
HAL Id: hal-04637841
https://hal.science/hal-04637841

Submitted on 7 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seamlessly Scaling Applications with DAPHNE
Quentin Guilloteau, Jonas H. Müller Korndörfer, Florina M. Ciorba

To cite this version:
Quentin Guilloteau, Jonas H. Müller Korndörfer, Florina M. Ciorba. Seamlessly Scaling Applications
with DAPHNE. COMPAS 2024 - Conférence francophone d’informatique en Parallélisme, Architecture
et Système, Jul 2024, Nantes, France. �hal-04637841�

https://hal.science/hal-04637841
https://hal.archives-ouvertes.fr

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

Seamlessly Scaling Applications with DAPHNE
Quentin Guilloteau, Jonas H. Müller Korndörfer, Florina M. Ciorba

Department of Mathematics and Computer Science, University of Basel, Switzerland
{quentin.guilloteau,jonas.korndorfer,florina.ciorba}@unibas.ch

Résumé
When developing scientific and/or data science applications, users might start by using a scrip-
ting language to quickly produce a prototype, but eventually need to rewrite their code in
a higher performance language when performance becomes a bottleneck. A similar situation
arises when the applications need to scale beyond a single node. Users need to consequently
adapt their code to integrate domain decomposition, synchronization, and communication li-
braries such as MPI. In this paper, we present ongoing work on the distributed scheduler of
DAPHNE (https://daphne-eu.eu), an infrastructure for optimizing data analysis pipelines.
With DAPHNE, users can write their applications once in a high level language, as they would
in Python or Julia, and benefit from seamless scalability across computing nodes.

Mots-clés : parallel applications, scalability, MPI, scheduling, load balancing

1. Introduction

When developing a new scientific or data science application, researchers are faced with a di-
lemma : either develop the applications quickly with scripting languages such as Python which
might yield poor performance, or invest time and effort into an implementation in high perfor-
mance compiled languages such as C++ or Rust. Moreover, if an application is initially written
in Python as a proof of concept, but lacks performance, it will then need to be fully rewritten in
a high performance language. This issue is known as the “Two languages problem” [3]. The Ju-
lia programming language [4] positioned itself as a solution combining both the ease of writing
of a scripting language, while yielding high performance with Just-in-Time compilation.
In addition to efficient programming languages, current scientific and data science applications
need to exploit multiple levels of hardware parallelism to achieve high performance and effi-
ciently use resources. Expressing multilevel parallelism in such applications is not trivial and
requires considerable effort independently of the programming language.
Thus, we claim that there exists a variation of the “Two languages problem” for scaling parallel
applications. Users might achieve parallelization using third-party libraries that support multi-
threading and scale applications to several cores of a single node. However, scaling applications
to multiple nodes requires much greater effort as no language or library offers seamless features
for domain decomposition, synchronization, and communication. If users want to scale their
applications by distributing computations onto several nodes, they will need to, once again,
rewrite at least part of their application to integrate communication libraries such as MPI [25].
The DAPHNE framework [9] aims to solve this need for reimplementation by considering data
representations and efficient execution plans, allowing holistic optimizations. DAPHNE is a

https://daphne-eu.eu

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

scalable infrastructure for executing integrated data analysis pipelines. Such pipelines can inte-
grate steps of HPC, Data Management, and Machine Learning. As such, the main objects that
DAPHNE manipulates are matrices. Users write their pipelines in the DaphneDSL [12], the syn-
tax of which resembles Python, Numpy, Julia, and R. The DaphneDSL scripts are then conver-
ted into an LLVM MLIR [23] dialect from which, after several optimization passes, DAPHNE
extracts the data and operations that can be performed in parallel. DAPHNE can also exploit
and offload computations to accelerators such as GPUs and FPGAs [10].
In this paper, we present ongoing work on the distributed scheduler – DaphneSched – of the
DAPHNE framework, which builds upon DAPHNE’s local runtime and scheduler [15]. With
DaphneDSL, users can write their application once in a high level scripting language and benefit
from seamless parallelism and scalability across computing nodes.
This paper is structured as follows : the novel distributed scheduler of DAPHNE is presented in
Section 2. Section 3 describes how to write an application in various programming languages,
in sequential, parallel, and distributed versions, discussing the characteristics of each imple-
mentation. The performance of each implementation is compared in single and multiple node
executions, in Section 4. The work is concluded in Section 5, with perspectives for future work.

2. DaphneSched

2.1. Local Scheduler
The local DaphneSched has been presented in [15]. For completeness, we summarize its charac-
teristics here and depict it in Figure 1a. DAPHNE combines data and operator parallelism where
data are decomposed between workers and various operators are applied on the partitioned
data simultaneously. Partitioned data and operators (MLIR code) are combined into tasks, the-
reby supporting task parallelism. The size of the different data partitions, i.e., number of rows
or columns, defines the size of a task. Tasks are formed using the input data following a given
partitioning/scheduling technique that defines tasks of different size (i.e., tasks with different
amount of data). Currently, the local DaphneSched supports STATIC, SS, GSS, TSS, FAC2, TFSS,
FISS, VISS, PLS, MSTATIC, MFSC, PSS, and AUTO [26] (further details about these scheduling
techniques can be found in [16, 27]). Finally, the tasks are enqueued in central or distributed
queues that workers query to obtain their next task to execute in a self-scheduling fashion.
The local DaphneSched also provides multiple queue layouts : CENTRALIZED (all workers
query a single centralized queue), PERGROUP (all workers of the same NUMA domain query
the same queue), and PERCPU (each worker has its own local queue). By using several task
queues, load balancing is achieved in local DaphneSched through work-stealing. Several work-
stealing victim selection strategies are supported : SEQ (steal from the next queue according
to hardware topology), RND (steal from a random queue), and two NUMA-aware strategies,
SEQPRI and RNDPRI, which prioritize stealing from queues in the same NUMA domain.

2.2. Distributed Scheduler
The distributed DapnheSched is based on its local counterpart as depicted in Figure 1b, provi-
ding two backends [31] : with MPI [25] or with gRPC [17]. In this paper, we only focus on the
MPI backend as many data analysis pipelines have been shown to use MPI [2, 28]. With the
MPI backend, each rank is an instance of the DAPHNE local runtime and its local scheduler.
The only exception is MPI rank 0 – the coordinator, with the role of dividing, distributing, and
collecting the tasks and their results to/from the local DAPHNE runtime instances. The coordi-
nator does not perform any other computation. Currently, the coordinator equally divides the
work between the local DapnheSched instances, and no work stealing occurs between these.

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

(a) Local DaphneSched (from [15])

Coordinator

Local DaphneSched

…

DM CM BM

Local DaphneSched

Communication
Manager

DM CM BM

Local DaphneSched

Communication
Manager

DM CM BM

BM: Broadcast Message
CM: Compute Message
DM: Distribute Message
RM: Ready Message

Communication
Manager

RM RM RMData
MLIR
Sync

(b) Distributed DaphneSched (this work)

FIGURE 1 – DaphneSched design for the local (left) and distributed (right) scheduler.

Hence, there is a trade-off between using fewer resources by co-locating the coordinator on a
node alongside a computing rank, and using a distinct computing node for each MPI rank.

3. Methodology

3.1. Considered Application
We consider the Connected Components (CC) algorithm from Graph Theory which is part of
the GAP benchmark suite [1], and compare its implementation for single and multiple nodes
in C++, Python, Julia, and DaphneDSL. CC can be expressed as operations on the adjacency
matrix of the input graph. Hence, all CC implementations will use matrix operations to be
comparable to DAPHNE. As input data, we consider 3 sparse matrices from the Sparse matrix
collection [13] the characteristics of which are included in Table 2 in the Appendix.

3.2. Considered Languages
We expect the C++ implementation of CC to outperform all other languages, at the cost of grea-
ter implementation difficulty. By difficulty we mean the ‘distance’ between the mathematical
formulation of the algorithm and its actual implementation in a programming language. C++
requires a third-party library to perform linear algebra operations. We used the popular Eigen
library [18], which proposes a user-friendly interface and achieves high performance.
For implementing CC in Python, we had to use two third-party dependencies. Numpy [20] for
linear algebra operations and Scipy [30] to manage sparse matrices.
The Julia [4] implementation of CC required only a single dependency to load matrices stored
in the MatrixMarket file format [21]. All linear algebra features and support for sparse matrices
are present in the standard library of Julia.
No third-party dependency was needed to implement the CC algorithm in DaphneDSL.
For the distributed versions of all these implementations, we used MPI and the MPI wrappers
associated with each language (i.e., MPI4py [8] for Python, and MPI.jl [7] for Julia). Table 1 cha-
racterizes the different implementations according to their number of external dependencies
and lines of code per implementation.

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

Language (abbrv.) External dependencies
Lines of code per implementation

Sequential Local Parallel Distributed

C++ (cpp) Eigen ≃ 25 ≃ 25 ≃ 120
Python (py) Numpy, Scipy ≃ 10 ≃ 10 ≃ 100
Julia (jl) MatrixMarket.jl ≃ 25 ≃ 25 ≃ 100
DaphneDSL (daph) ∅ ≃ 10 ≃ 10 ≃ 10

TABLE 1 – Characteristics of the implementation of the Connected Components algorithm in the
considered languages for sequential, parallel on a single node, and distributed node executions.

3.3. Implementation : Sequential Version
We used the same CSR (Compressed Sparse Row) representation in memory for the sparse
matrices to allow a fair comparison between all implementations. Using CSR had an impact on
the implementations of CC.
The CC algorithm was implemented in DaphneDSL (see Listing 1 in Appendix) and Python in a
sparse matrix format agnostic fashion. However, for Julia and C++, we encountered implemen-
tation challenges. For Julia, the column broadcast over a sparse matrix was silently converting
the sparse matrix to a dense matrix to perform the broadcast, consuming all the memory of
the machine. To solve this issue, we had to implement the broadcast operation by hand. In the
case of C++, the API of Eigen does not allow the users to perform column-wise operations on
a CSR matrix. Hence, we also had to implement the broadcast by hand. These custom-made
broadcast functions reflect an increased number of lines of code for Julia and C++ in Table 1.

3.4. Implementation : Local Parallel Version
For C++, Julia, and Python, the libraries performing linear algebra, support multithreaded pa-
rallel execution as they rely on the BLAS implementations which use OpenMP. Hence, setting
the environment variable $OMP_NUM_THREADS is sufficient to enable node-level parallelism.
One can exploit node-level parallelism with DAPHNE in two ways : either by deploying a
local instance of DaphneSched using several threads (1 worker with N threads), or by using
the distributed runtime of DAPHNE and deploying several local DaphneSched instances with
a single thread each (N workers with 1 thread).

3.5. Implementation : Distributed Parallel Version
Most of the development effort for the MPI implementations in C++, Python, and Julia lies in
the decomposition of the sparse matrix across computing nodes. We first statically decompose
the matrix along rows and send chunks of rows to the different ranks. Then, each rank performs
the local computation of CC, and then synchronizes with a MPI_Allreduce call, with a user-
defined reduce function, at the end of each iteration of the algorithm.

4. Experimental Evaluation

We report here the experiments conducted to study the performance of the various implemen-
tations of CC. They were carried out on machines with two Intel Broadwell E5-2640v4 CPUs
(one in each of the two sockets of the machine), each with 10 cores and 64GB of RAM [29].
Each experiment is repeated 3 times, and the average execution time of the main loop of CC
is reported (i.e., not including reading and scattering of the matrix). These experiments follow
a factorial design, described in the Appendix in Section C. All data and scripts describing this
work are available on Zenodo [19].

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

Strong Scaling with Threads Strong Scaling with MPI Processes

0 5 10 15 20 0 5 10 15 20

0

1000

2000

3000

Degree of node−level parallelism

E
xe

cu
tio

n
tim

e
[s

]

Language

cpp

jl

py

daph

FIGURE 2 – Strong scaling on a single node (20 total cores) with threads (left) and MPI processes
(right) for CC with wikipedia-20070206 as input. The error bars represent 95% confidence
intervals. DAPHNE used a CENTRALIZED queue with the STATIC scheduling technique.

4.1. Strong Scaling with Local Parallelism
We study the strong scaling performance of exploiting node-level parallelism using multiple
threads (OpenMP or DAPHNE) or multiple processes (MPI). The results in Figure 2 (left) indi-
cate that apart from DAPHNE, there is no strong scaling benefit from using multiple threads,
despite the fact the linear algebra libraries are parallelized with OpenMP. With multiple MPI
processes, Figure 2 (right), the Python CC version shows clear scalability improvements, while
DAPHNE’s performance degrades with a larger number of MPI ranks. We explain this per-
formance degradation by the memory cost of the local DAPHNE runtime and the increased
number of messages handled by the coordinator. This is also the reason why there are no data
points for 19 and 20 MPI processes with DAPHNE, as the local node runs out of memory. We
believe that the fluctuating DAPHNE performance for odd and even MPI rank counts is due to
the rank placement pattern of Slurm across the NUMA domains.

4.2. Seamless Scaling with Distributed DaphneSched
We also studied the seamless scaling of CC with DAPHNE across four nodes, exploring va-
rious scheduling options and queue layouts with the SEQPRI victim selection, as preliminary
experiments that show it frequently achieves higher performance than other victim selections.
The results in Figure 3, indicate that for the amazon0601 matrix, the queue layout and vic-
tim selection strategies have little impact on performance. However, for larger and sparser
matrices, the importance of the choice of the scheduling scheme is emphasized. For example,
for a CENTRALIZED queue, the default configuration (STATIC) is twice as slow as the highest
performing scheme in the case of ljournal-2008 (TFSS). We observe that the highest per-
forming queue layout is CENTRALIZED, and that the highest performing scheduling scheme
for one queue layout is not necessarily the same for another queue layout. This highlights the
importance of efficient scheduling schemes to be available to users.

4.3. Strong Scaling with Distributed Parallelism
Figure 4 shows the strong scaling performance of the implementations of the CC algorithm
on various node counts. Based on insights from Section 4.1, we used 20 MPI processes with
1 thread each on each node for C++, Julia, and Python. For DAPHNE, we used 1 MPI pro-
cess per node with 20 threads per MPI process. We evaluated the default configuration of
DAPHNE (STATIC with CENTRALIZED queue), and DAPHNE with AUTO scheduling on a
CENTRALIZED queue, to highlight the potential gain to use a different scheduling technique.
We observe that for small matrices (amazon0601), DAPHNE is outperformed by all other
version, with almost no scaling beyond 4 nodes. However, for larger and sparser matrices,

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

amazon0601 wikipedia−20070206 ljournal−2008

T
F

S
S

V
IS

S
M

F
S

C
A

U
TO

M
S

TA
T

IC
FA

C
2

T
S

S
P

S
S

P
LS

G
S

S
F

IS
S

S
TA

T
IC

T
F

S
S

V
IS

S
M

F
S

C
A

U
TO

M
S

TA
T

IC
FA

C
2

T
S

S
P

S
S

P
LS

G
S

S
F

IS
S

S
TA

T
IC

T
F

S
S

V
IS

S
M

F
S

C
A

U
TO

M
S

TA
T

IC
FA

C
2

T
S

S
P

S
S

P
LS

G
S

S
F

IS
S

S
TA

T
IC

0

50

100

150

200

0

50

100

150

0

5

10

15

20

Scheduling schemes

E
xe

cu
tio

n
tim

e
[s

]
Queue layout

CENTRALIZED

PERGROUP

PERCPU

FIGURE 3 – Average execution time with 95% confidence intervals for CC with DAPHNE, for
each scheduling scheme and queue layout, with the SEQPRI victim selection, executed on four
nodes and one MPI process per node. Total degree of parallelism : (4 - 1) x 20 = 60 workers.

DAPHNE performs much better and even outperforms Python and Julia. C++ clearly outper-
forms all implementations.

amazon0601 wikipedia−20070206 ljournal−2008

50 100 150 50 100 150 50 100 150
0

100

200

300

400

0

50

100

150

200

0

5

10

15

Degree of parallelism (number of compute nodes x node−level parallelism)

E
xe

cu
tio

n
tim

e
[s

] Languages

cpp

jl

py

daph (default)

daph (AUTO)

FIGURE 4 – Strong scaling from 1 to 9 compute nodes. Inside a node, the work is parallelized
with MPI for C++, Julia and Python, and with threads for DAPHNE. We execute DAPHNE with
its default configuration (CENTRALIZED + STATIC) and with the AUTO scheduling technique
and a CENTRALIZED queue to show the importance of scheduling on performance.

5. Conclusion

We presented the ongoing work on seamlessly scaling applications with DAPHNE – an infra-
structure for optimizing data analysis pipelines. After exposing the different components of the
distributed DAPHNE runtime, we compared a DaphneDSL implementation for the Connected
Components algorithm against Python, Julia, and C++ implementations along several dimen-
sions : external dependencies, effort to adapt the code for parallel and distributed executions,
and performance.
The results demonstrate the value of DaphneSched’s various scheduling options. Although
DAPHNE does not yield the highest performance in a distributed setting compared to C++, it
has the benefit of requiring no effort for seamlessly scaling applications across nodes with MPI
and in certain circumstances outperforms Python and Julia implementations. Hence, DAPHNE
positions itself as a trade-off between "Ease of Use" and "Scaling Performance".
Ongoing work in DAPHNE includes a more comprehensive comparison of several applications
and systems, the introduction of communication between the coordinator and the DAPHNE
workers to improve resource utilization, and dynamic work partitioning by the coordinator.

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

Acknowledgments

This research was funded, in whole or in part, by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 957407 as DAPHNE.

Références

[1] S. BEAMER, K. ASANOVIĆ et D. PATTERSON. The GAP benchmark suite. arXiv preprint
arXiv :1508.03619, 2015.

[2] T. BEN-NUN et T. HOEFLER. Demystifying parallel and distributed deep learning : An
in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4) :1-43, 2019.

[3] J. BEZANSON, A. EDELMAN, S. KARPINSKI et V. B. SHAH. Julia : A fresh approach to
numerical computing. SIAM review, 59(1) :65-98, 2017.

[4] J. BEZANSON, S. KARPINSKI, V. B. SHAH et A. EDELMAN. Julia : A Fast Dynamic Lan-
guage for Technical Computing. arXiv preprint arXiv :1209.5145, 2012.

[5] P. BOLDI, M. ROSA, M. SANTINI et S. VIGNA. Layered Label Propagation : A MultiReso-
lution Coordinate-Free Ordering for Compressing Social Networks. In S. SRINIVASAN, K.
RAMAMRITHAM, A. KUMAR, M. P. RAVINDRA, E. BERTINO et R. KUMAR, éditeurs, Pro-
ceedings of the 20th international conference on World Wide Web, pages 587-596. ACM Press,
2011.

[6] P. BOLDI et S. VIGNA. The WebGraph Framework I : Compression Techniques. In Proc. of
the Thirteenth International World Wide Web Conference (WWW 2004), pages 595-601, Man-
hattan, USA. ACM Press, 2004.

[7] S. BYRNE, L. C. WILCOX et V. CHURAVY. MPI.jl : Julia bindings for the Message Passing
Interface. Proceedings of the JuliaCon Conferences, 1(1) :68, 2021. DOI : 10.21105/jcon.00068.
URL : https://doi.org/10.21105/jcon.00068.

[8] L. DALCIN et Y.-L. L. FANG. mpi4py : Status update after 12 years of development. Com-
puting in Science & Engineering, 23(4) :47-54, 2021.

[9] P. DAMME, M. BIRKENBACH, C. BITSAKOS, M. BOEHM, P. BONNET, F. CIORBA, M. DOKTER,
P. DOWGIALLO, A. ELELIEMY, C. FAERBER et al. Daphne : An open and extensible sys-
tem infrastructure for integrated data analysis pipelines. In Conference on Innovative Data
Systems Research, 2022.

[10] DAPHNE. Design of integration HW accelerators. 2022. URL : https://daphne-eu.eu/w
p-content/uploads/2022/05/DAPHNE_Deliverable_7.1.pdf.

[11] DAPHNE. Docker Image. Mai 2024. URL : https://hub.docker.com/r/daphneeu/daph
ne.

[12] DAPHNE. DSL Runtime Design. 2021. URL : https://daphne-eu.eu/wp-content/uploa
ds/2021/11/Deliverable-4.1-fin.pdf.

[13] T. A. DAVIS et Y. HU. The University of Florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS), 38(1) :1-25, 2011.

[14] E. DOLSTRA, M. DE JONGE, E. VISSER et al. Nix : A Safe and Policy-Free System for
Software Deployment. In LISA, tome 4, pages 79-92, 2004.

[15] A. ELELIEMY et F. M. CIORBA. DaphneSched : A Scheduler for Integrated Data Analy-
sis Pipelines. In 2023 22nd International Symposium on Parallel and Distributed Computing
(ISPDC), pages 53-60. IEEE, 2023.

https://doi.org/10.21105/jcon.00068
https://doi.org/10.21105/jcon.00068
https://daphne-eu.eu/wp-content/uploads/2022/05/DAPHNE_Deliverable_7.1.pdf
https://daphne-eu.eu/wp-content/uploads/2022/05/DAPHNE_Deliverable_7.1.pdf
https://hub.docker.com/r/daphneeu/daphne
https://hub.docker.com/r/daphneeu/daphne
https://daphne-eu.eu/wp-content/uploads/2021/11/Deliverable-4.1-fin.pdf
https://daphne-eu.eu/wp-content/uploads/2021/11/Deliverable-4.1-fin.pdf

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

[16] A. ELELIEMY et F. M. CIORBA. A distributed chunk calculation approach for self-scheduling
of parallel applications on distributed-memory systems. Journal of Computational Science,
51 :101284, 2021. ISSN : 1877-7503. DOI : https://doi.org/10.1016/j. jocs.2020.101284.
URL : https://www.sciencedirect.com/science/article/pii/S1877750320305792.

[17] GRPC. Website. 25 jan. 2021. URL : https://grpc.io/.

[18] G. GUENNEBAUD, B. JACOB et al. Eigen. URl : http ://eigen. tuxfamily. org, 3(1), 2010.

[19] Q. GUILLOTEAU, J. H. MÜLLER KORNDÖRFER et F. M. CIORBA. Data and analysis scripts
for the submission "Seamlessly Scaling Applications with DAPHNE". Zenodo, mai 2024.
DOI : 10.5281/zenodo.11126714. URL : https://doi.org/10.5281/zenodo.11126714.

[20] C. R. HARRIS, K. J. MILLMAN, S. J. VAN DER WALT, R. GOMMERS, P. VIRTANEN, D.
COURNAPEAU, E. WIESER, J. TAYLOR, S. BERG, N. J. SMITH et al. Array Programming
With NumPy. Nature, 585(7825) :357-362, 2020.

[21] [Logiciel] JULIASPARSE, 2024. URL : https://github.com/JuliaSparse/MatrixMarket.jl,
SWHID : ⟨swh:1:dir:3e3499c94ae2294fb210842c38d215c001368d9e;origin=https://github
.com/JuliaSparse/MatrixMarket.jl⟩.

[22] J. KÖSTER et S. RAHMANN. Snakemake—a scalable bioinformatics workflow engine. Bio-
informatics, 28(19) :2520-2522, 2012.

[23] C. LATTNER, M. AMINI, U. BONDHUGULA, A. COHEN, A. DAVIS, J. PIENAAR, R. RIDDLE,
T. SHPEISMAN, N. VASILACHE et O. ZINENKO. MLIR : Scaling compiler infrastructure for
domain specific computation. In 2021 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pages 2-14. IEEE, 2021.

[24] J. LESKOVEC et A. KREVL. SNAP Datasets : Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data, juin 2014.

[25] MESSAGE PASSING INTERFACE FORUM. MPI : A Message-Passing Interface Standard Version
4.1. Nov. 2023. URL : https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf.

[26] A. MOHAMMED, J. H. MÜLLER KORNDÖRFER, A. ELELIEMY et F. M. CIORBA. Automa-
ted Scheduling Algorithm Selection and Chunk Parameter Calculation in OpenMP. IEEE
Transactions on Parallel and Distributed Systems, 33 :12, 2022. DOI : 10.1109/TPDS.2022.318
9270.

[27] J. H. MÜLLER KORNDÖRDER, A. ELELIEMY, A. MOHAMMED et F. M. CIORBA. LB4OMP :
A Dynamic Load Balancing Library for Multithreaded Applications. IEEE Transactions on
Parallel and Distributed Systems, 33(4) :830-841, 2022. DOI : 10.1109/TPDS.2021.3107775.

[28] OPENAI. Scaling Kubernetes to 7,500 nodes. 25 jan. 2021. URL : https://openai.com/ind
ex/scaling-kubernetes-to-7500-nodes.

[29] UNIVERSITY OF BASEL. MiniHPC. Mai 2024. URL : https://hpc.dmi.unibas.ch/research
/minihpc/.

[30] P. VIRTANEN, R. GOMMERS, T. E. OLIPHANT, M. HABERLAND, T. REDDY, D. COURNAPEAU,
E. BUROVSKI, P. PETERSON, W. WECKESSER, J. BRIGHT et al. SciPy 1.0 : fundamental al-
gorithms for scientific computing in Python. Nature methods, 17(3) :261-272, 2020.

[31] A. VONTZALIDIS, S. PSOMADAKIS, C. BITSAKOS, M. DOKTER, K. INNEREBNER, P. DAMME,
M. BOEHM, F. CIORBA, A. ELELIEMY, V. KARAKOSTAS et al. DAPHNE Runtime : Harnes-
sing Parallelism for Integrated Data Analysis Pipelines. In European Conference on Parallel
Processing, pages 242-246. Springer, 2023.

https://doi.org/https://doi.org/10.1016/j.jocs.2020.101284
https://www.sciencedirect.com/science/article/pii/S1877750320305792
https://grpc.io/
https://doi.org/10.5281/zenodo.11126714
https://doi.org/10.5281/zenodo.11126714
https://github.com/JuliaSparse/MatrixMarket.jl
http://archive.softwareheritage.org/swh:1:dir:3e3499c94ae2294fb210842c38d215c001368d9e;origin=https://github.com/JuliaSparse/MatrixMarket.jl
http://archive.softwareheritage.org/swh:1:dir:3e3499c94ae2294fb210842c38d215c001368d9e;origin=https://github.com/JuliaSparse/MatrixMarket.jl
http://snap.stanford.edu/data
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/10.1109/TPDS.2022.3189270
https://doi.org/10.1109/TPDS.2022.3189270
https://doi.org/10.1109/TPDS.2021.3107775
https://openai.com/index/scaling-kubernetes-to-7500-nodes
https://openai.com/index/scaling-kubernetes-to-7500-nodes
https://hpc.dmi.unibas.ch/research/minihpc/
https://hpc.dmi.unibas.ch/research/minihpc/

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

A. Considered Matrices

The characteristics of the three matrices considered in Section 4 are presented in Table 2 in
terms of number of rows and columns, non-zero elements and degree of density (calculated as
the percentage of non-zero elements).

Matrix Size Non-zero elements Density (%)

amazon0601 [24] 403394×403394 3387388 2.08× 10−3

wikipedia-20070206 3566907×3566907 45030389 3.54× 10−4

ljournal-2008 [6, 5] 5363260×5363260 79023142 2.75× 10−4

TABLE 2 – Characteristics of the input matrices considered in this work.

B. Connected Components Implementation with DaphneDSL

Listing 1 shows the implementation of the Connected Components algorithm in DaphneDSL.
Note that the Connected Components algorithm typically completes upon reaching convergence
of the vector c Listing 1. To allow a fair comparison of its various implementations, we fixed
its number of iterations to 100 for all languages versions.

1 G = readMatrix($f); // read sparse matrix from CLI argument
2 maxi = 100; // maximum number of iterations
3 start = now();
4

5 c = seq(1.0, as.f64(nrow(G)), 1.0); // initialization
6

7 for(iter in 1:maxi) {
8 c = max(aggMax(G * t(c), 0), c);
9 }

10

11 end=now();
12 print((end-start) / 1000000000.0);

Listing 1 – Implementation of the Connected Components algorithm in DapneDSL

C. Design of Experiments

For the results presented in Figures 2, 3, and 4, we employ a factorial design of experiments,
described in Tables 3, 4, and 5, respectively. In total, we conducted 1’209 experiments.
The software environment is controlled by Nix [14] and the Docker image built by the DAPHNE
consortium [11]. The workflow of the experiments is managed by Snakemake [22].

Compas’2024 : Parallélisme / Architecture/ Système
IETR/LS2N/Nantes-U - Nantes - France, 2-5 juillet 2024

Factor Value Details

Application 1 Connected Components
Input data 1 wikipedia-20070206
Languages 4 C++, Julia, Python, and DaphneDSL
Types of Scaling 2 with threads or with MPI processes
Parallelism configuration 20 from 1 to 20 threads or MPI processes
Number of nodes 1 1 node
Experiment repetitions 3

Total number of experiments 480

TABLE 3 – Factorial design of experiments for the results in Figure 2

Factor Value Details

Application 1 Connected Components
Input data 3 amazon0601, wikipedia-20070206,

ljournal-2008
Languages 1 DaphneDSL
Scheduling techniques 12 STATIC, GSS, TSS, FAC2, TFSS, FISS, VISS,

PLS, MSTATIC, MFSC, PSS, and AUTO
Queue layouts 3 CENTRALIZED, PERGROUP, PERCPU
Victim selection 1 SEQPRI
Number of nodes 1 4 nodes
Experiment repetitions 3

Total number of experiments 324

TABLE 4 – Factorial design of experiments for the results in Figure 3

Factor Value Details

Application 1 Connected Components
Input data 3 amazon0601, wikipedia-20070206,

ljournal-2008
Languages 5 C++, Julia, Python, DaphneDSL with the

default configuration (CENTRALIZED queue
and STATIC scheduling technique), Daph-
neDSL using a CENTRALIZED queue and the
AUTO scheduling technique

Number of nodes 9 From 1 to 9 nodes
Experiment repetitions 3

Total number of experiments 405

TABLE 5 – Factorial design of experiments for the results in Figure 4

	Introduction
	DaphneSched
	Local Scheduler
	Distributed Scheduler

	Methodology
	Considered Application
	Considered Languages
	Implementation: Sequential Version
	Implementation: Local Parallel Version
	Implementation: Distributed Parallel Version

	Experimental Evaluation
	Strong Scaling with Local Parallelism
	Seamless Scaling with Distributed DaphneSched
	Strong Scaling with Distributed Parallelism

	Conclusion
	Considered Matrices
	Connected Components Implementation with DaphneDSL
	Design of Experiments

