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Abstract. This paper investigates the Bi-objective Spanning Tree Prob-
lem (BSTP), an extension of the fundamental Minimum Spanning Tree
problem with diverse applications. In this problem, each edge of a given
graph is associated with two distinct weights, and the objective is to
find a spanning tree that simultaneously minimizes both total weights.
As a specific case of bi-objective optimization, we may be interested in
enumerating all the Pareto-optimal solutions of the BSTP. However, as
the BSTP has been shown to be NP-hard, all the existing approaches
to enumerate efficient solutions cannot achieve a polynomial CPU time.
In this paper, we propose a novel approach for finding preferred efficient
solutions where the worst of the ratios of the two objective values to their
maximum possible values, respectively, is minimized. This approach is
based on the Kalai-Smorodinsky (KS) solution, a well-known concept
in cooperative game theory. More precisely, we consider an extension of
the KS solution concept to the non-convex case that can be found by
optimizing convex combinations of two objectives. We first characterize
the properties of such KS solution(s) for the BSTP. Next, we present a
weakly polynomial-time algorithm for finding the KS solution(s) for the
BSTP. Finally, we showcase the computational results in some instances
and discuss the results. Beyond the particular case of the BSTP, this pa-
per offers an efficient and explainable approach for solving bi-objective
combinatorial optimization problems.

Keywords: Minimum Spanning Tree Problem · Bi-Objective Combina-
torial Optimization · Kalai-Smorodinsky solution

1 Introduction

The Minimum Spanning Tree (MST) problem is a classical problem in graph the-
ory and combinatorial optimization. This problem has numerous applications in
various fields, including network design and transportation. This work focuses
on the Bi-objective Spanning Tree Problem (BSTP), an extension of the MST
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problem where two objectives need to be optimized simultaneously. In this prob-
lem, each edge of a graph is associated with two weight values, and the goal is to
find a spanning tree that efficiently minimizes both total weights. As a particular
case of bi-objective optimization, for solving the BSTP, we may be interested
in enumerating all the Pareto-optimal solutions (also called efficient solutions)
of the BSTP (i.e., the solutions that are not worse than any other solution on
both objectives). We recall a crucial concept for classifying efficient solutions,
especially in non-convex optimization: the distinction between supported and
unsupported efficient solutions. An efficient solution is supported if it is located
on the boundary of the feasible set’s convex hull, while an unsupported efficient
solution is located in the interior of the feasible set’s convex hull.

Since the feasible solution set of the BSTP is finite, several exact methods
in the literature have been proposed to enumerate its efficient solutions. Partic-
ularly, Ramos et al. [14] introduced the multi-objective branch-and-cut method,
Steiner and Radzik [17] proposed the two-phase method using the k-best algo-
rithm, Sourd and Spanjaard [16] applied the branch-and-bound method, and
more recently, Santos et al. [15] provided the labeling algorithm. Besides, sev-
eral approximation algorithms were also proposed for the BSTP [8]. However,
the BSTP has been shown to be NP-hard (see [2]), which means that all the ex-
isting approaches to enumerate the supported efficient solutions cannot achieve
worst-case polynomial-time complexity. Hence, we focus on particular efficient
solutions for which we have a good justification of the compromise between the
two objectives, and especially, we have a (weakly) polynomial-time algorithm for
finding them. In this paper, we consider the efficient solutions that achieve the
minimum on the worst (or maximum) ratios of the two objective values to their
maximum possible values when optimizing individually.

Researchers have extensively explored the application of game theory to
bi-objective combinatorial optimization, showing its effectiveness in addressing
competing objectives [1]. By framing the BSTP as a game, we can utilize game
theory concepts like Nash equilibria, Pareto efficiency, Kalai-Smorodinsky solu-
tion, etc., to find solutions that consider trade-offs between the two objectives.
Our approach for the BSTP is based on the Kalai-Smorodinsky solution, a well-
known concept in cooperative game theory, which provides a method to resolve
disputes or negotiations by finding a fair agreement between the players. The
solution is particularly relevant in situations where they need to decide on the di-
vision of a scarce resource or any negotiation scenario where mutual agreements
are sought [6]. The Kalai-Smorodinsky approach applied to the bi-objective opti-
mization problem seeks efficient solutions that are balanced between the Utopia
point, combining the (best-case) minimal values of the two objectives when min-
imized independently, and the Nadir point, representing the (worst-case) maxi-
mal values of the objectives. Notice that if the feasible set is convex, the solution
given by the Kalai-Smorodinsky approach, called the KS solution, guarantees
that each objective receives the same ratio of its minimum possible value over
its maximum possible value [6]. Geometrically, it is a unique point located on the
straight line connecting the Utopia and Nadir points (i.e., the Utopia-Nadir line)
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in correspondence with the Pareto front, which contains all efficient solutions.
Hence, the KS solution is the point lying on the Utopia-Nadir line and having a
minimal distance from the Utopia point. Based on this point, some research in
the literature has provided optimization algorithms for finding the KS solution
[10, 5].

In contrast, since the Pareto front of the BSTP is generally non-convex, the
Utopia-Nadir line may not intersect with the Pareto front. Thus, the KS solution
described in the convex case may not exist for the BSTP. To address this issue,
some approaches extended the KS solution concept to accommodate non-convex
feasible sets (e.g., see [11, 18]). Although these studies have presented the con-
cept and characterized the KS solution in such contexts, the question of how to
algorithmically determine the KS solution for combinatorial optimization prob-
lems remains a challenge. In this paper, we focus on supported efficient solutions
since they can provide important insights about the whole Pareto-optimal solu-
tion set. It should be noted that supported efficient solutions can be obtained by
optimizing convex combinations of objectives [13]. We first present an extension
of the KS solution concept in the context of the BSTP and then show that KS
solution(s) exist in the supported efficient solution set of the BSTP. To identify
these solutions, we develop a (weakly) polynomial-time algorithm that employs a
binary search approach. This algorithm is designed to converge in a logarithmic
number of iterations, where the logarithm is taken with respect to fixed parame-
ters determined by the problem data. Lastly, we present practical computational
results and provide insights to show the effectiveness of our proposed approach.

The remainder of this paper is organized as follows: Section 2 formally defines
the BSTP and discusses the characterization of the KS solution(s) for it. Section
3 proposes a binary search algorithm for finding KS solution(s) in the supported
solution set. Section 4 provides computational results on some instances of the
BSTP and discusses them. Finally, Section 5 concludes the paper and outlines
future work directions.

2 Kalai-Smorodinsky solution for BSTP

2.1 KS solution: A literature review

The KS solution is a concept from the field of game theory, particularly in the
context of bargaining problems developed by Ehud Kalai and Meir Smorodinsky
in 1975 [6]. This solution concept addresses how to fairly divide a set of resources
or determine an outcome that multiple parties can agree upon. As an alternative
to the well-known Nash bargaining solution [12], the key advantages of the KS
solution are its emphasis on fairness and its applicability to a wide range of
bargaining and optimization problems. In this paper, we focus on the KS solution
for bi-objective optimization, particularly in the context of convex and non-
convex feasible sets.
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Let us consider a general bi-objective optimization problem which can be
formulated as

min
x∈X

(f1(x), f2(x)),

where X denotes the set of all feasible decision vectors x. We also suppose
that f1(x) > 0 and f2(x) > 0, ∀x ∈ X . In general bi-objective optimization,
the concepts of the Utopia and Nadir points are crucial for characterizing the
KS solution. Let x∗

1,x
∗
2 ∈ X be the decision vectors which minimize f1, f2,

respectively (resp.). Let us consider the space R2
+ where the X-axis represents

f1 and the Y -axis represents f2. The Utopia point is the point where both
objectives take minimum values, i.e., (f1(x

∗
1), f2(x

∗
2)). Then, the Nadir point is

obtained by computing each objective with the optimal decision vector of the
other objective, i.e., (f1(x

∗
2), f2(x

∗
1)). In order to effectively regularize the ratios

of each objective’s minimum over their maximum values, we first shift the two
objectives f1, f2 with respect to the coordinates of the Nadir and Utopia points:

P (x) = f1(x)− f1(x
∗
1) and Q(x) = f2(x)− f2(x

∗
2), (1)

for all x ∈ X . Let (P,Q) = (P (x), Q(x)) denote the objective values corre-
sponding to a x ∈ X . Let S represent the set of pairs (P,Q) corresponding to
all feasible decision vector solutions. This paper characterizes the feasible solu-
tions for bi-objective combinatorial optimization using pairs (P,Q) instead of
explicitly listing the decision vector solutions. Thus, two feasible solutions hav-
ing the same values of (P,Q) will be considered equivalent. Throughout this
paper, we use the notation “≡” to denote equivalent solutions. Furthermore, let
Pmax = f1(x

∗
2) − f1(x

∗
1) and Qmax = f2(x

∗
1) − f2(x

∗
2). Then, Pmax (resp. Qmax

signifies the maximum value of objective P (resp. Q) for all efficient solutions
(P,Q). Given a solution (P,Q), let us consider the ratios of ρP = P/Pmax and
ρQ = Q/Qmax which can be viewed as a measure of efficiency of P and Q,
resp. Our objective is to find a Pareto-optimal solution that satisfies two crite-
ria: fairness and efficiency. For fairness, we aim to minimize the fairness measure
|ρP −ρQ|, bringing it as close to 0 as possible. For efficiency, we want the solution
to be as close as possible to the Utopia point. Note that although the Utopia
and Nadir points both have a fairness measure of 0, the Nadir point is not an
efficient solution, and the Utopia point is not a feasible solution.

Motivated by this issue, we are particularly interested in the KS solution,
which ensures both criteria of fairness and efficiency. We first recall the KS
solution concept when the feasible solution set X is a convex set. In this setting,
the KS solution ensures each objective receives the same ratio of their minimum
possible values over their maximum possible values [6]. This implies that the
KS solution is a Pareto-optimal solution (P,Q) with the measure of fairness
|ρP −ρQ| = 0. Geometrically, it is a unique solution located on the Utopia-Nadir
line in correspondence with the Pareto front [5] (see Fig. 1a).
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Definition 1 (KS solution for convex case [6]). (P ∗, Q∗) ∈ S is the KS
solution provided that

ρP∗ = ρQ∗ = ρ and, (2)

ρ ≤ max{ρP , ρQ} ∀(P,Q) ∈ S. (3)

Notice that in Definition 1, condition (2) assures that the KS solution lies
on the Utopia-Nadir line, while condition (3) brings the KS solution as close as
possible to the Utopia point. In contrast, the Utopia-Nadir line may not intersect
with the Pareto front in the combinatorial optimization problem. Thus, the KS
solution described in the convex case may not exist in the non-convex case.
Therefore, it is necessary to reform the concept to fit this setting. Naturally,
we may be interested in the supported efficient solution that is close to the
Utopia-Nadir line, meaning its measure of efficiency approaches 0.

Utopia

Nadir

KS solution

f1(x
∗
1) f1(x

∗
2)

f2(x
∗
2)

f2(x
∗
1)

f1

f2

Pareto front

(a) Convex case

Utopia

Nadir

KS solution

f1(x
∗
1) f1(x

∗
2)

f2(x
∗
2)

f2(x
∗
1)

f1

f2

Pareto front

(b) Non-convex case

Fig. 1: Example of KS solution under convex and non-convex cases

We present the extension of the KS solution to the non-convex case according
to the works of Nagahisa et al. [11] and Xu et al. [18]. In that setting, they
proposed a relaxation for the KS solution concept without the condition (2).
Then, when S is non-convex, the KS solution(s) becomes the efficient solution(s)
that achieves the minimum when we compare among all the feasible solutions the
maximum of the two ratios of two objective values over their maximum possible
values. We can formally state the definition of KS solution(s) as follows.

Definition 2 (KS solution for non-convex case [11, 18]). (P ∗, Q∗) ∈ S is
a KS solution provided that

max {ρP∗ , ρQ∗} ≤ max {ρP , ρQ} ,∀(P,Q) ∈ S. (4)

Intuitively, the KS solution(s) can be viewed as the best solution in terms of
the ratio over the worst value for each objective. Fig. 1b illustrates an example
of a KS solution where the feasible set is non-convex. In the next section, we will
present the definition of the KS solution(s) for the BSTP and its properties.
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2.2 KS solution for BSTP

This section begins by presenting the formal definition of the BSTP. Given an
undirected graph G = (V,E) where |V | = n, |E| = m resp. is the set of nodes
and edges. Let ce, te ∈ Z+ \ {0} denote two quantities which may be considered
resp. as the cost and the time associated with each edge in G. The BSTP aims
to find a spanning tree that minimizes both the total cost and total time, i.e.:

min
x∈T

(f1(x) =
∑
e∈E

cexe, f2(x) =
∑
e∈E

texe),

where xe is a binary variable that presents the occurrence of edge e in the
spanning tree solution and the feasible solution set T of G is the set of all
vectors x that are associated with spanning trees in G.

Let P (x), Q(x) be the shifted values of f1(x), f2(x) resp. as defined in (1).
Let S be the set of all efficient solutions (P,Q) and SSE ⊆ S be the set of all
supported efficient solutions of the BSTP. Since S is finite and non-convex, SSE

is also finite and non-convex. As a special case of the bi-objective combinatorial
optimization, we precisely apply Definition 2 for the BSTP. Particularly, we
state below the definition of the KS solution(s) for the BSTP over the supported
efficient set SSE .

Definition 3 (KS solution for BSTP). (P ∗, Q∗) ∈ SSE is a KS solution
provided that

max{ρP∗ , ρQ∗} ≤ max {ρP , ρQ} ,∀(P,Q) ∈ SSE . (5)

Let τ = Pmax/Qmax ∈ R+ be the slope of the Utopia-Nadir line. Notice
that the supported efficient set SSE can be divided into two subsets by the
Utopia-Nadir line: S+

SE := {(P,Q) ∈ SSE | P − τQ ≥ 0} and S−
SE := {(P,Q) ∈

SSE | P − τQ ≤ 0}. According to the definitions provided, the proposition
presented below demonstrates the existence of KS solution(s).

Proposition 1. There always exists a KS solution for BSTP.

Proof. Let (P+, Q+) ∈ S+
SE and (P−, Q−) ∈ S−

SE such that

(P+, Q+) = argmin
(P,Q)∈S+

SE

P − τQ, (6a)

(P−, Q−) = argmax
(P,Q)∈S−

SE

P − τQ, (6b)

According to (6a), P+ − τQ+ ≤ P − τQ, ∀(P,Q) ∈ S+
SE . Since (P+, Q+)

and (P,Q) are both Pareto-optimal solutions, we deduce P+ ≤ P (otherwise,
P+ > P,Q+ < Q and then P+−τQ+ > P −τQ which leads to a contradiction).
Thus, ρP+ ≤ ρP ,∀(P,Q) ∈ S+

SE . Moreover, due to the definition of S+
SE and

τ = Pmax/Qmax, we get ρP−ρQ = (P−τQ)/Pmax ≥ 0,∀(P,Q) ∈ S+
SE . Similarly,

we also have ρQ− ≤ ρQ and ρP ≤ ρQ,∀(P,Q) ∈ S−
SE . Consequently,

max
{
ρP+ , ρQ+

}
= ρP+ ≤ ρP = max {ρP , ρQ} ,∀(P,Q) ∈ S+

SE ,

max
{
ρP− , ρQ−

}
= ρQ− ≤ ρQ = max {ρP , ρQ} ,∀(P,Q) ∈ S−

SE .
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Hence, if ρP+ < ρQ− (resp. ρQ− < ρP+) then (P+, Q+) (resp. (P−, Q−))
is the unique KS solution. Otherwise, the KS solution set consists of both
(P+, Q+), (P−, Q−). That concludes the proof. □

Notice that if (P+, Q+) ≡ (P−, Q−), then there is a unique KS solution
as the intersection between the Pareto front and the Utopia-Nadir line which
coincides the convex case. If (P+, Q+) ̸≡ (P−, Q−) then they are two consecutive
supported efficient solutions that are located on two sides of the Utopia-Nadir
line. Based on the proof of Proposition 1, the KS solution(s) must be selected
from these two solutions, and there might be (at most) two distinct KS solutions.
In the rest of this paper, we denote A the set containing the solutions (P+, Q+)
and (P−, Q−). In the next section, we design a binary search algorithm for
determining the KS solution(s) for the BSTP.

3 Algorithm for finding KS solution(s)

3.1 Algorithm construction

Let us state the sketch of our algorithm in this section. We recall that each
supported efficient solution is necessarily a solution of a weighted sum single-
objective optimization problem [13]

F(α) = min (1− α)P + αQ, ∀(P,Q) ∈ S, where α ∈ [0, 1].

Our algorithm is based on a binary search algorithm in the interval [0, 1].
Given an interval [αi, αj ] ⊆ [0, 1] and two solutions (Pi, Qi) ∈ S−

SE , (Pj , Qj) ∈
S+
SE of resp. F(αi),F(αj). We present Procedure SEARCH() to find the KS

solution(s) which are solution(s) of F(α) with α ∈ [αi, αj ]. We first calculate the
midpoint αm of this interval and then solve F(αm) to obtain a solution (Pm, Qm)
and verify that (Pm, Qm) belongs to either the set S+

SE or S−
SE . Then, we retain

only one half-interval for further exploration in Procedure SEARCH(), let us say
[αi, αm] such that the two solutions (Pm, Qm) and (Pi, Qi) lie on two sides of the
Utopia-Nadir line. This ensures that after each iteration, the two endpoints of
the obtained interval correspond to two supported solutions situated on opposite
sides of the Utopia-Nadir line. We continue these steps until we obtain an interval
with a length smaller than a positive parameter ϵ defined by the input of the
BSTP. The choice of ϵ guarantees the determination of two consecutive supported
efficient solutions lying on two sides of the Utopia-Nadir line, i.e., two solutions
in set A. Our algorithm terminates when we obtain KS solution(s) through these
two solutions. Consequently, it converges in a logarithmic number of iterations
with respect to ϵ.

3.2 Algorithm statement

This section first states Lemma 1 to show the monotonic relationship between
the value α ∈ [0, 1] and a solution (P,Q) of F(α).



8 Authors Suppressed Due to Excessive Length

Lemma 1. Given 0 ≤ αi < αj ≤ 1. Let (Pi, Qi) and (Pj , Qj) be the solutions
of resp. F(αi) and F(αj). Then, Pi ≤ Pj and Qi ≥ Qj.

Proof. Since (Pi, Qi) and (Pj , Qj) are the solutions of F(αi) and F(αj), resp.,
we deduce:

(1− αi)Pi + αiQi ≤ (1− αi)Pj + αiQj , and (8a)

(1− αj)Pj + αjQj ≤ (1− αj)Pi + αjQi (8b)

Multiplying both sides of (8a) by 1 − αj ≥ 0 and (8b) by 1 − αj ≥ 0 then
adding them, we obtain (αi−αj)(Qi−Qj) ≤ 0. As αi < αj , this implies Qi ≥ Qj .
Moreover, from (8a), we have (1 − αi)(Pi − Pj) ≤ αi(Qj −Qi) ≤ 0. As αi < 1,
we deduce Pi ≤ Pj . □

Due to Lemma 1, if αi < αj and (Pi, Qi) is the solution for both F(αi) and
F(αj), then (Pi, Qi) remains the solution for F(α) for all αi < α < αj . Building
on this point, we present a method to determine elements in the set A that are
found by solving F(αi) and F(αj). A key is the determination of the length of
[αi, αj ], which plays a role in the stopping condition for the iterative process.

Theorem 1. Let (Pi, Qi) ∈ S−
SE, (Pj , Qj) ∈ S+

SE be resp. the solutions of F(αi),
F(αj). Suppose that (Pi, Qi) ̸≡ (Pj , Qj) and 0 < αj − αi < ϵ = 4/(Pmax +

Qmax)
2. Let αs =

Pj−Pi

Pj−Pi+Qi−Qj
and (Ps, Qs) be the solution of F(αs). Then,

1. If (Ps, Qs) ≡ (Pi, Qi) or (Ps, Qs) ≡ (Pj , Qj), A = {(Pi, Qi), (Pj , Qj)};
2. Otherwise, A = {(Pi, Qi), (Ps, Qs)} or A = {(Ps, Qs), (Pj , Qj)}.

Proof. We first show that αs is well defined. Since αi < αj and (Pi, Qi) ̸≡
(Pj , Qj), Pi < Pj and Qi > Qj due to Lemma 1. Thus, Pj − Pi +Qi −Qj > 0.

We now show that αs ∈ [αi, αj ]. Indeed, the optimalities of (Pi, Qi) and
(Pj , Qj) give

(1− αi)Pi + αiQi ≤ (1− αi)Pj + αiQj , (9a)

(1− αj)Pj + αjQj ≤ (1− αj)Pi + αjQi, (9b)

From (9a) and (9b), we get

αi ≤
Pj − Pi

Pj − Pi +Qi −Qj
≤ αj ,

which implies αi ≤ αs ≤ αj . We consider two following cases.

1. (Ps, Qs) ≡ (Pi, Qi) or (Ps, Qs) ≡ (Pj , Qj)
Without loss of generality, we assume that (Ps, Qs) ≡ (Pi, Qi). Thus, (Pi, Qi)
is a solution of F(αs). The definition of αs yields (1 − αs)Pj + αsQj =
(1 − αs)Pi + αsQi. Therefore, (Pj , Qj) is also a solution of F(αs). As a
result of Lemma 1, (Pi, Qi) (resp. (Pj , Qj)) is the solution of F(α) for all
α ∈ (αi, αs] (resp. α ∈ (αs, αj)). Thus, A = {(Pi, Qi), (Pj , Qj)}.
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2. (Ps, Qs) ̸≡ (Pi, Qi) and (Ps, Qs) ̸≡ (Pj , Qj)
By the same argument, we also get Pi < Ps < Pj , Qi > Qs > Qj and

αi ≤
Ps − Pi

Ps − Pi +Qi −Qs
≤ αs ≤

Pj − Ps

Pj − Ps +Qs −Qj
≤ αj .

Suppose that
Pj − Ps

Pj − Ps +Qs −Qj
>

Ps − Pi

Ps − Pi +Qi −Qs
then

(Pj − Ps)(Ps − Pi +Qi −Qs) > (Ps − Pi)(Pj − Ps +Qs −Qj)

which leads to

(Pj − Ps)(Ps − Pi +Qi −Qs)− (Ps − Pi)(Pj − Ps +Qs −Qj) ≥ 1,

due to Pi, Pj , Ps, Qi, Qj , Qs ∈ Z+.
Furthermore, the Cauchy-Schwarz inequality gives

(Pj − Ps +Qs −Qj)(Ps − Pi +Qi −Qs) ≤
(Pj +Qi − Pi −Qj)

2

4

≤ (Pmax +Qmax)
2

4
.

Thus, we obtain

αj − αi ≥
Pj − Ps

Pj − Ps +Qs −Qj
− Ps − Pi

Ps − Pi +Qi −Qs

=
(Pj − Ps)(Ps − Pi +Qi −Qs)− (Ps − Pi)(Pj − Ps +Qi −Qs)

(Pj − Ps +Qs −Qj)(Ps − Pi +Qi −Qs)

≥ 4

(Pmax +Qmax)2
= ϵ.

This leads to a contradiction. Hence,

Pj − Ps

Pj − Ps +Qs −Qj
= αs =

Ps − Pi

Ps − Pi +Qi −Qs

⇔ (1− αs)Ps + αsQs = (1− αs)Pj + αsQj = (1− αs)Pi + αsQi.

This deduce that (Pi, Qi) and (Pj , Qj) are two solutions of F(αs). Similarly
to the previous case, (Pi, Qi) (resp. (Pj , Qj)) is the solution of F(α) for all
α ∈ (αi, αs) (resp. α ∈ (αs, αj)). Thus, A = {(Pi, Qi), (Ps, Qs)} or A =
{(Ps, Qs), (Pj , Qj)}. □

Because of Lemma 1, we observe that a solution (P,Q) of F(α) for all α ∈
[0, αi] (resp. α ∈ [αj , 1]) belongs to S−

SE (resp. S+
SE), where αi, αj as defined in

Theorem 1. Therefore, as a result of Theorem 1, we conclude that the interval
[0, 1] can be partitioned into two half-intervals: one associated with solutions in
S−
SE and the other associated with solutions in S+

SE . Let cmax = maxe∈E ce and
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tmax = maxe∈E te. Since every spanning tree of the graph G has exactly n − 1
edges, we then obtain Pmax ≤ max f1(x) ≤ (n−1)cmax and Qmax ≤ max f2(x) ≤
(n− 1)tmax. Consequently, we can take ϵ = 4/((n− 1)(cmax + tmax))

2.

Given an interval [αi, αj ], we propose Procedure SEARCH() to find spanning
tree(s) associated with KS solution(s) obtained by solving F(α) with α ∈ [αi, αj ].

Procedure 1 Find spanning tree(s) associated with KS solution(s) obtained by
solving F(α) where α ∈ [αi, αj ]

Input: • Two coefficients 0 ≤ αi < αj ≤ 1 and two parameters τ, ϵ as defined above.
1: • (Pi, Qi) ∈ S−

SE corresponding with tree Ti is a solution of F(αi).
2: • (Pj , Qj) ∈ S+

SE corresponding with tree Tj is a solution of F(αj).
3: • (Pi, Qi) ̸≡ (Pj , Qj).
Output: Spanning tree(s) associated with the KS solution(s).
4: procedure SEARCH (αi, αj , ϵ, τ)
5: if αj − αi ≥ ϵ then
6: αm ← (αi + αj)/2
7: solving F(αm) to obtain (Pm, Qm) and a corresponding spanning tree Tm

8: if Pm − τQm == 0 then return (Pm, Qm) and Tm

9: else if (Pm, Qm) ∈ S+
SE then return SEARCH(αi, αm, ϵ, τ)

10: else return SEARCH(αm, αj , ϵ, τ)
11: end if
12: else
13: αs ← (Pj − Pi)/(Pj − Pi +Qi −Qj)
14: solving F(αs) to obtain (Ps, Qs) and a corresponding spanning tree Ts

15: if (Ps, Qs) ∈ S+
SE then

16: if τQi < Ps then return (Pi, Qi) and Ti

17: else if τQi > Ps then return (Ps, Qs) and Ts

18: else return (Pi, Qi), (Ps, Qs) and Ti, Ts

19: end if
20: else
21: if τQs < Pj then return (Ps, Qs) and Ts

22: else if τQs > Pj then return (Pj , Qj) and Tj

23: else return (Ps, Qs), (Pj , Qj) and Ts, Ti

24: end if
25: end if
26: end if
27: end procedure

Based on this Procedure, we present the formal algorithm statement for de-
termining the spanning tree(s) associated with the KS solution(s) for the BSTP
and convergence proofs.
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Algorithm 1 Find spanning tree(s) associated with KS solution(s) for BSTP

Input: A graph G = (V,E) with |V | = n and two edge weight vectors c, t ∈ Z|E|
+ .

Output: Spanning tree(s) associated with KS solution(s) for the BSTP on G.
1: solving F(0),F(1) to obtain (P0, Q0), (P1, Q1), resp., and corresponding spanning

trees T0, T1

2: if (P0, Q0) ≡ (P1, Q1) then return (P0, Q0) and T0

3: else
4: cmax ← maxe∈E ce; tmax ← maxe∈E te
5: ϵ← 4/((n− 1)(cmax + tmax))

2; τ ← P1/Q0

6: return SEARCH(0, 1, ϵ, τ)
7: end if

Remark that due to the definition of P,Q by shifting, the solution (P0, Q0) =
(0, Q0) belongs to S−

SE and (P1, Q1) = (P1, 0) belongs to S+
SE . Moreover, the

scalarization process only affects the values of the objective functions, while the
optimal spanning tree associated with the KS solution(s) remains unchanged.

Theorem 2. Algorithm 1 finds the KS solution(s) for the BSTP in weakly
polynomial-time.

Proof. We observe that Algorithm 1 performs a binary search over the interval
[0, 1] to locate the KS solution(s), which are the solution(s) of F(α) with the
coefficient α ∈ [0, 1]. Specifically, at each iteration, the current search interval is
split into two equal-length subintervals. The half-interval that is guaranteed to
not contain α is discarded, and the search continues over the remaining half. The
algorithm terminates when either the KS solution(s) is obtained or the length
of the remaining search interval falls below ϵ. Since the interval size reduces by
half at each iteration, the number of iterations does not exceed ⌊log(1/ϵ)⌋ =
⌊2 log((n− 1)(cmax + tmax))− 2⌋, where the logarithm is taken with base 2.

We now show that F(α) can be solved in polynomial-time where α ∈ [0, 1]
is given. Due to the scalarization of P and Q, for each value α, minimizing
F(α) = (1 − α)P + αQ is equivalent to minimizing (1 − α)f1(x) + αf2(x) =∑

e∈E((1−α)ce+αte)xe, where x ∈ T . Hence, we construct a graph G′ = (V,E)
with the same sets of nodes and edges in G, and (1 − α)ce + αte is a weight
associated with each edge e of G′. Thus, solving F(α) is now equivalent to
solving the classical single-objective MST problem in G′.

In conclusion, Algorithm 1 determines the KS solution(s) in weakly polynomial-
time, with a runtime of C⌊2 log((n − 1)(cmax + tmax)) − 2⌋, where C represents
the time complexity of the MST problem. □

4 Computational results

We evaluated the performance of our proposed algorithm for the BSTP using
randomly generated graphs from the NetworkX library. Specifically, we utilize
the Gn,p model to create Erdős-Rényi graphs, also known as binomial graphs [3].
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In this model, n represents the number of nodes, and p denotes the probability
of edge creation. For our experiments, we vary the number of nodes from 50 to
600 with a step size of 50. For each value of n, we create a graph “Insn” with an
edge creation probability of p = 0.4. The edge cost values and time values were
randomly from a uniform distribution over the interval resp. [20, 30] and [1, 10].

Instance Min f1 Min f2 KS solution(s) for BSTP
f1 f2 Time (s) f1 f2 Time (s) f1 f2 Time (s) Iterations

Ins50 986 276 0.01 1177 59 0.01 1024 105 0.31 22

Ins100 1981 498 0.01 2439 99 0.01 2054 159 1.32 24

Ins150 2980 767 0.01 3639 149 0.01 3038 204 2.87 25

Ins200 3980 1006 0.02 4828 199 0.02 4051 266 5.97 26

Ins250 4980 1156 0.02 6044 249 0.05 5041 302 10.24 27

Ins300 5980 1548 0.04 7292 299 0.06 6031 343 13.98 27

Ins350 6980 1683 0.05 8576 349 0.05 7017 401 19.66 28

Ins400 7980 2034 0.06 9777 399 0.06 8032 447 26.44 28

Ins450 8980 2182 0.08 11070 449 0.08 9018 487 33.97 29

Ins500 9980 2500 0.12 12163 499 0.12 10003 532 42.76 29

Ins550 10980 2777 0.15 13530 549 0.14 11006 573 49.97 29

Ins600 11980 2871 0.18 14720 599 0.14 12007 621 58.43 29

Table 1: Computational results for BSTP

Let us denote Min f1 (resp. Min f2) as the MST problem for the objective
f1 (resp. f2). To solve the single-objective MST problem, we utilized Kruskal’s
algorithm as implemented in the NetworkX package version 2.5.1 [4]. Table 1
presents the optimal solutions for the Min f1, Min f2, as well as the KS solu-
tion(s) for the BSTP. Notice that the solutions (f1, f2) for each problem Min f1
and Min f2 are to determine the domain for feasible solutions of the BSTP and
to identify the Utopia and Nadir points. Also, the computation time and the
number of iterations required to obtain each solution are shown in the columns
“Time” and “Iterations”. Finally, Fig. 2 illustrates the KS solution for Ins150 and
the set of supported solutions obtained using the method proposed by Steiner
and Radzik [17]. The experiments were conducted on a system equipped with
an Intel Core i5-10500 CPU, 3.10 GHz 15GB RAM with 6 cores and 12 threads.

The KS solution(s) offer a fair ratio between two objectives f1 and f2 over
their maximum possible values than the optimal solution of the problem min-
imizing only f1 or f2, as shown in Table 1. An interesting observation is that
although there are theoretically at most two KS solutions for the BSTP, we ob-
tained a unique KS solution for each instance in Table 1. The table also shows
that our algorithm converges quickly following the time. The results in Table 1
demonstrate that our algorithm’s computational efficiency is remarkable, as it
successfully solved instances with up to 600 vertices in a minute.

Fig. 2 shows that the KS solution is close to the Utopia-Nadir line, effectively
balancing the two objectives, f1 and f2. Furthermore, although the number of
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Fig. 2: The supported solutions with the KS solution in red.

supported solutions for the BSTP may be exponential, our algorithm explored
only a subset of these solutions, shown as blue points in Fig. 2, thereby reduc-
ing the computational complexity. One challenge in solving the BSTP is the
large number of iterations required. Further analysis shows that the supported
solutions obtained in some iterations are equivalent, leading to redundant com-
putations. This is clearly illustrated in Fig. 2, where the number of iterations is
25, but the number of distinct supported solutions obtained is only 7. Hence, the
CPU time required to solve the BSTP increases significantly. Consequently, an
interesting direction for future work would be to improve the stopping condition
and refine the algorithm’s convergence speed.

5 Conclusion

This paper explored the Bi-objective Spanning Tree Problem (BSTP), aiming
to find a spanning tree that minimizes both the total cost and the total time.
Then, we proposed a novel approach for solving the BSTP, utilizing the Kalai-
Smorodinsky (KS) solution concept from cooperative game theory. The main
contributions of this paper include the characterization of KS solution(s) for the
BSTP and the development of an exact algorithm that determines KS solution(s)
in polynomial-time. Finally, computational experiments in some instances have
shown the effectiveness of our algorithm, indicating its rapid convergence.

A significant remark is that this approach can be applied to a general bi-
objective combinatorial optimization problem. Hence, it can be a standard cri-
terion for solving bi-objective combinatorial optimization, where each objective
can be maximized or minimized. Moreover, we aim to design an efficient algo-
rithm for finding KS solution(s) in the Pareto front which contains both sup-
ported and non-supported efficient solutions.
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