consider all the paths to obtain good-
uality solutions. Restricting the allowed paths per commodity to a
mall predefined set simplifies the problem. While the optimal solution
ight be lost, it is easier to find optimal solutions to the restricted
roblem. The restricted sets of paths used in this work are computed
s follows. Let 𝑃 𝑘

𝑡𝜅 be the set of the 𝜅-shortest paths for commodity 𝑘
t time step 𝑡 when the length of the arcs is equal to one (i.e. with
he least number of hops). For methods considering a single time step,
he restricted set of usable paths is set to 𝑃 𝑘

𝑡𝜅 . For methods considering
ultiple time steps, the restricted set of usable paths for commodity
at time step 𝑡 is set to ⋃

𝑡′∈𝑇 𝑃 𝑘
𝑡′𝜅 ∩ 𝑃 𝑘

𝑡 where 𝑃 𝑘
𝑡 is the set of all

alid paths for commodity 𝑘 at time step 𝑡. Moreover, when a time
tep or a sequence of time steps is considered, the initial paths are
lso allowed in each time step where they are valid. This restriction
as already been used in meta-heuristics designed for the unsplittable
low problem by Laguna and Glover (1993) and Masri et al. (2015).
oreover, it allows us to use Branch and Bound algorithms without

esorting to Branch and Price. The impact of this restriction in terms of
olution quality and computing time will be evaluated in Section 6.

.3. Solvers

In the following, we present all the solvers that are used in the
xperiments. Most of the solvers use the SRR heuristic to create integer
olutions and differ from one another by the formulation used to
ompute the linear relaxation. Moreover, the solvers can be divided
nto two categories. The first category is made of methods that consider
nly one decision time step at a time and are given the path that was
sed by each commodity in the previous time step. These methods can
e used to solve horizons with several time steps in a rolling horizon
ashion; the paths chosen for each commodity at a time step are given
7

n entry of the method for the next time step. The second category of
methods is composed of the multi-time step methods which consider
the whole given horizon (10 time steps in our experiments). We start
by describing the one time step methods.

SRR-arc-node. In this method, the SRR heuristic is applied to
the aggregated arc-node formulation. Commodities with the largest
demand are rounded first.

SRR-arc-path. This method consists in applying the SRR heuristic
to the extended arc-path formulation where the horizon has been
restricted to only one time step. Commodities with the largest demand
are rounded first.

SRR-restricted. Similar to ‘‘SRR-arc-path’’; however, the set of
usable paths per commodity is restricted as in Section 5.2.

B&B-restricted-short/long. In this method, a standard Branch and
Bound procedure is applied to the extended arc-path MILP formulation
where the horizon has been restricted to only one time step and the
set of usable paths per commodity is restricted. The Branch and Bound
procedure is continued until a time limit is reached. In practice, the
time limit is set to 𝜏 = 𝛽1.7

√

|𝑉 | to obtain a computing time growth
similar to the other methods. The 𝛽 coefficient is set to 1∕50 for the
short version, 1∕2 for the long version.

We now describe the multi time step methods.
SRR-path-sequence. SRR is applied to the path-sequence formu-

lation. The formulation is solved using the column generation and
the pricing scheme presented in the paragraph ‘‘Pricing all-in-one’’ of
Section 4.3. During a rounding step, for a commodity, a path-sequence
is chosen among the ones present in the linear relaxation through
randomized rounding.

SRR-path-sequence-restricted. Similar to ‘‘SRR-path-sequence’’;
owever, the set of usable paths per commodity is restricted as in
ection 5.2.

. Experimental study

In this section, we report an experimental comparison of differ-
nt solvers based on the concepts presented in the previous sections.
everal key aspects of the solvers explaining their performance are
ighlighted through an ablation study. We first introduce how the
nstances are generated. Then the different solvers and their parameter
ettings are detailed. Finally, experimental results are presented and
iscussed. The datasets and the code used in the experimental section of
his work are accessible at https://github.com/SuReLI/Dynamic_mcnf_
aper_code. All the code for this work was written in Python 3 and used
he commercial solver Gurobi Optimization LLC (2020) in its version
.11. The experiments were made on a server with 48 CPU Intel Xeon
5-2670 2.30 GHz, 60 Gbit of RAM, and CentOS Linux 7. The parameter
ettings for each algorithm are given in Appendix C.

.1. Instance generation

In our experiments, we created instances of the dynamic unsplit-
able flow problem by adapting a method presented in Lamothe et al.
2021) for the static problem. All the details of the instance generation
rocess are given in Appendix D but we summarize it in the following.
he creation of an instance consists of three steps:

1. Creation of an initial graph;
2. Creation of an initial commodity list and initial path for each

commodity;
3. For each time step, modify the graph and the commodity list of

the previous time step to create new ones for this time step.

nless mentioned otherwise in a specific dataset, the capacities of the
rcs are set to 10000 and the size of the largest commodity possible

is set to 1500. In every dataset, the amount of overflow 𝐵 allowed in
each time step is equal to 1% of the total demand of the commodities.
Moreover, the price of the penalties is set to 1 which in practice makes
he penalties a secondary objective compared to not exceeding the

https://github.com/SuReLI/Dynamic_mcnf_paper_code
https://github.com/SuReLI/Dynamic_mcnf_paper_code
https://github.com/SuReLI/Dynamic_mcnf_paper_code

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

t
c
t

s
n
i

6

o
t
c
s
a
f
m
m
t

i
s
m
l
t
a
p
t
q
i

a
A
o

n
H
t
p
b
o
e
s
q
f
c

amount of allowed overflow 𝐵. At each time step, approximately 3% of
he commodities change their origin, and each origin of commodities
hanges 3% of its outgoing arcs. All the instances created contain 10
ime steps after the initial one.
The datasets. Three of the datasets consider graphs of different

izes while the last one considers graphs of fixed sizes but a varying
umber of commodities. In each dataset, one parameter varies and ten
nstances are generated for each value of that parameter.

• Grid easy dataset: This dataset considers grid graphs from 12
nodes to 156 nodes. Many small commodities are created, which
makes the instance easier to solve. The capacities of the arcs in
the grid are set to 15000 while the capacities of the extra arcs are
set to 10000. This also makes the instances easier.

• Grid hard dataset: This dataset considers grid graphs from 6 nodes
to 90 nodes without the adjustments of the previous dataset.

• Random connected dataset: This dataset considers strongly con-
nected random graphs from 12 nodes to 182 nodes.

• Commodity size dataset: This dataset considers grid graphs with
42 nodes and uniform arc capacities 𝑐𝑒𝑡 ranging from 1 to 1000
depending on the instance. Moreover, the size of the largest
commodity possible is set to

√

𝑐𝑒𝑡. This induces a varying num-
ber of commodities together with commodities of different sizes
compared to the arc capacities.

• Period scaling dataset: This dataset considers strongly connected
random graphs 100 nodes. The number of periods is ranging from
10 to 100.

.2. Empirical results

In this section, Figs. 2–6 present each the results of the algorithms
n one of the four datasets and each figure contains a subfigure for the
hree metrics presented below: computing time, overflow ratio, path-
hange ratio. In each subfigure, results from instances created using the
ame parameters are aggregated. The plotted curves represent the aver-
ge results on the aggregated instances, while 95% confidence intervals
or the mean are represented as semi-transparent boxes around the
ain curve. These confidence intervals are created using the statistical
ethod Bootstrap (Efron, 1992) with a number of re-samplings equal

o 1000.
The path-changes ratio is the ratio of the number of path changes

n the solution over the minimum number of path changes of any valid
olution. Indeed, even if the capacities of the graph were infinite, the
inimum number of path changes in a valid solution is almost always

arger than zero. To interpret correctly the solutions yielded by the
ested algorithms, we compute the minimum number of path changes
chievable when the overflow is not penalized. Note that the value
resented in the figures is the path-changes ratio minus one. Indeed,
his makes it possible to better highlight (using a logarithmic scale) the
uality of the solvers which return solutions whose path-changes ratio
s close to one.

The overflow ratio is computed as follows. For each instance, an
mount 𝐵 of overflow is allowed at each time step without penalization.
solution might exceed this allowed amount and have some penalized

verflow 𝑜𝑡 on certain time steps. The overflow ratio is the total
penalized overflow of a solution over the total allowed overflow of an
instance:

∑

𝑡∈𝑇 𝑜𝑡
|𝑇 |𝐵 . The overflow ratio spans several orders of magnitude

while also taking null values. To appropriately display this metric, we
use a symmetric logarithmic scale. This scale is logarithmic except
around zero where it is linear.

As for the computing time, it is given in seconds. A time limit
of 3 h has been given to each algorithm. When it is exceeded the
corresponding instances are not considered in the average. If only two
or fewer instances from a group of instances finished within the time
limit, the results of this group are not displayed as we consider the
statistical power of the results to be too weak. The points present in
the figures without all the instances are:
8

t

• Grid hard dataset: ‘‘SRR path-combination’’ finished only 7 in-
stances with 72 nodes;

• Commodity size dataset: the first shown points for ‘‘SRR path-
combination’’ contains 5 instances while the second only 8;

• Period scaling dataset: ‘‘SRR path-combination’’ finished 9, 7, and
4 instances with 20, 30, and 40 periods respectively; ‘‘SRR path-
combination restricted’’ finished 7 and 4 instances with 40 and
50 periods respectively.

Path set restriction. In order to analyze the influence of the restric-
tion of the set of allowed paths presented in Section 5.2, we compare
SRR-arc-path to SRR-restricted and SRR-path-sequence to SRR-path-
sequence-restricted. Overall, the path restriction seems to introduce a
compromise between computing time and number of path changes.
Indeed, in most cases, the computing time is reduced, especially for
large instances (typically by 2 to 5 times but sometimes by orders of
magnitude on hard instances) while the path-change ratio is increased
(typically by 2 to 4 times). This was expected as the path set restriction
reduces the search space of the problem which makes the algorithm
quicker at the price of not being able to find the optimal solution. As
for the overflow, most of the time the difference is not statistically
significant.

Aggregated arc-node versus arc-path formulation. Two formu-
lations were used to compute exact linear relaxations in methods
considering one time step at a time: the arc-path formulation in SRR-
arc-path and the aggregated arc-node formulation in SRR-arc-node.
Although both methods yield solutions with similar path-change ratio
SRR-arc-node runs, most of the time, faster than SRR-arc-path and
yield a lower overflow ratio when the difference is statistically signif-
icant. Note that both methods exploit the fact that, in our instances,
commodities originate from a small number of sources. SRR-arc-node
uses aggregate variables while SRR-arc-path makes fewer calls to Dijk-
stra’s shortest path algorithm when generating the paths used by each
commodity. Overall, when grouping the commodities is possible, using
an aggregated arc-node model yields better results than using an arc-
path model. However, SRR-arc-node may become intractable when the
number of sources is large because of a large number of variables.

Scaling to longer horizons. According to Fig. 6, the one time step
methods scale rather well into longer horizons. Indeed, their computing
time appears to grow linearly with the number of periods and the
quality of the returned solutions seems to be quite stable. On the other
hand, the computing time of the multi-timestep methods grows very
quickly. Its growth is even larger than what appears at first glance
in Fig. 6(d) because the last points display only the results for the
instances that were solved in the 3 h time limit. However, for the
instances that were solved, the objective value of the solutions appears
quite stable. This can be seen for ‘‘SRR path-combination restricted’’
directly on the figures however this is probably also the case for
‘‘SRR path-combination’’. We hypothesize that the rapid degradation of
solution quality for this method is due to the fact that the computation
of a good linear relaxation needs more column generation iterations
than we could allow this method to have while still finishing in the 3 h
time limit.

General comments. As the number of nodes increases all methods
eed more time to compute solutions with a higher path-change ratio.
owever, the overload ratio is either stagnating or decreasing. As for

he number of commodities, similarly to the static unsplittable flow
roblem, the solution method still requires more computation time
ut they are able to find solutions of better quality both in terms of
verload ratio and path-change ratio. Although the methods consid-
ring several time steps are significantly slower than their one-time
tep counterparts, most of the time they deliver solutions of better
uality. Finally, applying a Branch and Bound method to the arc-path
ormulation with restricted usable paths appears to be one of the best
ompromises between computing time and solution quality among the

ested algorithms. Branch and Bound methods can also benefit from the

Computers and Operations Research 152 (2023) 106154

9

F. Lamothe et al.

Fig. 2. Results for the grid easy dataset.

Fig. 3. Results for the grid hard dataset.

Computers and Operations Research 152 (2023) 106154

10

F. Lamothe et al.

Fig. 4. Results for the random connected dataset.

Fig. 5. Results for the commodity size dataset.

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.
Fig. 6. Results for the period scaling dataset.
presence of several CPUs even though such results are not presented
here to ensure a fair comparison with the other methods. The fact
that an initial path is given and preferable to the other paths seems
to enable good results from the internal heuristics of the commercial
MILP solvers. Indeed, such performance could not be reproduced on
the static unsplittable flow problem where no path is preferred among
the set of valid paths.

7. Conclusion

In this paper, several new methods to solve medium to large in-
stances of the dynamic unsplittable flow problem were presented. In
particular, new formulations were introduced which model either the
integer problem or its linear relaxation. Moreover, we introduced new
approaches to solve the pricing problem for the formulation introduced
by Gamvros and Raghavan (2012). These methods do not rely on
k-shortest path computations and achieve a polynomial worst-case
complexity.

The formulations were embedded in matheuristic solvers for the
dynamic unsplittable flow problem which were compared on several
benchmarks of instances. Several key aspects of the solvers explaining
their performances were also highlighted. Overall, considering only one
time step at a time and a small set of allowed paths for each commodity
gives a good trade-off between solution quality and computing time
when the formulation is solved using a commercial solver. However,
the methods that yield the solutions with the best quality revolve
around the path-sequence formulation which considers several time
steps at a time.

As for future works, although meta-heuristics were not considered
in this work and were not yet used in the literature for the dynamic
unsplittable flow problem, they could be investigated as an alternative
to methods based on (mixed-integer) linear formulations.
11
CRediT authorship contribution statement

François Lamothe: Conceptualization, Formal analysis, Method-
ology, Code writing, Experimentation, Visualization, Writing – origi-
nal draft. Emmanuel Rachelson: Conceptualization, Funding acquisi-
tion, Project administration, Supervision, Writing – review & editing.
Alain Haït: Conceptualization, Funding acquisition, Project adminis-
tration, Supervision, Writing – review & editing. Cédric Baudoin: Con-
ceptualization, Funding acquisition, Supervision. Jean-Baptiste Dupé:
Conceptualization, Funding acquisition, Supervision.

Data availability

Link to the data and code are given in the manuscript.

Acknowledgments

This document is the result of a research project funded by the
Centre National d’Études Spatiales (CNES) and Thales Alenia Space.

Appendix A. Computational results for the extended arc-node for-
mulation

In this section, we present the extended arc-node formulation and
give computational results on very small instances.

• 𝑥𝑘𝑒𝑡 decides if commodity 𝑘 uses arc 𝑒 at time step 𝑡 to send its
flow;

• 𝑜𝑒𝑡 represents the overflow on arc 𝑒 at time step 𝑡;
• 𝑜𝑡 represents the amount of overflow that exceeds, at time step 𝑡,

the amount 𝐵 of unpenalized overflow;

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

1
a
O
z
t
o

A
e
s

t

P
a

T
l

Table A.1
Computational results for the arc-node formulation on small instances : averaged over 10 instances for each
size.
Instance size (nodes) Path-change ratio Overload ratio Computing time (s)

6 12 6 12 6 12

Arc-node formulation 1.95 2.85 0.0 0.0 557 5467
SRR arc node 0.15 0.28 0.32 0.16 0.33 1.15
SRR path combination 0.23 0.39 0.013 0.016 1.32 14.3
T
t
v

D

s
p
W
p
s
c
f
i

b
𝑡
c

a
s
a
c
𝑥
𝑥
t
i

b
t
t
t
d

p
p

f

m
w

I
a

• 𝑛𝑘𝑡 takes value one if commodity 𝑘 makes a path-change between
time step 𝑡 and time step 𝑡 − 1.

min
𝑥𝑘𝑒𝑡 ,𝑛

𝑘
𝑡 ,𝑜𝑒𝑡 ,𝑜𝑡

𝛼
∑

𝑘∈𝐾,𝑡∈𝑇
𝑛𝑘𝑡 +

∑

𝑡∈𝑇
𝑜𝑡 (A.1a)

subject to
∑

𝑒∈𝐸+(𝑣)
𝑥𝑘𝑒𝑡−

∑

𝑒∈𝐸−(𝑣)
𝑥𝑘𝑒𝑡 = 𝛿𝑂

𝑘
𝑣 − 𝛿𝐷

𝑘
𝑣 ∀𝑘′ ∈ 𝐾 ′, ∀𝑣 ∈ 𝑉 (A.1b)

∑

𝑘∈𝐾
𝑥𝑘𝑒𝑡 𝑑

𝑘 ≤ 𝑐𝑒𝑡 + 𝑜𝑒𝑡 ∀𝑒 ∈ 𝐸𝑡, ∀𝑡 ∈ 𝑇 (A.1c)

∑

𝑒∈𝐸𝑡

𝑜𝑒𝑡 ≤ 𝐵 + 𝑜𝑡 ∀𝑡 ∈ 𝑇 (A.1d)

𝑥𝑘𝑒𝑡 − 𝑥𝑘𝑒,𝑡−1 ≤ 𝑛𝑘𝑡 ∀𝑒 ∈ 𝐸, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 ⧵ {0} (A.1e)

𝑥𝑘𝑒𝑡 ∈ {0, 1}, 𝑛𝑘𝑡 ∈ R+ ∀𝑒 ∈ 𝐸, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (A.1f)

𝑜𝑒𝑡 ∈ R+, 𝑜𝑡 ∈ R+ ∀𝑒 ∈ 𝐸𝑡, ∀𝑡 ∈ 𝑇 (A.1g)

The objective function is composed of two terms: the sum of the path-
change penalties and the sum over the time steps of the overflow
exceeding the threshold 𝐵. The Eqs. (A.1b) are the flow conservation
constraint ensuring that the arcs selected by the variables 𝑥𝑘𝑒𝑡 represent
paths. The Eqs. (A.1c) and (A.1d) are the capacity constraints: they
ensure that 𝑜𝑒𝑡 represents the overflow on arc 𝑒 at time step 𝑡 and that
𝑜𝑡 represents the amount of overflow that exceeds the threshold 𝐵 at
time step 𝑡. The Eqs. (A.1e) ensure that 𝑛𝑘𝑡 takes value 1 when a change
of path occurs for commodity 𝑘 between time step 𝑡 and time step 𝑡−1.
The variables 𝑥𝑘𝑒𝑡 being binary in the Eqs. (A.1f) ensures that the flow
is unsplittable.

As it can be seen in Table A.1, an exact solver based on an arc-
node formulation does not scale well and struggles even for the smallest
instances of the grid hard dataset. It is to be noted that for graphs with
2 nodes, 6 out of 10 instances were not solved in the time limit of 3 h,
nd the remaining four instances were solved in an average of 1h30.
ne can also note that the arc-node formulation finds solutions with a
ero overload ratio which comes at the cost of a lot more path changes
han the other methods. These are indeed better solutions because the
verflow after threshold B is very highly penalized in our instances.

ppendix B. Proof of the equivalence of the strength of the lin-
ar relaxations of the extended arc-path formulation and path-
equence formulation

We recall here the proposition stating the equivalence of strength of
he linear relaxation of the two formulations and give a formal proof.

roposition 2. Let 𝑉1 be the value of the linear relaxation of the extended
rc-path formulation and 𝑉2 be the value of the linear relaxation of the
path-sequence formulation, then 𝑉1 = 𝑉2.

Proof. Let 𝑅 be the polyhedron induced by the two capacity constraints
(2c) and (2d) and let 𝑄1 be the polyhedron:

𝑄1 = {𝑥𝑘𝑝𝑡 ∈ [0, 1], 𝑛𝑘𝑝𝑡 ∈ R+, satisfying constraints (2b) and (2e)}.

he solution space of the linear relaxation of the extended path formu-
12

ation is 𝑅∩𝑄1. Meanwhile, the path-sequence formulation is obtained w
by applying a Dantzig–Wolfe decomposition to the polyhedron 𝑄1.
hus, the solution space of its linear relaxation is 𝑅 ∩ 𝑄2 where 𝑄2 is
he convex envelope of integer points of 𝑄1. In order to show that the
alue of both linear relaxations is the same, we will show that 𝑄1 = 𝑄2.

The inclusion 𝑄2 ⊆ 𝑄1 is implied by the fact 𝑄2 is the result of the
antzig–Wolfe decomposition of 𝑄1. Thus, let us now show 𝑄1 ⊆ 𝑄2.

To that end, consider an assignment of the variables 𝑥𝑘𝑝𝑡 and 𝑛𝑘𝑝𝑡
atisfying constraints (2b) and (2e) with the variables 𝑛𝑘𝑝𝑡 as small as
ossible. Note that the variable 𝑛𝑘𝑝𝑡 will take the value max(0, 𝑥𝑘𝑝𝑡−𝑥

𝑘
𝑝,𝑡−1).

e will show there exists an assignment of the variables 𝑥𝑘𝑠 of the
ath-sequence formulation inducing the same flow distribution and the
ame number of path-change penalties. We now present an algorithm to
ompute such an assignment. This construction is carried out separately
or each commodity and, therefore, we consider only one commodity
n the following.

In what follows, let us call 𝛱𝑘
𝑝𝑡 the set of path-sequences constructed

y the algorithm for commodity 𝑘 and using the path 𝑝 at the time step
. Moreover, let us denote 𝜆(𝑠) the coefficient of a path-sequence 𝑠 in a
onvex combination of path-sequences and let 𝜆(𝛱) =

∑

𝑠∈𝛱 𝜆(𝑠).
Algorithm outline. The algorithm constructs a set of path-sequences

s well as their coefficients in the convex combination. First, all path-
equences are initialized with a path for the first time step, then they
re all extended with a path for the second time step, and so on. This
onstruction has two underlying objectives. First, we want 𝜆(𝛱𝑘

𝑝𝑡) =
𝑘
𝑝𝑡, so that path-sequences represent the flow distribution induced by
𝑘
𝑝𝑡. Second, we extend, if possible, the path-sequences with the path
hey already end with so that a minimum number of path-changes is
nduced.

We give an example of execution of the above algorithm in Ta-
le B.2. In this example, the distribution of the flow represented by
he variables 𝑥𝑘𝑝𝑡 is given in Table B.2. In the other tables, we present
he execution of the algorithm. In these tables, the column 𝑡 contains
he path-sequences - indexed by the letter 𝑠 - created by the algorithm
uring the extensions of time step 𝑡.
Initialization of the convex combination of the path-sequences. For each

ath 𝑝 ∈ 𝑃 𝑘
1 , the algorithm creates a path-sequence containing only

ath 𝑝 with a coefficient equal to 𝑥𝑘𝑝1 and adds it to 𝛱𝑘
𝑝1.

Then, for each following time step 𝑡, the algorithm proceeds as
ollows.
Prioritized extensions. The algorithm first begins by extending as

uch as possible the path-sequences with the path they already end
ith. Let us consider a path 𝑝 ∈ 𝑃 𝑘

𝑡 and distinguish two cases.

• If 𝑥𝑘𝑝𝑡 ≥ 𝑥𝑘𝑝,𝑡−1 then all the path-sequences in 𝛱𝑘
𝑝,𝑡−1 are extended

with path 𝑝 and added to 𝛱𝑘
𝑝𝑡. In this case, at this point, 𝜆(𝛱𝑘

𝑝𝑡) =
𝑥𝑘𝑝,𝑡−1 ≤ 𝑥𝑘𝑝𝑡.

• If 𝑥𝑘𝑝𝑡 < 𝑥𝑘𝑝,𝑡−1, the algorithm finds a subset 𝛱 ⊂ 𝛱𝑘
𝑝,𝑡−1 and a path-

sequence 𝑠 ∈ 𝛱𝑘
𝑝,𝑡−1 such that: 𝑠 ∉ 𝛱 and 𝜆(𝛱) ≤ 𝑥𝑘𝑝𝑡 ≤ 𝜆(𝛱)+𝜆(𝑠).

Then, the path-sequence 𝑠 is ‘‘split’’ into two path-sequences; 𝑠1
which is given 𝑥𝑘𝑝𝑡 − 𝜆(𝛱) as coefficient and 𝑠2 which is given
𝜆(𝑠) − 𝜆(𝑠1) as coefficient. This choice of coefficients will ensure
that 𝜆(𝑠1)+𝜆(𝑠2) = 𝜆(𝑠) and 𝜆(𝛱𝑘

𝑝𝑡) = 𝜆(𝛱)+𝜆(𝑠1) = 𝑥𝑘𝑝𝑡. Indeed, the
path-sequences in 𝛱 ∪ {𝑠1} are extended with path 𝑝 and added
to 𝛱𝑘

𝑝𝑡 while 𝑠2 remains in 𝛱𝑘
𝑝,𝑡−1.

f this extension process is repeated for each path 𝑝, then a maximum
mount (in the sense of the coefficients) of path-sequences is extended

ith the path they already end with.

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

s
s
p

t
f
t
o
c
b
c
m
t
T

A

a

Table B.2
Example of execution of the algorithm used in the proof.

(a) Flow distribution: value of the 𝑥𝑘𝑝𝑡 variables
for one commodity

p t

1 2 3

a 0.5 0.3 0.4
b 0.2 0 0
c 0 0.5 0.3
d 0.3 0.2 0.3

(b) Initialization: a sequence containing a single
path is created for each path used at the first time
step

𝑠 𝑡

1 2 3

1 𝑎 | 0.5
2 𝑏 | 0.2
3 𝑑 | 0.3
4
5
6
7
8

(c) Prioritized extensions for 𝑡 = 2: the sequences
are extended with the path they already end with.
The coefficients are decreased so that the sum of
the coefficients of the sequences ending with a
path 𝑝 does not exceed 𝑥𝑘𝑝2
𝑠 𝑡

1 2 3

1 𝑎 | 0.5 𝑎𝑎 | 0.3
2 𝑏 | 0.2
3 𝑑 | 0.3 𝑑𝑑 | 0.2
4
5
6
7
8

(d) Other extensions for 𝑡 = 2: the sequences whose
coefficient has been reduced (here all of them) are
extended with paths where there is still some flow
to allocate (here only the path 𝑐)

𝑠 𝑡

1 2 3

1 𝑎 | 0.5 𝑎𝑎 | 0.3
2 𝑏 | 0.2
3 𝑑 | 0.3 𝑑𝑑 | 0.2
4 𝑎𝑐 | 0.2
5 𝑏𝑐 | 0.2
6 𝑑𝑐 | 0.1
7
8

(e) Prioritized extensions for 𝑡 = 3: the sequences
are extended with the path they already end with.
Note in particular that the coefficients of 𝑏𝑐𝑐 and
𝑑𝑐𝑐 are decreased (down to 0 for 𝑑𝑐𝑐) so that
𝜆(𝑎𝑐𝑐) + 𝜆(𝑏𝑐𝑐) + 𝜆(𝑑𝑐𝑐) = 𝑥𝑘𝑐3
𝑠 𝑡

1 2 3

1 𝑎 | 0.5 𝑎𝑎 | 0.3 𝑎𝑎𝑎 | 0.3
2 𝑏 | 0.2
3 𝑑 | 0.3 𝑑𝑑 | 0.2 𝑑𝑑𝑑 | 0.2
4 𝑎𝑐 | 0.2 𝑎𝑐𝑐 | 0.2
5 𝑏𝑐 | 0.2 𝑏𝑐𝑐 | 0.1
6 𝑑𝑐 | 0.1
7
8

(f) Other extensions for 𝑡 = 3: the sequences whose
coefficient has been reduced (here 𝑏𝑐 and 𝑑𝑐) are
extended with paths where there is still some flow
to be allocated (here the paths 𝑎 and 𝑑)

𝑠 𝑡

1 2 3

1 𝑎 | 0.5 𝑎𝑎 | 0.3 𝑎𝑎𝑎 | 0.3
2 𝑏 | 0.2
3 𝑑 | 0.3 𝑑𝑑 | 0.2 𝑑𝑑𝑑 | 0.2
4 𝑎𝑐 | 0.2 𝑎𝑐𝑐 | 0.2
5 𝑏𝑐 | 0.2 𝑏𝑐𝑐 | 0.1
6 𝑑𝑐 | 0.1
7 𝑏𝑐𝑎 | 0.1
8 𝑑𝑐𝑑 | 0.1
a
b
|

o

v
f
p
r
F
w
v
i
a
𝜖

o
n
o
t
n
p
t

o
S
o

p
e
T
f
m
b

Other extensions. After the prioritized extensions, the algorithm con-
iders the path-sequences that have not yet been extended for the time
tep 𝑡. The algorithm extends the first of these sequences 𝑠 with any
ath 𝑝 such that 𝜆(𝛱𝑘

𝑝𝑡) < 𝑥𝑘𝑝𝑡. Once again, if 𝜆(𝛱𝑘
𝑝𝑡) + 𝜆(𝑠) > 𝑥𝑘𝑝𝑡 then

to obtain 𝜆(𝛱𝑘
𝑝𝑡) = 𝑥𝑘𝑝𝑡, the sequence is divided into two parts with

the same coefficients as in the prioritized extensions. The first part is
extended with the path 𝑝 before being added to 𝛱𝑘

𝑝𝑡. The other part
will be extended later in the algorithm with another path and remains
in 𝛱𝑘

𝑝,𝑡−1. The algorithm then extends another path-sequence. Once all
the sequences have been extended, the extensions can begin for the next
time step.

In the above algorithm, the path-sequences are extended so that
the sum of the coefficients of the path-sequences using the path 𝑝 at
he time step 𝑡 is 𝑥𝑘𝑝𝑡. Thus, the convex combination implies the same
low distribution as the variables 𝑥𝑘𝑝𝑡. It remains to verify that the
wo representations of the flow distribution imply the same number
f path-changes. In the algorithm, at the time step 𝑡, the sum of the
oefficients of the path-sequences ending with the path 𝑝 and extended
y the path 𝑝 is min(𝑥𝑘𝑝𝑡, 𝑥

𝑘
𝑝,𝑡−1). All other path-sequences involve path-

hanges whose sum amounts to 𝑥𝑘𝑝𝑡 − min(𝑥𝑘𝑝𝑡, 𝑥
𝑘
𝑝,𝑡−1) which is equal to

ax(0, 𝑥𝑘𝑝𝑡 − 𝑥𝑘𝑝,𝑡−1). This is exactly the value taken by the 𝑛𝑘𝑝𝑡 variables
hat model the path-changes in the extended arc-path formulation.
hus, the number of path penalties is also the same.

With the above algorithm, any assignment of the variables 𝑥𝑘𝑝𝑡 can
be translated into a convex combination of path-sequences inducing
the same number of path changes. This means that 𝑄1 ⊆ 𝑄2. Thus,
the linear relaxation of the extended path formulation is as strong as
the linear relaxation of the path-sequence formulation. Thus, we have
finally shown that the two linear relaxations are equivalent. □

ppendix C. Parameter settings

In this section, we describe some additional hyper-parameters of our
lgorithms along with their value in the experiments.
13
SRR threshold 𝜽 This threshold decides how often the linear relax-
tion is updated and we searched for a value giving a good trade-off
etween performance and computation time. Its value is fixed to 𝜃 =
𝑉 | for methods based on the path-sequence formulation and |𝑉 |∕10
therwise.
Flow penalization An small additional cost was added to the

ariables representing the flow in the models. This helps the algorithm
ocus on shorter paths. In our preliminary tests, this penalization ap-
eared to diminish the computing time and increase the quality of the
eturned solution. Thus, all the algorithms tested use this penalization.
or path variables representing a path 𝑝, the additional cost is |𝐸(𝑝)|𝜖
here |𝐸(𝑝)| is the number of arcs in path 𝑝. For path-sequences
ariables representing a path-sequence (𝑝1,… , 𝑝𝑇), the additional cost
s ∑

𝑡≤𝑇 |𝐸(𝑝𝑡)|𝜖. For the aggregated arc-node model, the flow variable
ssociated with each arc is given a cost of 𝜖. In all cases, the constant
was set to the small value of 10−4 in our experiments.
Variable deletion When generating variables in the arc-path model

r the path-sequence model, the models tend to accumulate a large
umber of unnecessary variables (variables not used in the current
ptimal solution) which increases unnecessarily the resolution time of
he model. To prevent this, each time the model is solved, each variable
ot used in the basis of the optimal solution is deleted with a fixed
robability. The value of this probability is fixed at 0.3 as it appeared
o give the best results in our preliminary tests.
Size of the restricted path sets Some of the solvers consider

nly a restricted number of paths for each commodity as explained in
ection 5.2. The number 𝜅 of k-shortest paths computed is set to 4 in
ur tests.
Number of column generation iterations The solvers based on the

ath-sequence formulation do not perform all the column generation it-
rations required to obtain the optimal solution of the linear relaxation.
his decreases the overall computing time of the algorithms. Before the
irst randomized rounding step, 20 column generation iterations are
ade to obtain a good approximation of the linear relaxation. However,

etween the randomized rounding steps, only 3 column generation

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.

O
f
i
o
o
d

A

l

w
p
t

r
w
a
t
p

n

t
t
c
t

m
o
t
t
i
e
M
m
t
v

iterations are made. Making more iterations appeared unnecessary in
our preliminary tests.

Pricing scheme for the path-sequence formulation To solve the
path-sequence formulation, a column generation process must be used
which relies on a pricing method able to compute the variables with the
most negative reduced cost. Three pricing schemes have been presented
in Section 4. The one introduced by Gamvros and Raghavan (2012) is
not applicable in our variation of the problem due to its limitations
presented in Section 4.2. Although the other two methods do not
have the same theoretical complexity, preliminary results showed that
choosing one over the other did not significantly impact the computing
time in our instance. The pricing scheme used in the results is the one
presented in the paragraph ‘‘Pricing all-in-one’’ of Section 4.3 which
has the lowest complexity.

Branch and Bound settings The parameter MIPFocus of Gurobi
ptimization LLC (2020) was set to 1 to encourage the solver to

ind high-quality solutions quickly. Moreover, to keep a fair compar-
son with the other solvers, the solvers using the Branch and Bound
f Gurobi Optimization LLC (2020) have been restricted to using only
ne CPU. This prevented the Branch and Bound solvers to use the
ozens of CPUs available on the server where the tests were made.

ppendix D. Instance generation

The creation of an instance of the dynamic unsplittable flow prob-
em consists of four steps:

1. Creation of the initial graph;
2. Creation of the initial commodity list;
3. Creation of the initial path affected to each commodity;
4. For each time step, modify the graph and the commodity list of

the previous time step to create new ones for this time step.

The initial graph and commodity list of the instances are created
ith a method for instances of the static unsplittable flow problem
resented in Lamothe et al. (2021). We describe this method in the
wo following paragraphs.
Graph types. We consider two types of graphs: strongly connected

andom graphs and grid graphs. For strongly connected random graphs,
e ensure that the graph has only one strongly connected component
nd then control the average degree of the graph (it cannot be less
han 2). The probability of an arc’s existence is fixed to 5∕|𝑉 | and the
robability of a node being an origin is 1∕10. For the grid type, a 𝑛-sized

graph is an 𝑛 × 𝑛 toric grid with 𝑛 additional nodes. These additional
odes are each randomly connected to 2𝑛 nodes on the grid and serve

as origins of the flow. Unless mentioned otherwise, the arc capacities
are 104.

Commodity list. The initial commodity list is created as follows.
For each commodity:

• choose a destination node 𝑑;
• choose an origin 𝑜 which can access 𝑑 within the remaining

capacities;
• compute a random simple path 𝑝 from 𝑜 to 𝑑 using a depth-

first search where the visiting order of newly discovered nodes
is random; we denote 𝑐𝑝 the remaining capacity on path 𝑝;

• choose a demand level 𝐷; for this choice, the parameter 𝐷̂max
defines the maximum possible demand of a commodity, and 𝑈 (𝑥)
is a random integer variable uniformly drawn in [1, 𝑥]; we use
two different methods to choose the demand level because it
impacts the difficulty of the instance; either 𝐷 = min(𝑐𝑝, 𝑈 (𝐷̂max))
or 𝐷 = 𝑈 (min(𝑐𝑝, 𝐷̂max)); Unless stated otherwise 𝐷̂max = 1500;

• decrease the used capacity on the path 𝑝 by 𝐷;
• add (𝑜, 𝑑,𝐷) to the list of created commodities;
• repeat until no commodity can be added without breaking the
14

capacity constraints.
Note that a commodity list created this way can always be routed
within the arc capacities by using, for each commodity, the path 𝑝
used to create the commodity. However, this is only true for the first
time step. In the subsequent time step, since changes are made to
the commodities and the graph, there is no guarantee that all the
commodities can still be routed inside the capacities. Note that having
commodities that fit in the capacities while fully congesting the graph
tends to create instances that are rather hard to solve. Indeed, if there
are too few commodities, most solutions have zero overflow and the
instance is easy to solve. On the other hand, if there is way too much
demand to fit in the capacities, overflow will be created whichever path
is chosen for each commodity and, again, the instance is easy to solve.

Initial path list. The list of initial paths is chosen to be the list of
the paths 𝑝 used to create the commodities.

Subsequent time steps An instance of the dynamic unsplittable
flow problem is a sequence of unsplittable flow problems representing
different time steps. Each time step introduces a few changes to the
problem: some commodities change their origin or their destination,
and some arcs are added or deleted. The following changes are made
between each time step in our tests:

• For each commodity (𝑜, 𝑑,𝐷), with probability 𝜇, the destination
𝑑 of the commodity is replaced by a node 𝑢 that is not the origin
of a commodity and such that (𝑑, 𝑢) ∈ 𝐸𝑡. If no such node exists,
the destination remains unchanged.

• For each arc 𝑒 = (𝑜, 𝑢) going out of an origin 𝑜, with probability 𝜇,
arc 𝑒 is replaced by an arc 𝑒′ = (𝑜, 𝑣) where 𝑣 is a node that is not
the origin of a commodity such that (𝑣, 𝑢) ∈ 𝐸𝑡. If no such node
exists, no change occur.

The probability 𝜇 of making a change is set to 𝜇 = 0.03. Note
hat by changing only the destinations of the commodities, we keep
he number of different origins low. Also note that, with these arc
hanges, a strongly connected graph remains strongly connected. All
he instances created contain 10 time steps after the initial one.
The datasets. Four different datasets are used during the experi-

ents. Three of them consider graphs of different sizes while the last
ne considers graphs of fixed sizes but a varying number of commodi-
ies. Unless mentioned otherwise in a specific dataset, the capacities of
he arcs are set to 10000 and the size of the largest commodity possible
s set to 1500. In every dataset, the amount of overflow 𝐵 allowed in
ach time step is equal to 1% of the total demand of the commodities.
oreover, the price of the penalties is set to one which in practice
akes the penalties a secondary objective compared to not exceeding

he amount of allowed overflow 𝐵. In each dataset, one parameter
aries and ten instances are generated for each value of that parameter.

• Grid easy dataset: This dataset considers grid graphs from 12
nodes to 156 nodes. When choosing the demand level of a com-
modity, the formula 𝐷 = 𝑈 (min(𝑐𝑝, 𝐷̂max)) is used. This tends to
create many small commodities, which makes the instance easier
to solve. The capacities of the arcs in the grid are set to 15000
while the capacities of the extra arcs are set to 10000. This also
makes the instances easier.

• Grid hard dataset: This dataset considers grid graphs from 6 nodes
to 90 nodes. When choosing the demand level of a commodity,
the formula 𝐷 = min(𝑐𝑝, 𝑈 (𝐷̂max)) is used.

• Random connected dataset: This dataset considers strongly con-
nected random graphs from 12 nodes to 182 nodes. When choos-
ing the demand level of a commodity, the formula 𝐷 = min(𝑐𝑝, 𝑈
(𝐷̂max)) is used.

• Commodity size dataset: This dataset considers uniform arc ca-
pacities 𝑐𝑒𝑡 ranging from 1 to 1000 depending on the instance,
while the parameter 𝐷̂max is set to

√

𝑐𝑒𝑡. This induces a varying
number of commodities together with commodities of different
sizes compared to the arc capacities. All considered graphs are
grid graphs with 42 nodes. When choosing the demand level of a
commodity, the formula 𝐷 = min(𝑐 , 𝑈 (𝐷̂)) is used.
𝑝 max

Computers and Operations Research 152 (2023) 106154F. Lamothe et al.
Fig. D.7. Average number of commodities for each dataset.
• Period scaling dataset: This dataset considers strongly connected
random graphs 100 nodes. The number of periods is ranging from
10 to 100. When choosing the demand level of a commodity, the
formula 𝐷 = min(𝑐𝑝, 𝑈 (𝐷̂max)) is used.

The average number of commodities relative to the changing pa-
rameter of each dataset is given in Fig. D.7.

References

Alvelos, Filipe, De Carvalho, J.M. Valério, 2003. Comparing branch-and-price algo-
rithms for the unsplittable multicommodity flow problem. In: International Network
Optimization Conference. pp. 7–12.

Barnhart, Cynthia, Hane, Christopher A., Vance, Pamela H., 2000. Using branch-and-
price-and-cut to solve origin-destination integer multicommodity flow problems.
Oper. Res. 48 (2), 318–326.

Belaidouni, Meriema, Ben-Ameur, Walid, 2007. On the minimum cost multiple-source
unsplittable flow problem. RAIRO Oper. Res. 41 (3), 253–273.

Contreras, Ivan, Cordeau, Jean-François, Laporte, Gilbert, 2011. The dynamic
uncapacitated hub location problem. Transp. Sci. 45 (1), 18–32.

Coudert, D., Rivano, H., 2002. Lightpath assignment for multifibers WDM networks with
wavelength translators. In: Global Telecommunications Conference, 2002, Vol. 3.
GLOBECOM ’02. IEEE, pp. 2686–2690.

Efron, Bradley, 1992. Bootstrap methods: another look at the jackknife. In:
Breakthroughs in Statistics. Springer, pp. 569–593.

Ford, Jr., Lester R., 1956. Network Flow Theory. Technical Report, Rand Corp Santa
Monica Ca.

Fortz, Bernard, Gouveia, Luís, Joyce-Moniz, Martim, 2016. On the convex piecewise
linear unsplittable multicommodity flow problem. In: 2016 12th International
Conference on the Design of Reliable Communication Networks. DRCN, IEEE, pp.
9–13.

Fortz, Bernard, Gouveia, Luís, Joyce-Moniz, Martim, 2017. Models for the piecewise
linear unsplittable multicommodity flow problems. European J. Oper. Res. 261 (1),
30–42.

Fragkos, Ioannis, Cordeau, Jean-François, Jans, Raf, 2017. The Multi-Period Multi-
Commodity Network Design Problem. CIRRELT, Centre interuniversitaire de
recherche sur les réseaux d’entreprise, la logistique et le transport.
15
Gamvros, Ioannis, Raghavan, S., 2012. Multi-period traffic routing in satellite networks.
European J. Oper. Res. 219 (3), 738–750.

Gonzalez, Teofilo F., 2007. Handbook of Approximation Algorithms and Metaheuristics.
Chapman and Hall/CRC.

Gurobi Optimization LLC, 2020. Gurobi optimizer reference manual. URL http://www.
gurobi.com.

Kovacs, Attila A, Golden, Bruce L, Hartl, Richard F, Parragh, Sophie N, 2014. Vehicle
routing problems in which consistency considerations are important: A survey.
Networks 64 (3), 192–213.

Laguna, Manuel, Glover, Fred, 1993. Bandwidth packing: a tabu search approach.
Manage. Sci. 39 (4), 492–500.

Lamothe, François, Rachelson, Emmanuel, Haït, Alain, Baudoin, Cedric, Dupé, Jean-
Baptiste, 2021. Randomized rounding algorithms for large scale unsplittable flow
problems. J. Heuristics http://dx.doi.org/10.1007/s10732-021-09478-w, (ISSN:
1381-1231, 1572-9397).

Lee, Der-Horng, Dong, Meng, 2009. Dynamic network design for reverse logistics
operations under uncertainty. Transp. Res. 45 (1), 61–71.

Li, X.Y., Aneja, Yash P., Baki, F., 2010. An ant colony optimization metaheuristic for
single-path multicommodity network flow problems. J. Oper. Res. Soc. 61 (9),
1340–1355.

Luo, Zhixing, Qin, Hu, Che, ChanHou, Lim, Andrew, 2015. On service consistency in
multi-period vehicle routing. European J. Oper. Res. 243 (3), 731–744.

Masri, Hela, Krichen, Saoussen, Guitouni, Adel, 2015. A multi-start variable neighbor-
hood search for solving the single path multicommodity flow problem. Appl. Math.
Comput. 251, 132–142.

Park, Sungsoo, Kim, Deokseong, Lee, Kyungsik, 2003. An integer programming ap-
proach to the path selection problems. In: Proceedings of the International Network
Optimization Conference. INOC, Evry-Paris, France, pp. 448–453.

Raghavan, Prabhakar, Tompson, Clark D., 1987. Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica 7 (4), 365–374.

Santos, Dorabella, De Sousa, Amaro, Alvelos, Filipe, 2013. A hybrid column generation
with GRASP and path relinking for the network load balancing problem. Comput.
Oper. Res. 40 (12), 3147–3158.

Stavropoulou, Foteini, Repoussis, Panagiotis P, Tarantilis, Christos D, 2019. The vehicle
routing problem with profits and consistency constraints. European J. Oper. Res.
274 (1), 340–356.

http://refhub.elsevier.com/S0305-0548(23)00018-7/sb1
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb1
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb1
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb1
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb1
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb2
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb2
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb2
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb2
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb2
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb3
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb3
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb3
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb4
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb4
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb4
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb5
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb5
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb5
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb5
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb5
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb6
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb6
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb6
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb7
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb7
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb7
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb8
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb8
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb8
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb8
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb8
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb8
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb8
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb9
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb9
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb9
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb9
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb9
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb10
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb10
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb10
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb10
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb10
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb11
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb11
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb11
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb12
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb12
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb12
http://www.gurobi.com
http://www.gurobi.com
http://www.gurobi.com
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb14
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb14
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb14
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb14
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb14
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb15
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb15
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb15
http://dx.doi.org/10.1007/s10732-021-09478-w
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb17
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb17
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb17
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb18
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb18
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb18
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb18
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb18
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb19
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb19
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb19
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb20
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb20
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb20
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb20
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb20
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb21
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb21
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb21
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb21
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb21
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb22
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb22
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb22
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb23
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb23
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb23
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb23
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb23
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb24
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb24
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb24
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb24
http://refhub.elsevier.com/S0305-0548(23)00018-7/sb24

	Dynamic unsplittable flows with path-change penalties: New formulations and solution schemes for large instances
	Introduction
	Related work
	Formulations for the dynamic unsplittable flow problem
	The path-sequence formulation
	Extended arc-path formulation
	Equivalence of the relaxation of the two MILP models
	Aggregated arc-node formulation for one time step

	Pricing schemes for the path-sequence formulation
	Column generation for the path-sequence formulation
	The pricing method of Gamvros and Raghavan (2012) and its limitations
	New pricing schemes without k-shortest paths

	Solving the dynamic unsplittable flow problem
	The SRR heuristic
	Restriction of the usable paths
	Solvers

	Experimental study
	Instance generation
	Empirical results

	Conclusion
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	Appendix A. Computational results for the extended arc-node formulation
	Appendix B. Proof of the equivalence of the strength of the linear relaxations of the extended arc-path formulation and path-sequence formulation
	Appendix C. Parameter settings
	Appendix D. Instance generation
	References

