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Robust nonsingular predefined-time terminal sliding
mode control for perturbed chains of integrators
Yang Deng, Emmanuel Moulay, Vincent Léchappé, Zhang Chen, Member, IEEE, Bin Liang, Senior Mem-

ber, IEEE, and Franck Plestan, Member, IEEE

Abstract—This paper provides a nonsingular predefined-time
terminal sliding mode control scheme for perturbed chains of
integrators. Based on the linear delayed feedback technique,
a class of nonsingular smooth prescribed-time sliding surfaces
with artificial time-delays is constructed, and the control scheme
can achieve predefined-time control for perturbed chains of
integrators with matched and mismatched disturbances. Espe-
cially, for double integrators, an initial-condition-based sufficient
condition is provided to preserve the prescribed-time stability.
Finally, several simulation results illustrate the performance of
the proposed control scheme.

Index Terms—Chain of integrators, Terminal sliding mode
control, Predefined-time stability, Delayed feedback.

I. INTRODUCTION

TERMINAL sliding mode control (TSMC) [1] is an im-
portant category of sliding mode control [2], which can

not only establish the finite-time convergence towards a sliding
surface but also stabilize the system dynamics in finite time.
In recent years, fixed-time control [3] (whose settling time is
uniformly bounded) has become a hot topic, which motivates
the studies on fixed-time TSMC techniques. However, when
designing a fixed-time TSMC, the singularity may arise in
the controller design, which is undesirable in theory and
application [4]. Therefore, developing singularity avoidance
techniques is crucial for fixed-time TSMC algorithms.
A vast literature is available on the nonsingular fixed-time
TSMC methods. In [4], a modified fixed-time sliding surface
was firstly introduced, then a sinusoidal function was proposed
to deal with the singularity. In [5], a nonsingular fixed-time
TSMC based on the arctangent function and a switching
sliding surface was put forward. In [6], a switching saturation
function was introduced to avoid the singularity of a crossing
term, and the controller was applied to a power system. In
[7], a fixed-time tracking TSMC was designed for underwater
vehicles, in which an error transformation was activated to map
the states to a nonsingular space. In [8], [9], [10], the switching
sliding surfaces were introduced, and the robust fixed-time
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stability was established without singularity. In addition, the
sinusoidal approach [4] and the switching technique [6] were
also extended in [11], [12], [13], [14], [15], [16] for the fixed-
time consensus control of second-order multi-agent systems.
Concluding the nonsingular fixed-time TSMCs proposed in
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
one notices that they have the following drawbacks: (i) they
must use switching sliding surfaces or switching control laws
to eliminate the singularity; (ii) they only focused on double
integrators or second-order systems, rather than high-order
systems. To tackle the problems mentioned above, the time
scaling/variable gain techniques were involved in [17], [18]
to design predefined-time (fixed-time with maximal settling
time assigned a prior by the user [19]) TSMC for chains of
integrators with matched disturbances, and the singularity can
be avoided without using additional switching mechanism.
In this paper, inspired by the linear periodic delayed feedback
method [20], a class of nonsingular smooth prescribed-time
(all trajectories with nonzero initial conditions converge to
zero precisely at the prescribed instant [19]) sliding surfaces
with artificial time-delays is designed, and the proposed TSMC
can achieve predefined-time control for chains of integrators
with matched and mismatched disturbances. Moreover, this
paper also provides an initial-condition-based sufficient con-
dition for the prescribed-time stabilization of perturbed double
integrators. The contribution of this paper is threefold:

‚ The proposed TSMC can establish the robust predefined-
time stability as the existing TSMCs [17], [18], and this
paper also provides a sufficient condition to preserve the
robust prescribed-time stability for double integrators.

‚ The proposed predefined-time TSMC is extended to deal
with perturbed chains of integrators with matched and
mismatched disturbances, whereas the existing TSMCs
[17], [18] did not consider mismatched disturbances.

‚ The proposed method exerts the advantages of the “de-
layed feedback” concept in [20] while eliminating its
drawback of robustness. According to [20, Remark 4],
if one designs feedback controllers via [20, Theorem 1],
then one cannot preserve robust predefined-time sta-
bility under perturbations/uncertainties. However, when
this technique is used to design sliding surfaces, it can
maintain robust stability since the sliding surfaces are
perturbation-free and independent of the system model.

This paper is organized as follows. In Section II, the
preliminaries are introduced. Next, Section III studies

the predefined-time/prescribed-time TSMC of perturbed dou-
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ble integrators. The method in Section III is extended in
Section IV to design predefined-time TSMC for chains of
integrators. Thereafter, the simulation results are addressed in
Section V, and a conclusion ends this paper in Section VI.

II. PRELIMINARIES

Notations. The n-order derivative of a function fptq is noted
as f pnqptq. Let Cnpra, bsq denote the set of functions with n-
order continuous derivatives on ra, bs, and a C8 function is
an infinitely differentiable function. The combinatorial number
formed by non-negative integers n ě m writes as Cm

n . The
sign function signp¨q is defined by following the definitions in
[21, pp. 4], and rxup fi |x|psignpxq. The differential equations
in this paper are understood in Filippov sense [22].
Definitions. Consider the following nonlinear system:

9x “ fpt, x, uq (1)

with f : r0,8qˆRn ˆRm Ñ Rn and initial condition xp0q “

x0. If there exists a control law upxq and instants Tcpx0q ě

tcpx0q ě 0 such that:

tcpx0q “ inftTcpx0q : xptq ” 0 for all t ě Tcpx0qu

then the solution xpt, uq to (1) is finite-time stable with settling
time less than Tcpx0q [23]. If Tcpx0q is uniformly bounded by
Tcpx0q ď Tc for all x0 P Rn, then the solution xpt, uq is
fixed-time stable [3]. Next, if Tc is set a priori by the user
as a parameter of the controller upt, x, Tcq, then the solution
xpt, uq is predefined-time stable at t “ Tc [19]. Furthermore,
if tcpx0q “ Tcpx0q “ Tc for all x0 ‰ 0nˆ1, then the solution
xpt, uq is prescribed-time stable [19]. Finally, the stability is
said to be robust if it is established despite perturbations [24].
The aforementioned definitions are summarized in Fig. 1.

Fig. 1: Schematic of the four different types of stabilities.

Lemma 1 (Theorem 2 of [24]). Consider the scalar system:

9x “ ´krxu
λx2

1`µx2 ` d, (2)

with bounded perturbation |d| ď δ. If the parameters λ, µ
satisfy χ “ λ

1`µ ą 1, and the gain k is sufficiently large with
k ą δe

λ
2e , then system (2) is fixed-time stable with a settling

time less than 1
pk´δqpχ´1q

` 1
ke´λ{2e´δ

.

Lemma 2 (Theorem 1 of [25]). Consider the differentiation
of a signal fptq satisfying |f pnqptq| ď ∆:

9zi “ ´kiϕipz0 ´ fq ` zi`1,

...

9zn “ ´knϕnpz0 ´ fq,

(3)

in which ϕipsq “ φi ˝ ¨ ¨ ¨ ˝φ2 ˝φ1psq is a composition of the

following functions: φipsq “ κirsu

r0,i`1
r0,i ` ρirsu

r8,i`1
r8,i , with

r0,i “ 1 ´ pn ´ iqd0, r8,i “ 1 ´ pn ´ iqd8, and ´1 ď d0 ď

d8 ă 1{pn ´ 1q. If d0 “ ´1, and ki, κi, ρi are appropriately
chosen, then there exist positive constants p0, p8, η0, η8 such
that the exact differentiation ziptq ” f pi´1qptq is established
after a uniformly bounded settling time TO satisfying:

TO ď
p0

d0η8

ˆ

p8d0
p0d8

´ 1

˙ ˆ

η0
η8

˙
1

p
p8d0
p0d8

´1q
. (4)

Moreover, under the following parameter scaling method:

κi ÞÑ

ˆ

Ln

α

˙

d0
r0,i

κi, ρi ÞÑ

ˆ

Ln

α

˙

d8
r8,i

ρi, ki ÞÑ Liki, (5)

the settling time TO and the Lipschitz constant ∆ can be scaled
to TO{L and α∆, respectively.

Remark 1. Lemmas 1–2 can be extended to predefined-time
versions. For Lemma 1, since 0 ă 1

k´δ ď 1
ke´λ{2e´δ

, one can
set:

k ě

ˆ

χ

hpχ ´ 1q
` δ

˙

e
λ
2e (6)

to ensure 1
pk´δqpχ´1q

` 1
ke´λ{2e´δ

ď h, which leads to the
robust predefined-time stability at t “ h. For Lemma 2, one
can apply the parameter tuning method [25, Section III-C]
and (5) to assign an arbitrary pair of pTO,∆q that establishes
predefined-time exact differentiation.

Inspired by the “delayed feedback” concept in [20], this
paper designs prescribed-time stable sliding surfaces with
artificial delays in the next lemma, and all h appearing in
the remainder of this paper are tuning parameters of sliding
surfaces, rather than the physical delays studied in [26].

Lemma 3. Consider the time-delay scalar system:

9ζptq “ aζptq ´ Kptqζpt ´ hq (7)

with a P R and ζpθq P C1pr´h, 0sq. If Kptq is defined as:

Kptq “ RhptqeahWe´2at, (8)

in which the globally C8 function Rhptq satisfies:

Rhptq “

#

0, t P p´8, hs Y r2h,8q

M´ 1
pt´hqp2h´tq , t P ph, 2hq

(9)

with M ą 1, and

W “

«

ż 2h

h

Rhpθqe´2aθdθ

ff´1

, (10)

then system (7) is prescribed-time stable at t “ 2h such that:

ζptq ” 0, @t ě 2h. (11)

Proof. From (8)–(9), one observes that Kptq “ 0 for all t P

r0, hs, so (7) is reduced to a linear system on t P r0, hs with
the solution:

ζptq “ eatζp0q, t P r0, hs (12)
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which implies ζpθ ´ hq “ eapθ´hqζp0q for all θ P rh, 2hs.
Next, combine (7)–(8)–(9) provides the following solution:

ζptq “ eapt´hqζphq ´

ż t

h

eapt´θqKpθqζpθ ´ hqdθ

“ eat
„

1 ´

ż t

h

Rhpθqe´2aθdθ ¨ W

ȷ

ζp0q, t P rh, 2hs.

(13)
Consider the facts that Rhphq “ Rhp2hq “ 0, Rhpθq ą 0 for
all θ P ph, 2hq, and e´2aθ ą 0 for all θ P rh, 2hs, the integral
şt

h
Rhpθqe´2aθdθ is non-negative and strictly increasing on

t P rh, 2hs for all a P R, implying that W ą 0 according to
(10). Combine the aforementioned results and (10) leads to:

1 ´

ż t

h

Rhpθqe´2aθdθ ¨ W ě 0, t P rh, 2hs (14)

where equality holds if and only if t “ 2h due to (10) and the
strict monotonicity mentioned above, so the right-hand side
of (13) equals zero if and only if t “ 2h. Thus, (12)–(13)
reveal that ζptq reaches zero precisely at the prescribed instant
t “ 2h for all ζp0q ‰ 0. Finally, definitions (8)–(9) indicate
that Kptq “ 0 for all t ě 2h, so (7) is reduced to:

9ζptq “ aζptq, @t ě 2h (15)

with ζp2hq “ 0, meaning ζptq “ 0 is maintained as (11).

III. DOUBLE INTEGRATOR

Consider the following perturbed double integrator:

9x1 “ x2

9x2 “ u ` d
(16)

in which the perturbation satisfies |d| ď δ. Lemma 3 is applied
to build the following prescribed-time sliding surface:

sptq “ x2ptq ´ rax1ptq ´ K0ptqx1pt ´ hqs (17)

where a, h are defined in Lemma 3, and

K0ptq “ Kpt ´ hq (18)

with Kptq defined by (8)–(9)–(10). From (18) and (8)–(9)–
(10), one confirms that K0ptq is a globally C8 function [27,
Chapter 6.3]. Thus, the following TSMC can be designed:

uptq “ ueqptq ` uFxT ptq,

ueqptq “ ax2ptq ´ 9K0ptqx1pt ´ hq ´ K0ptqx2pt ´ hq,

uFxT ptq “ ´krsptqu
λsptq2

1`µsptq2 .
(19)

In the sequel, the following results are declared to ensure the
nonsingularity and robust predefined-time stability.

Lemma 4. For any positive integer n, the gain K0ptq and its
n-order derivative K

pnq

0 ptq are bounded for all t ě 0.

Proof. Due to definitions (8)–(9) and (18), it is sufficient to
prove that the gain Kptq defined by (8)–(9)–(10) satisfies this
property on interval t P rh, 2hs.
Firstly, the monotonicity of Rhptq defined in (9) ensures that
Rhptq ě 0 for all t P rh, 2hs and Rhptq ě Rhp5h{4q “

Rhp7h{4q “ M´ 16
3h2 ą 0 for all t P r5h{4, 7h{4s, then it

leads to:
ż 2h

h

Rhpθqe´2aθdθ ě

˜

ż 7
4h

5
4h

Rhpθqdθ

¸

ϵ ě M´ 16
3h2

hϵ

2
ą 0

with ϵ fi minte´2ah, e´4ahu ą 0. Thus, the gain W defined in
(10) is bounded by 0 ă W ă M

16
3h2 2

hϵ , then Kptq is bounded
on t P rh, 2hs since Rhptq and e´2at are also bounded on
this interval. Secondly, consider the fact that Kptq is globally
C8 from (8)–(9) and [27, Chapter 6.3], so Kpnqptq must be
continuous on t P rh, 2hs. Thus, the Boundedness and Extreme
value theorems [28, Theorems 3.11–3.12] ensure that Kpnqptq
is bounded on the closed interval t P rh, 2hs, which guarantees
the boundedness of K0ptq and K

pnq

0 ptq for all t ě 0.

Theorem 1. Consider the double integrator (16) controlled by
the nonsingular TSMC (8)–(9)–(10)–(17)–(19). If χ “ λ

1`µ ą

1 and k is sufficiently large to satisfy (6), then the closed-loop
system (16)–(19) is robust predefined-time stable at t “ 3h.

Proof. Combining (16)–(17) and (19) yields:

9sptq “ uptq ` dptq ´ ax2ptq ` 9K0ptqx1pt ´ hq ` K0ptq 9x1pt ´ hq

“ ´krsptqu
λsptq2

1`µsptq2 ` K0ptq r 9x1pt ´ hq ´ x2pt ´ hqs ` dptq.
(20)

On t P r0, hq, definitions (8)–(9)–(10) and (18) imply that
K0ptq “ 0, and the delayed terms in (17)–(20) are not
activated; for t ě h, one deduces that 9x1pt´hq´x2pt´hq “ 0

from (16). Thus, (20) is reduced to 9s “ ´krsu
λs2

1`µs2 `d for all
t ě 0, and sptq is robust predefined-time stabilized at t “ h
under parameter tuning (6) based on Lemma 1 and Remark 1.
For all t P r0, hs, the sliding surface (17) is reduced to:

sptq “ x2ptq ´ ax1ptq “ 9x1ptq ´ ax1ptq, @t P r0, hs. (21)

Consider different arrival points at the sliding surface (21):
‚ Case 1: px1, x2q reaches the sliding surface at the origin;
‚ Case 2: px1, x2q reaches the sliding surface elsewhere,

different system behaviors are obtained: with Case 1, px1, x2q

must stay at the origin and satisfy x1phq “ 0; with Case 2,
px1, x2q will slide on the sliding surface generated by (21) and
sptq “ 0, which leads to x1phq ‰ 0 due to the linearity.
For all t ě h, the delayed term in (17) is activated, consider
(17) and 9x1 “ x2, the sliding motion sptq “ 0 leads to:

9x1ptq “ ax1ptq ´ K0ptqx1pt ´ hq, @t ě h. (22)

With Case 1, the dynamics of (22) are initialized at x1phq “ 0,
so one has x1ptq “ 0 for all t ě h from the proof of Lemma 3.
With Case 2, the definition (18) and Lemma 3 ensure that
(22) can make x1ptq prescribed-time stabilized at t “ 3h. By
concluding the two cases, the stabilities of sptq, x1ptq, and the
expression sptq “ x2ptq ´ ax1ptq for all t ě 3h imply that
x2ptq “ 0 for all t ě 3h, deriving the robust predefined-time
stability of the closed-loop system (16)–(19) at t “ 3h.
The last part proves the nonsingularity of control law (19).
Firstly, uFxT ptq is nonsingular due to the proof of [24,
Theorem 2]. Secondly, Lemma 4 ensures that K0ptq, 9K0ptq
are bounded, then ueqptq is also nonsingular. Thus, the whole
control law (19) is nonsingular.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 4

Remark 2. Control law (19) contains delayed terms x1pt ´

hq, x2pt ´ hq, so one must expand the initial conditions of
x1, x2 on r´h, 0q to ensure that (19) is well-defined. As stated
in the proof, the expanded initial conditions cannot affect the
closed-loop dynamics (20) nor the predefined-time stability
since the terms depending on x1pθq, x2pθq, θ P r´h, 0q are
switched off on t P r0, hs by K0ptq “ 0 for all t P r0, hs.
Thus, any sufficiently smooth initial condition that ensures
the continuity of x1ptq, x2ptq at t “ 0, e.g., x1pθq, x2pθq P

C1pr´h, 0sq, can be chosen for the controller design.

Due to the existence of Case 1, Theorem 1 can only lead
to robust predefined-time stability even if the sliding surface
(17) is prescribed-time stable. Next, Proposition 1 provides a
sufficient condition to preserve robust prescribed-time stability.

Proposition 1. Consider the double integrator (16) controlled
by the nonsingular TSMC (8)–(9)–(10)–(17)–(19). If χ “
λ

1`µ ą 1, k is sufficiently large to satisfy (6), and a is
determined by the initial conditions such that:

a “

#

x2p0q{x1p0q, if x1p0q ‰ 0

0, if x1p0q “ 0
(23)

then the closed-loop system (16)–(19) is robust prescribed-time
stable at t “ 3h.

Proof. The proof is made by considering the following cases:
1) x1p0q ‰ 0 and a “ x2p0q{x1p0q. Under this circumstance,
(21) implies sp0q “ 0, and it indicates that the trajectories of
the closed-loop system evolve on the sliding surface sptq ” 0
for all t ě 0 under the robust TSMC (19). Thus, the linearity
of (21) implies that x1phq “ eahx1p0q ‰ 0.
2) x1p0q “ 0 and a “ 0. In this case, (21) is reduced to
sptq “ x2ptq for all t P r0, hs, and the closed-loop system
becomes:

$

&

%

9x1 “ x2

9x2 “ ´krx2u

λx2
2

1`µx2
2 ` d, t P r0, hs.

(24)

If x2p0q ‰ 0 and k is tuned by (6), then (24), Lemma 1,
and Remark 1 ensure that x2ptq converges monotonically to
0 before t “ h, so x1phq “ x1p0q `

şh

0
x2pθqdθ “

şh

0
x2pθqdθ

is nonzero and has the same sign as x2p0q.
In conclusion, the sufficient condition (23) ensures that
x1phq ‰ 0 for all initial conditions satisfying px1p0q, x2p0qq P

R2zp0, 0q, and the robust prescribed-time stability at t “ 3h is
thus guaranteed by Lemma 3 and the proof of Theorem 1.

Remark 3. The parameter a computed by (23) may be positive
and make the steady state sliding surface sptq “ x2ptq ´

ax1ptq “ 0 unstable for all t ě 3h. In theory, a ą 0 can still
make x1ptq, x2ptq stay at the origin since they have already
reached it at t “ 3h, but it could render the closed-loop system
sensitive to fluctuations in practice. For this case, one can set
a ă 0 for all t ą 3h in practice. Since the parameter switching
is conducted at the equilibrium point x1p3hq “ x2p3hq “ 0,
it can preserve the stability for all t ě 3h. Similar switching
techniques were also used in [17], [18].

The main results of Theorem 1 and Proposition 1 have the
following properties:

‚ Theorem 1 implies the predefined-time stability at t “ 3h,
and the settling time can be reduced by tuning h small.
Next, Proposition 1 provides a sufficient condition to
ensure prescribed-time stability. Moreover, the singularity
is eliminated thanks to [24, Theorem 2] and Lemma 4.

‚ The controller achieves advantage complementation for
methods [20], [24]: the controller in [24, Proposition 2]
is robust but leads to practical fixed-time stability due to
the use of a discontinuous and non-differentiable sliding
surface [29]; the controller in [20] is smooth but cannot
preserve robust predefined-time stability under perturba-
tion or model uncertainties [20, Remark 4], e.g., if the
second line of (16) writes as 9x2 “ fpxq`gpxqu`d with
uncertain functions fpxq, gpxq. The proposed method
uses Lemma 3 (inspired by the “delayed feedback” con-
cept of [20]) to construct a prescribed-time perturbation-
free smooth sliding surface with artificial time-delays, and
the robustness can be improved by increasing k according
to Lemma 1 and the invariance condition [30].

IV. CHAINS OF INTEGRATORS

In this section, the core idea of Theorem 1 is firstly extended
to the robust nonsingular predefined-time TSMC for chains of
integrators thanks to Lemma 4 and the fact that Kptq defined
by (8)–(9)–(10) is globally C8; then the control paradigm is
extended to deal with Lipschitz mismatched disturbances.

A. Predefined-time TSMC with matched disturbances

In this subsection, one considers the nonsingular predefined-
time TSMC for the following perturbed n-order integrator:

9xi “ xi`1

...
9xn “ u ` d

(25)

with bounded perturbation satisfying |d| ď δ.
Firstly, define s0 “ x1 with expanded initial condition s0pθq P

Cnpr´h, 0sq according to Remark 2, it leads to s
piq
0 “ xi`1

for all i P t1, ¨ ¨ ¨ , n ´ 1u. Next, define the sliding surfaces:

siptq “ 9si´1ptq ´ rasi´1ptq ´ Kiptqsi´1pt ´ hqs , (26)

with initial conditions expanded by sipθq P Cn´ipr´h, 0sq

under Remark 2, and the C8 gains Kiptq satisfy:

Kiptq “ Kpt ´ p2n ´ 2i ´ 1qhq (27)

with Kptq defined by (8)–(9)–(10). Thus, one can compute
s

pjq

i ptq by taking the j-order derivative of (26) as follows:

s
pjq

i ptq “ s
pj`1q

i´1 ptq ´

«

as
pjq

i´1ptq ´

j
ÿ

r“0

Cr
jK

prq

i ptqs
pj´rq

i´1 pt ´ hq

ff

,

(28)
where tpi, jq P N2|1 ď i ď n ´ 1, 0 ď j ď n ´ i ´ 1u.

Remark 4. Equations (26) and (28) should be gradually
updated under the following recursive procedure: one firstly
sets i “ 1, then computes s1 by (26) and 9s1, ¨ ¨ ¨ , s

pn´2q

1

through (28); next one sets i “ 2 and determines s2 then
s

pjq

2 for all j P t1, ¨ ¨ ¨ , n ´ 3u, etc.
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Based on (26) and (28), the control law is designed by:

uptq “ ´krsn´1ptqu

λsn´1ptq2

1`µsn´1ptq2 `

n´1
ÿ

i“1

«

as
pn´iq
i´1 ptq

´

n´i
ÿ

r“0

Cr
n´iK

prq

i ptqs
pn´i´rq

i´1 pt ´ hq

ff

.

(29)

Theorem 2. Consider the perturbed n-order integrator (25)
controlled by the nonsingular TSMC (8)–(9)–(10)–(26)–(27)–
(29). If χ “ λ

1`µ ą 1 and k is sufficiently large to satisfy (6),
then the sliding variables (26)–(28) satisfy:

siptq ” 0, @t ě p2n ´ 2i ´ 1qh (30)

for all i P t1, ¨ ¨ ¨ , n´1u, and the closed-loop system (25)–(29)
is robust predefined-time stable at t “ p2n ´ 1qh.

Proof. Firstly, by applying a similar analysis with Remark 2,
it is possible to obtain that the sliding surfaces and control
law in (26)–(29) are well-defined. Then, combining (26) (with
i “ n ´ 1) and (28) (by taking i from n ´ 2 to 1 and setting
j “ n ´ i ´ 1) provides:

sn´1ptq “ s
pn´1q

0 ptq ´

n´1
ÿ

i“1

”

as
pn´i´1q

i´1 ptq

´

n´i´1
ÿ

r“0

Cr
n´i´1K

prq

i ptqs
pn´i´r´1q

i´1 pt ´ hq

ı

.

(31)

Differentiating (31) along the trajectories of (25) yields:

9sn´1ptq “ uptq ` dptq ´

n´1
ÿ

i“1

”

as
pn´iq
i´1 ptq

´

n´i
ÿ

r“0

Cr
n´iK

prq

i ptqs
pn´i´rq

i´1 pt ´ hq

ı

,

(32)

in which the relation

d

dt

«

n´i´1
ÿ

r“0

Cr
n´i´1K

prq

i ptqs
pn´i´r´1q

i´1 pt ´ hq

ff

“

n´i
ÿ

r“0

Cr
n´iK

prq

i ptqs
pn´i´rq

i´1 pt ´ hq

is involved. Plugging (29) into (32) and applying the similar
arguments as in the proof of Theorem 1 and Remark 2 leads
to:

9sn´1ptq “ ´krsn´1ptqu

λsn´1ptq2

1`µsn´1ptq2 ` dptq, @t ě 0 (33)

which further implies that sn´1ptq ” 0 for all t ě h under
parameter tuning (6), Lemma 1, and Remark 1.
As long as sn´1ptq is stabilized, the definition (26) yields:

9sn´2ptq “ asn´2ptq ´ Kn´1ptqsn´2pt ´ hq, @t ě h

which makes sn´2ptq predefined-time stabilized at t “ 3h
according to Lemma 3 and the definition Kn´1ptq “ Kpt ´

hq from (27). Sequentially, consider (26) for all i P tn ´

3, ¨ ¨ ¨ , 0u, the definition (27), and Lemma 3, it leads to:

9siptq “ asiptq ´ Ki`1ptqsipt ´ hq, @t ě p2n ´ 2i ´ 3qh

then (30) is derived by applying Lemma 3. Thus, the system
trajectories reach and stay at the origin (that is the unique equi-
librium point of (25) with s0 “ x1 “ 0) for all t ě p2n´1qh,
which derives the robust prdefined-time stability.
Finally, the singularity avoidance can be achieved by consid-
ering Lemma 4 and repeating the proof of Theorem 1.

B. Predefined-time TSMC with mismatched disturbances

In this subsection, the main results of Theorem 2 are
extended to the following perturbed n-order integrators with
mismatched disturbances:

9xi “ xi`1 ` di
...

9xn “ u ` dn.

(34)

Assumption 1. The mismatched disturbances di p1 ď i ď

n´ 1q have up to pn´ i` 1q-order bounded derivatives, and
the matched disturbance dn is bounded with |dn| ď δ.

As proposed in [31], [32], to achieve the fixed-time TSMC
of (34), a series of fixed-time disturbance observers is de-
signed, one firstly considers the auxiliary variables:

Φi “ xiptq ´ xip0q ´

ż t

0

xi`1pθqdθ “

ż t

0

dipθqdθ, (35)

then designs the fixed-time observers based on Lemma 2:

9ziji “ ´kijiϕijipzi1 ´ Φiq ` zipji`1q,

...
9zini

“ ´kini
ϕini

pzi1 ´ Φiq,

(36)

with ϕijip¨q defined in Lemma 2, i P t1, ¨ ¨ ¨ , n ´ 1u, ni “

n´i`2, and ji P t1, ¨ ¨ ¨ , niu. From Lemma 2 and Remark 1,
for any fixed settling time TO ą 0 chosen a prior, it is possible
to scale the gains kiji , κiji , ρiji

by using [25, Section III-C]
and (5) to establish the following online observations:

zijiptq ” d
pji´2q

i ptq, @t ě TO (37)

with ji ě 2.
Next, the terminal sliding surfaces are designed. Based on the
outputs of (36), one firstly defines the sliding variable s0 “ x1

and expands its initial condition with s0pθq P Cnpr´h, 0sq

based on Remark 2, then estimates s
piq
0 “ xi`1 `

ři
j“1 d

pi´jq

j

by using the following approximation:

x

s
piq
0 “ xi`1 `

i
ÿ

j“1

zjpi`2´jq, (38)

for all i P t1, ¨ ¨ ¨ , n ´ 1u. In addition, the initial conditions

of (38) are expanded to satisfy
x

s
piq
0 pθq P Cn´ipr´h, 0sq

according to Remark 2. Similar to (26), it is possible to define
the terminal sliding surfaces by using:

siptq “ p9si´1ptq ´ rasi´1ptq ´ Kiptqsi´1pt ´ hqs , (39)

and expand their initial conditions sipθq P Cn´ipr´h, 0sq by
Remark 2, and the C8 time-varying gains Kiptq are set to:

Kiptq “ Kpt ´ 2pn ´ iqhq (40)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

with Kptq defined by (8)–(9)–(10). Next, the derivatives of
(39) are estimated as:

y

s
pjq

i ptq “

$

’

’

’

’

&

’

’

’

’

%

{

s
pj`1q

i´1 ptq ´

„

a
y

s
pjq

i´1ptq

´
řj

r“0 C
r
jK

prq

i ptq
{

s
pj´rq

i´1 pt ´ hq

ȷ

, j ą 0

siptq, j “ 0

(41)

with expanded initial condition
y

s
pjq

i pθq P Cn´i´jpr´h, 0sq

selected by Remark 2, and tpi, jq P N2|1 ď i ď n ´ 1, 0 ď

j ď n ´ i ´ 1u.
Finally, the following control law is designed to accomplish
the robust nonsingular predefined-time TSMC for system (34):

uptq “ ueqptq ` uFxT ptq,

ueqptq “ ´

n´1
ÿ

i“1

zipn`2´iqptq `

n´1
ÿ

i“1

«

a
{

s
pn´iq
i´1 ptq

´

n´i
ÿ

r“0

Cr
n´iK

prq

i ptq
{

s
pn´i´rq

i´1 pt ´ hq

ff

,

uFxT ptq “ ´krsn´1ptqu

λsn´1ptq2

1`µsn´1ptq2 .

(42)

Thereafter, the convergence results of the state estimation
(38)–(41) and the closed-loop stability analysis are stated in
Lemma 5 and Theorem 3, respectively.

Lemma 5. If the settling time TO in (37) satisfies TO ď h,
then the following relation:

y

s
pjq

i ptq “ s
pjq

i ptq, @t ě h (43)

holds for all tpi, jq P N2|0 ď i ď n ´ 1, 0 ď j ď n ´ i ´ 1u.

Proof. The proof is based on induction. Firstly, let i “ 0, if
TO ď h is satisfied, then the base case of (43):

y

s
pjq

0 ptq “ s
pjq

0 ptq, @t ě h (44)

is ensured by (37)–(38) for all 0 ď j ď n ´ 1. Next, suppose

that the inductive hypothesis
y

s
pjq

i ptq “ s
pjq

i ptq holds for all
admissible j on interval t ě h, then (39) leads to:

si`1ptq “ 9siptq ´ rasiptq ´ Ki`1ptqsipt ´ hqs (45)

for all t ě h, which further implies:

s
pjq

i`1ptq “ s
pj`1q

i ptq ´

«

as
pjq

i ptq ´

j
ÿ

r“0

Cr
jK

prq

i`1ptqs
pj´rq

i pt ´ hq

ff

(46)
for all t ě h. Recall the definition in (41), it leads to:

z

s
pjq

i`1ptq “
{

s
pj`1q

i ptq ´

«

a
y

s
pjq

i ptq ´

j
ÿ

r“0

Cr
jK

prq

i`1ptq
{

s
pj´rq

i pt ´ hq

ff

.

(47)
Comparing the right-hand sides of (46)–(47) for all t ě h, one
notices that their first and second terms are equivalent under
the inductive hypothesis. Next, consider the delayed terms of
(46)–(47), they are eliminated by the gain Kiptq “ 0 for all
i P t1, ¨ ¨ ¨ , n´1u on t P r0, 2hq according to (40) and (8)–(9)–

(10), and they are equivalent on t ě 2h due to
{

s
pj´rq

i pt´hq “

s
pj´rq

i pt ´ hq for all t ě 2h from the inductive hypothesis.

Hence, it leads to
y

s
pjq

i`1ptq “ s
pjq

i`1ptq for all t ě h, so assertion
(43) holds for all admissible pairs pi, jq by induction.

Theorem 3. Consider the perturbed n-order integrator (34)
controlled by the nonsingular TSMC (8)–(9)–(10)–(36)–(40)–
(42). If Assumption 1 is fulfilled, the inequality χ “ λ

1`µ ą

1 is satisfied, k is sufficiently large to satisfy (6), and the
parameters kiji , κiji , ρiji

of (36) are appropriately tuned and
scaled by (5) to ensure TO ď h for each observer, then the
sliding variables (39)–(38) satisfy:

siptq ” 0, @t ě 2pn ´ iqh (48)

for all i P t1, ¨ ¨ ¨ , n ´ 1u. Then, the closed-loop sys-
tem converges towards the perturbed equilibrium trajectory
px1, x2, ¨ ¨ ¨ , xnq “ p0,´d1, ¨ ¨ ¨ ,´

řn´1
i“1 d

pn´i´1q

i q before
the predefined instant t “ 2nh.

Proof. Recall the relation:
n´i
ÿ

r“0

Cr
n´iK

prq

i ptq
{

s
pn´i´rq

i´1 pt ´ hq “

n´i´1
ÿ

r“0

Cr
n´i´1K

prq

i ptq
{

s
pn´i´rq

i´1 pt ´ hq

`

n´i´1
ÿ

r“0

Cr
n´i´1K

pr`1q

i ptq
{

s
pn´i´r´1q

i´1 pt ´ hq,

(49)

then consider the state definitions (38)–(41), the control law
(42), and apply the same technique as in (31)–(32) leads to
the following system dynamics:

9sn´1ptq “

n´1
ÿ

i“1

“

9zipn`1´iqptq ´ zipn`2´iqptq
‰

` a
n´1
ÿ

i“1

«

{

s
pn´iq

i´1 ptq

´
9

{

s
pn´i´1q

i´1 ptq

ff

`

n´1
ÿ

i“1

n´i´1
ÿ

r“0

Cr
n´i´1K

prq

i ptq

ˆ

«

9
{

s
pn´i´r´1q

i´1 pt ´ hq ´
{

s
pn´i´rq

i´1 pt ´ hq

ff

´ krsn´1ptqu

λsn´1ptq2

1`µsn´1ptq2 ` dnptq.
(50)

On interval t P r0, hq, the arguments in [33], [25], [24] ensure
that the closed-loop dynamics (50) cannot escape in finite time.
Then, Lemma 2 and Lemma 5 provide that the first and second
error terms of (50) vanish for all t ě h. Next, the third term
of (50) is equal to 0 since K

prq

i ptq “ 0 for all t P r0, 2hq by
definition (40), and the delayed error term becomes zero for
all t ě 2h thanks to Lemma 5. Hence, (50) is reduced to:

9sn´1ptq “ ´krsn´1ptqu

λsn´1ptq2

1`µsn´1ptq2 ` dnptq, @t ě h (51)

and sn´1ptq is stabilized before t “ 2h by virtue of Lemma 1
and the sufficiently large k tuned by (6).
The proof can be completed by combining the definition (39),
Lemma 5, and the proof of Theorem 2.

V. SIMULATION RESULTS

In this section, Proposition 1 and Remark 3 are firstly
verified by subsection V-A. Next, subsection V-B studies
the TSMC for perturbed triple integrators by using Theorem 3.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 7

A. Simulation results of double integrator

Consider the prescribed-time TSMC of the perturbed double
integrator (16) under matched disturbance d “ 1.5 ` sin p2tq
(with δ “ 2.5) at Tc “ 1.5s, for which the control law
(19) and the parameter tuning (23) are designed. Three initial
conditions are considered in the simulation: the first one is
px1p0q, x2p0qq “ p1,´2q, the second one is px1p0q, x2p0qq “

p0, 2q, and the last one is px1p0q, x2p0qq “ p1, 0.2q. The pa-
rameters of the sliding surface (17) are set to h “ Tc{3 “ 0.5s
and M “ 1.00001. Then one determines a “ ´2,W “ 0.0848
from (23)–(10) for the first case, a “ 0,W “ 2.0017 for the
second, and a “ 0.2,W “ 2.6975 for the last. The parameters
of uFxT ptq in (19) are set to k “ 18, λ “ 3, µ “ 1.2 by
χ “ λ

1`µ ą 1 and (6) to satisfy 1
pk´δqpχ´1q

` 1
ke´λ{2e´δ

ď h.
The simulation results are presented in Fig. 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-4

-2

0

2

(a) Phase portraits under different initial conditions.
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0

0.2

0.4

(b) State norms versus time under different initial conditions.

Fig. 2: Prescribed-time TSMC of double integrator (16).

In the first case px1p0q, x2p0qq “ p1,´2q, one determines
a “ x2p0q{x1p0q “ ´2 by (23), then the trajectories start
evolution on the linear sliding surface s “ x2 ´ ax1 “ 0
and thus are generated by the linear dynamics 9x1 “ ax1

on interval t P r0, hs. Hence, one observes from Fig. 2a that
x1phq “ eahx1p0q “ 0.368 ‰ 0, which ensures the prescribed-
time stability at t “ 3h “ 1.5s thanks to Proposition 1.
In the second case px1p0q, x2p0qq “ p0, 2q, one sets a “ 0 by
(23), so the reaching dynamics (24) force the trajectories of
px1, x2q to rotate clockwise on the phase plane and reach the
x1-axis at an equilibrium point p0.083, 0q satisfying x1phq ‰ 0
as shown in Fig. 2a. Thereafter, on t P rh, 3hs, the imposed
dynamics (22) is activated and make px1, x2q move to the
desired equilibrium point p0, 0q at t “ 3h “ 1.5s.
In the last case px1p0q, x2p0qq “ p1, 0.2q, one firstly sets a “

x2p0q{x1p0q “ 0.2 ą 0 by (23). Under the same arguments as
the first case, one has x1phq “ eahx1p0q “ 1.105 ‰ 0, then
px1, x2q reach the origin p0, 0q at t “ 3h “ 1.5s due to Propo-
sition 1. Next, for all t ą 3h “ 1.5s, the practical parameter
switching a “ ´1 is conducted according to Remark 3, in
order to preserve the stability in numerical implementation,
and one observes from Fig. 2a that the trajectories of px1, x2q

stay at the origin p0, 0q after the reaching phase.

Finally, the aforementioned explanations are verified by
Fig. 2b, in which the norm }x} “

a

x2
1 ` x2

2 converges to
zero precisely at the prescribed instant t “ Tc “ 3h “ 1.5s
and stays at zero thereafter, illustrating the effectiveness of
Proposition 1 and Remark 3.

B. Simulation results of triple integrator

Consider the following perturbed triple integrator:

9x1 “ x2 ` d1

9x2 “ x3 ` d2

9x3 “ u ` d3

(52)

with d1 “ 0.5 ` 0.5 sin p2tq, d2 “ 1 ` 0.2 sin p10tq, d3 “ 1 `

cos p2tq, and δ “ 2. The control law is designed by (42) with
n “ 3. The parameters of the sliding surfaces are chosen such
that h “ 0.75s, a “ ´3, and M “ 1.01, then one determines
W “ 9.6795 ˆ 10´4 offline by (10). The parameters of
uFxT ptq in (42) are set to k “ 22, λ “ 5, µ “ 3 by χ “ λ

1`µ ą

1 and (6) to satisfy 1
pk´δqpχ´1q

` 1
ke´λ{2e´δ

ď h, and the
parameters of the disturbance observers (36) are appropriately
tuned by [25, Section III-C] to satisfy TO “ 0.65s ď h.
Two simulations are conducted to verify the main results of
Theorem 3. The first one (with initial condition p10, 5,´10q)
shows the effectiveness of the control scheme (42), whereas
the second one is carried out to illustrate the robust predefined-
time tracking under different initial conditions.
In the first simulation, one observes from Figs. 3a–3b that
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(a) States x1, x2, x3 and disturbances ´d1,´d2 ´ 9d1 versus time.
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(b) Terminal sliding variables s1, s2 versus time.
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(c) Error norm }e} versus time with initial conditions xip0q “

101, 102, 103, 104 for all i P t1, 2, 3u.

Fig. 3: Predefined-time TSMC of triple integrator (52).

the sliding variable s2 is stabilized before t “ 2h “ 1.5s
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under the fixed-time reaching control law uFxT ptq in (42), then
s1, s0 are predefined-time stabilized by the sliding surfaces
(39) before t “ 4h “ 3.0s and t “ 6h “ 4.5s, respectively.
Finally, Fig. 3a shows that the trajectories of the closed-loop
system converge towards the perturbed equilibrium trajectory
p0,´d1,´d2 ´ 9d1q before the predefined instant t “ 6h “

4.5s. Thus, the simulation results are in accordance with the
theoretical results of Theorem 3.
In the second simulation, one sets the initial conditions
of xip0q to 101, 102, 103, 104 for all i P t1, 2, 3u in or-
der to verify the predefined-time convergence. Please see
Fig. 3c and the zoomed figure, the error norm }e} “
b

x2
1 ` px2 ` d1q2 ` px3 ` d2 ` 9d1q2 converges to zero be-

fore the predefined instant t “ 6h “ 4.5s under different
initial conditions, illustrating that the robust predefined-time
tracking is realized by the control scheme.

VI. CONCLUSIONS

This paper provides a class of robust nonsingular
predefined-time/prescribed-time TSMC methods. Firstly, a
class of nonsingular smooth prescribed-time sliding surfaces
is designed, and a robust predefined-time TMSC is developed
for perturbed double integrators, then a sufficient condition
is provided to preserve the robust prescribed-time stability.
Secondly, the control scheme is extended to perturbed chains
of integrators, and the compensation for Lipschitz mismatched
disturbances is considered. In the future, the control method
will be developed to deal with nonlinear triangular systems,
and the experimental validation of the proposed method will
be implemented on electro-mechanical robotic systems [34].
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