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About	the	Fundations	of	the	Black	Holes	Theory.		

H.Zejli1	,	F.Margnat2,	J.P.Petit3	

_______________________________________________________________________________________________	
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crossed	term	

_______________________________________________________________________________________________	

Abstract	:		In	a	broad	overview,	we	discuss	the	two	interpretations	that	have	been	given	
of	the	outer	Schwarzschild	solution,	depending	on	whether	one	opts	for	uniqueness,	in	
which	case	the	geometric	object	has	a	single	layer,	a	structure	of	a	variety	with	an	edge,	
or	non-uniqueness	of	the	solution,	i.e.	for	a	configuration	in	which	there	are	two	metrics,	
each	referring	to	one	of	the	layers	of	a	covering	structure	with	two	sheets,	 joined	by	a	
groove	sphere.	In	these	two	interpretations,	the	object	is	non-contractile.	The	black	hole	
model,	as	described	in	Chandrasekhar's	1992	book	entitled	"Mathematics	of	Black	Holes",	
is	based	on	the	central	hypothesis	of	including	in	the	real	world	particles	whose	geodesic	
trajectories	are	traversed	with	pure	imaginary	proper	time,	which	goes	hand	in	hand	with	
the	hypothesis	of	contractibility	of	the	geometric	object,	which	is	then	equipped	with	a	
central	singularity.	

_______________________________________________________________________________________________	

1	-	Introduction	

In	2011,	C.	Corda	published	an	article	[1]	entitled	"A	clarification	on	the	debate	on	the	
'original	Schwarzschid	solution'"	 in	the	form	of	a	simple	preprint	posted	online	on	the	
arXiv	platform,	 to	which	specialists	 refer	anyone	wishing	 to	question	 the	physical	and	
mathematical	consistency	of	the	black	hole	model.	We	propose	to	return	to	this	question.		
Recent	observations	([2],[3])	of	supermassive	objects	located	at	the	centre	of	the	M87	and	
Milky	Way	galaxies,	which	were	 immediately	described	as	 "Giant	Black	Holes",	 are	 far	
from	 being	 consistent	 with	 what	 characterises	 black	 holes	 in	 principle,	 i.e.	 that	 their	
central	 part	 is	 absolutely	 black.	 Even	 if	 no	 value	 is	 placed	 on	 the	 temperature	 values	
displayed,	 the	 ratio	 of	 maximum	 temperature	 to	 minimum	 temperature	 constitutes	
usable	observational	data.	
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Fig.1	:	Images	of	hypermassive	objects	M87	and	Srg	A*	

Although	the	masses	and	temperatures	of	these	two	objects	are	very	dissimilar,	the	ratios	
of	 maximum	 temperature	 to	 minimum	 temperature	 are	 surprisingly	 close	 to	 3.	 This	
closeness	can	hardly	be	attributed	to	chance	and,	at	the	end	of	the	article,	we	will	examine	
the	 possible	 significance	 of	 this	 value.	 Let's	 take	 a	 look	 back	 at	what	 is	 known	 as	 the	
"Original	Schwarzschild	Solution".	

	

2	–	The		original	Schwarzschild	solution.		

It	 corresponds	 to	 the	 two	 articles	 published	 by	 the	 author	 in	 January	 1916	 [4]	 and	
February	1916	 [5],	 shortly	before	his	death	on	11	May	1916.	The	English	 translations	
were	not	available	until	very	late,	the	first	article	in	1975	[6]	and	the	second	in	1999	[7],	
twenty-four	and	eighty-three	years	after	their	publication	in	German.	 	The	approach	is	
very	clear.	The	author	starts	with	the	field	equation	as	Einstein	had	just	published	it	two	
months	earlier	[8].	In	what	follows,	our	equations	are	sometimes	numbered	twice.	In	this	
case,	as	below,	on	the	 left	will	appear	the	numbering	of	the	article	and	on	the	right,	 in	
italics,	the	numbering	in	the	article	from	which	this	equation	is	extracted.	to	cause.	Thus,	
in	[5]	it	is	equation	(5)	:		

(1)																																																																 		

where	 	is	the	Einstein	constant	and	T	is	the	Laue	scalar.	Schwarzschild	clearly	indicates	
his	 course	 of	 action,	 specifying	 that	 the	 calculation	 of	 geodesics	will	 be	 based	 on	 the	
optimisation	of	the	length	s.	These	are	equations	(1)	from	[4],	which	we	reproduce	exactly	
as	they	appear	below:		

(2)																																																												 		

  
G µν = − κ ( Tµν −

1
2

gµνT ) (5)

κ

  

δ ds = 0∫
where

ds = gµν dxµ dxν∑

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(1)
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At	the	same	time,	the	author	constructs	stationary	solutions	of	the	field	equation,	with	
and	without	a	second	member.	In	this	approach,	which	is	remarkable	for	its	clarity	and	
physical,	geometric	and	mathematical	coherence,	he	endeavours	to	ensure	the	continuity	
of	the	solution	at	the	surface	of	the	star.	On	page	2	of	[5]	he	writes,	and	we	quote:	

If	one	calls	t	the	time,	x	,	y	,	z	,	the	rectangular	coordinates,	the	most	general	
line	element	that	satisfies	the	conditions	1-3	is	clearly	the	following	:		

(3)															 	

where	F	,	G	,	H	are	functions	of		 		

This	means	that	its	variable	r,	which	is	perfectly	defined,	can	only	be	positive	or	zero.	

Let's	start	by	analysing	the	calculation	that	gives	his	interior	metric,	which	describes	the	
geometry	inside	a	sphere	filled	with	incompressible	matter	of	constant	density	 .	As	in	
all	his	calculations	he	used	c	=	1,	we	will	reconstruct	the	equations	by	reintroducing	this	
letter	where	it	belongs.	The	schemes	for	the	two	calculations	are	similar,	in	terms	of	the	
choice	 of	 coordinates	 and	 the	 calculation	 of	 the	 components	 of	 the	 tensor	 of	 the	 first	
member,	which	is	common	to	both	solutions.	The	interior	metric	is	given	in	equation	(35)	
of	[5]:	

(4)																						 		

That	we	will	write:		

(5)																		 	

Schwarzschild	clearly	understood	that	in	Einstein's	theory	the	mass	content	determined	
the	curvature.	Since	his	mass	density	 is	assumed	to	be	constant,	he	relies	on	a	geometry	
within	the	mass	that	is	that	of	a	3D	hypersphere,	where	the	constant	radius	of	curvature	
is:		

(6)																																																																			 	

whose	points	are	 identified	by	the	three	angles	 .	This	hypersphere	 is	 then	fully	
described	for	the	values	:	

(7)																																 		

The	area	of	the	sphere	containing	the	mass	corresponding	to	 .	The	spatial	
part	of	the	metric	is	:		

  ds2 = F dt2 −G ( dx2 + dy2 + dz2 ) − H ( xdx + ydy+ zdz )2

  r = x2 + y2 + z2

 ρo

  
ds2 =

3cosχa −cosχ
2

⎛
⎝⎜

⎞
⎠⎟

2

dt2 − 3
κρo

dχ2 +sin2 χdθ2 +sin2 χsin2 θdϕ2⎡⎣ ⎤⎦ (35)

 
ds2 =

3cosχa −cosχ
2

⎛
⎝⎜

⎞
⎠⎟

2

c2dt2 − 3c2

8πGρo

dχ2 +sin2 χdθ2 +sin2 χsin2 θdϕ2⎡⎣ ⎤⎦

 ρo

 
R̂ = 3c2

8πGρo

 χ , θ ,ϕ

  χ : ( 0→ π / 2 ) θ : ( 0→ π ) ϕ : ( 0→ 2π )

  χ = χa < π / 2



	 4	

(8)																																							 	

This	is	the	metric	of	a	sphere	S3	of	constant	radius	of	curvature	 .	The	determinant	of	
this	metric	is	:		

(9)																													 		

Consider	a	sphere	centred	on	the	origin,	corresponding	to	a	fixed	value	 .	Its	area	is	:		

(10)																																																					 		

So	the	area	of	a	sphere	surrounding	the	origin	can	be	taken	to	be	zero.		

This	3D	object	is	contractile	.	

We	now	turn	to	its	exterior	metric	[4].	After	switching	to	polar	coordinates,	it	introduces	
a	new	set	of	spatial	coordinates	for	computational	convenience:		

(11)																																				 		

According	to	(equation	(7)	of	[4]):		

(12)																																												 		

His	variable	 is	the	time	variable	t	(in	equation	(7)	of	[4]).	Its	metric	is	then	written	
(equation	(9)	of	[4].)	:	

(13)																																								 		

First,	 there	 is	 an	 integration	 constant	 	(the	 future	 "Schwarzschild	 radius" ).	 He	

introduced	 a	 second	 integration	 constant	 which	 was	 quickly	 identified	 with	
(equation	(13)	of	[4]).	This	means	that	his	result	is	expressed	according	to	equations	(10),	
(11)	and	(12)	of	[4],	which	we	rename	:		

(14)																																																			 		

(15)																																																 		

(16)																																															 	

 
dσ2 = 3c2

8πGρo

dχ2 +sin2 χdθ2 +sin2 χsin2 θdϕ2⎡⎣ ⎤⎦

 R̂

 
gσ = gχχgθθ gϕϕ =

3c
8πG ρo

⎛

⎝⎜
⎞

⎠⎟

3

sin4 χsin2 θ = R̂6 sin4 χsin2 θ

χ

 
A = gθθ gϕϕ∫∫ dθdϕ = 4π R̂2 sin2 χ

 x , y , z{ } → r , θ ,ϕ{ } → x1 , x2 , x3{ }

  
x1 =

r3

3
x2 = −cosθ x3 = ϕ (7)

  x4

  
ds2 = f4 dx4

2 − f1 dx1
2 − f2

dx2
2

1− x2
2 − f3 dx3

2(1− x2
2 ) (9)

α  Rs

ρ  α
3

  f2 = f3 = ( 3x1 + υ )2/3 = ( r3 + α3 )2/3 (10)

  
f4 = 1− α ( 3x1 + ρ )−1/3 =1− α

( r3 + α3 )1/3 (11)

  

f1 =
( 3x1 + ρ )−4/3

1−α ( 3x1 + ρ )−1/3 =
( r3 + α3 )−4/3

1− α
( r3 + α3 )1/3

(12)
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This	would	enable	him	to	write	his	external	metric:		

(17)	

		

n	example	of	this	would	be	the	"Original	Schwarzschild	Solution".	What	are	its	
properties?		Its	determinant	is:		

(18)																																																													 		

This	tends	towards	zero	with	r.		Let's	isolate	its	spatial	part:		

(19)																 	

A	limited	expansion	shows	that	 	tends	towards	in	the	vicinity	of	r	=	0	.	But,	
apart	 from	 the	nullity	of	 its	determinant	at	 r	=	0,	 this	metric	 is	by	no	means	 singular.	
Schwarzschild	was	then	faced	with	the	problem	of	identifying	its	two	solutions	(14)	and	
(4).	He	began	by	making	the	change	of	variable	in	[4]	:		

(20)																																																										 		

with	:		

(21)																																																						 		

His	line	element	becomes	:	

(22)																	 	

On	the	surface	of	the	star	 .	It	comes	:		

(23)																														 	

But:	

(24)																																																		 		

So	the	internal	metric	on	the	star	wall	becomes:	

 
ds2 = ( r3 +α3)1/3 −α

( r3 +α3)1/3 c2dt2 − r4

( r3 +α3) ( r3 +α3)1/3 −α⎡⎣ ⎤⎦
dr2 − ( r3 +α3)2/3(dθ2 +sin2θdϕ2 )

 g = − r4( r3 + α3 )1/3

 
dσ(3d)

2 = r4

( r3 +α3) ( r3 +α3)1/3 −α⎡⎣ ⎤⎦
dr2 + ( r3 +α3)2/3(dθ2 +sin2θdϕ2 )

   
gr r ! 3r / α→ 0

 χ , θ ,ϕ{ } → R , θ ,ϕ{ }

 
R = 3c2

8πGρo

sinχ = R̂ sinχ

 

ds2 = 3
2

1−
Ra

2

R̂2 − 1
2

1− R2

R̂2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

c2dt2 − dR2

1− R2

R̂2

− R2 dθ2 +sin2 θdϕ2⎡⎣ ⎤⎦

 R = Ra

 

ds2 = 1−
Ra

2

R̂2

⎛

⎝⎜
⎞

⎠⎟
c2dt2 − dR2

1−
Ra

2

R̂2

− Ra
2 dθ2 +sin2 θdϕ2⎡⎣ ⎤⎦

 

1
R̂2 =

8πGρo

3c2 = 2G M
c2

1
Ra

3 =
α

Ra
3
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(25)																																					 	

Schwarzschild	thus	discovered	a	simple	way	of	identifying	the	two	metrics	at	the	surface	
of	the	star.	All	he	had	to	do	in	the	external	metric	was	to	change	the	variable:		

(26)																																																																	 		

oducing	what	he	calls	an	"intermediate	quantity"	(Hilfsgröbe)	which	automatically	
implies	that	and	this	metric	then	becomes:		

(27)																																				 	

We	 have	 therefore	 simply	 discovered	 an	 initial	 reason	 why	 Schwarzschild	 chose	 to	
present	the	external	metric	in	this	form.	At	this	stage	he	is	trying	to	find	Einstein's	result	
concerning	the	advance	of	Mercury's	perihelion	[9].	By	carrying	out	the	limited	expansion,	
which	is	explicitly	mentioned	in	his	article	on	page	7			

(28)																																																						 	

But	 it	never	occurred	to	him	to	think	that	this	external	metric,	considered	in	 isolation,	
could	refer	to	a	physical	object..		

	

3	–	The	construction	of		Ludwig	Flamm'	meridian	[10]		.		

In	the	months	that	followed,	the	young	mathematician	Ludwig	Flamm,	who	was	31	at	the	
time	Schwarzschild's	article	appeared,	became	interested	in	this	solution,	in	the	form	of	
pairs	of	connected	metrics.	He	also	applied	it	[10]	to	evaluate	the	deviation	of	light	rays	
grazing	 the	 surface	 of	 the	 Sun	 and	 obtained	 the	 value	 1.75'',	 in	 good	 agreement	with	
Einstein's	result.		What	is	interesting	is	the	precise	analysis	he	gives	from	the	geometric	
angle.	 This	 article	 remains	 little	 known	 because	 it	 was	 only	 available	 in	 an	 English	
translation	when	it	was	republished	in	this	form	in	2015	[11].	This	geometry	of	Einstein's	
equation,	invariant	by	time	translation,	is	equivalent	to	the	displacement	along	this	time	
coordinate	of	a	3-surface,	whose	metric	is	given	by	the	spatial	parts	of	the	two	solutions.	
For	the	interior	metric	it	is	:		

(29)																														 	

For	the	external	metric,	its	3D	space	part	is		:	

 

ds2 = 1− α
Ra

⎛

⎝⎜
⎞

⎠⎟
c2dt2 − dR2

1− α
Ra

− Ra
2 dθ2 +sin2 θdϕ2⎡⎣ ⎤⎦

 R = ( r3 + α3 )1/3

 

ds2 = 1− α
R

⎛
⎝⎜

⎞
⎠⎟

c2dt2 − dR2

1− α
R

− R2 dθ2 +sin2 θdϕ2⎡⎣ ⎤⎦

R = ( r3 + α3 )1/3 ≥α

  
R = ( r3 + α3 )1/3 = r 1+ α3

3r3

⎛
⎝⎜

⎞
⎠⎟
! r

 

dσ(3d)
2 = dR2

1− R2

R̂2

− R2 dθ2 +sin2 θdϕ2⎡⎣ ⎤⎦ with R ≤ Ra
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(30)																																					 	

By	making	flat	cuts,	corresponding	to	 	and	then	to	 ,	we	obtain	2-surfaces.	
For	the	inner	part	:			

(31)																																																 	

For	the	external	part	:		

(32)																																																	 	

The	two	2-surfaces	can	be	immersed,	which	means	that	in	both	cases,	if	we	do	 	we	
can	write	that	 .	We	then	obtain	two	differential	equations	giving	the	two	
portions	of	the	meridian.	For	the	inner	part,	equation	:	

(33)																																																																														 		

In	other	words,	a	portion	of	a	circle	with	radius	 	.		

For	the	external	part,	the	equation	is:		

(34)																																																																																 	

In	 other	words,	 a	 portion	 of	 a	 lying	 parabola.	 Hence	 the	 figure	 taken	 from	 L.Flamm's	
article:		

	

Fig.2	:	L.Flamm’	meridian	curve	[10].	

	

 

dσ(3d)
2 = dR2

1− α
R

− R2 dθ2 +sin2 θdϕ2⎡⎣ ⎤⎦ with R ≥ α

  θ = π / 2  ϕ = cst

 

dσ(2d)
2 = dR2

1− R2

R̂2

− R2 dϕ2 with R ≤ Ra

 

dσ(2d)
2 = dR2

1− α
R

− R2dϕ2 with R ≥ α

 ϕ = cst

 dσ
2 = dR2 + dz2

 R
2 + z2 = R̂2

 R̂

 
R = α + z2

4α
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At	this	stage,	neither	Schwarzschild	nor	Flamm	envisaged	treating	the	Schwarzschild	
exterior	metric,	considered	in	isolation,	as	a	physical	object.	

	

4	–	Attempts	to	model	a	mass	by	H.Weyl,	Einstein	and	Rosen.			

When	Schwarzschild's	article	was	published,	Weyl	was	the	same	age	as	Flamm.	He	then	
envisaged	using	the	external	metric	to	describe	a	mass	as	the	source	of	a	gravitational	
field.	 At	 a	 distance,	 geodesics	 of	 non-zero	 length	 can	 be	 likened	 to	 the	 trajectories	 of	
planets,	 when	 they	 are	 quasi-elliptical,	 or	 for	 certain	 non-periodic	 comets,	 quasi-
hyperbolic	or	quasi-parabolic.	The	further	away	we	are	from	the	source	of	this	field,	the	
more	they	tend	towards	Keplerian	conics.	On	the	other	hand,	if	we	move	closer,	we	have	
to	discover	what	strange	geometric	structure	is	responsible	for	creating	the	gravitational	
field	that	we	can	then,	at	a	distance,	believe	to	have	been	created	by	a	point	mass.		To	this	
end,	Weyl	had	to	give	the	Schwarzschild	solution,	considered	in	isolation,	the	character	of	
a	physical	object.	He	uses	the	equation	published	by	Einstein	in	November	2015	[8],	which	
shows	the	Laue	scalar	T,	 instead	of	the	Ricci	scalar	R	in	the	standard	form	that	 is	now	
traditionally	used.:		

(35)																																																																		 		

He	also	 constructed	geodesic	 trajectories	of	 zero	 length	 (ds	=	0)	 corresponding	 to	 the	
paths	 of	 light	 rays.	 For	 the	material	 particles	 affected	 by	 the	 field,	 he	 unambiguously	
states:		

(36)																																																																				 		

Geodesics,	which	can	be	deduced	from	the	variation:	

(37)																																																																							 		

Then	 considering	 the	 case	 of	 solutions	 invariant	 by	 time	 translation,	 he,	 like	 all	 his	
contemporaries,	 materialised	 a	 type	 signature	 by	 writing	 the	 metric	 in	 the	
form:		

(38)																																							 		

Like	 Flamm,	 he	 isolates	 the	 temporal	 part	 from	 the	 spatial	 part.	 And,	 like	 Flamm,	 he	
constructs	the	equation	of	the	meridian	in	the	form	of	a	recumbent	parabola:		

(39)																																																																		 		

He	 designates	 the	 Schwarzschild	 radius	 by	 the	 quantity	 2a.	 He	 therefore	 has	 three	
unknown	 functions	 	of	 r	 to	 determine:	 .	 Like	 Hilbert	 [13]	 and	 Droste	 [14]	 he	
chooses	to	reduce	his	calculation	to	just	two	unknown	functions	by	posing	,	which	will	
have	the	advantage	of	immediately	evoking	the	identification	with	the	Lorentz	metric	at	
infinity,	and	arrives	at	the	result	:	

 
Rik −

1
2

gik R = − Tik

 
ds2 = gik dxidxk > 0

 
δ F∫ ds = 0

 ( + − − − )

  ds2 = f dx4
2 − dσ2 = f dt2 − hdr2 − µ ( dθ2 + sin2 θdϕ2 )

 R = 8a ( R − 2a )

  f , h ,µ
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(40)																																										 		

We	have	deliberately	used	the	letter	R	instead	of	r	to	show	that	this	is	Schwarzschild's	
"intermediate	 coordinate"	 ,	 which	 is	 limited	 to	 ,	 in	 contrast	 to	 his	

coordinate	 ,	which	can	take	on	any	value	 .	 In	so	doing,	Droste	limited	
himself	 to	 describing	 the	 trajectories	 of	 planets	 and	 comets.	Weyl	 considers	 that	 this	
geometric	structure	is	made	up	of	two	folds,	connected	by	a	sphere,	an	aspect	to	which	
we	shall	return	in	detail	later.	Moreover,	he	was	not	the	only	one	to	envisage	this	sort	of	
topological	modelling,	since	Einstein	and	Rosen	[15]	did	the	same,	18	years	later,	starting	
from	the	expression	(33)	and	noting	that	their	transformation	:	

(41)																																																																 		

The	imperative	 ,	opted	for	by	Flamm,	Droste	and	Weyl,	implies	denying	all	reality	
to	portions	of	the	object	such	as	 ,	corresponding	to	the	interior	of	the	gorge	
sphere,	whose	existence	is	explicitly	mentioned	in	[15],	we	quote:		

The	writers	investigate	the	possibility	of	an	atomistic	theory	of	matter	and	
electricity,	 while	 excluding	 the	 singularities	 of	 the	 field,	 with	 a	
mathematical	representation	of	physical	 space	of	 two	 identical	 sheets,	a	
«	particle	»	being	represented	by	a	«	bridge	»	connecting	these	sheets.		

Like	 H.	 Weyl,	 Einstein	 and	 Rosen	 were	 the	 first	 to	 suggest	 a	 structure	 of	 universes	
constituting	 a	 two-sheet	 covering	 of	 the	 variety	 composed	 of	 points	 associated	 with	
coordinates	 which	thus	split	into	pairs	of	adjacent	points:	

(42)																				 	

There	is	therefore	no	uniqueness	of	the	stationary	solution	with	SO(3)	symmetry.	But	the	
Einstein	and	Rosen	model	is	not	Lorentzian	at	infinity.		

It	is	possible	to	opt	for	another	set	of	coordinates:		

(43)																																																			 	

Using	the	change	of	variable	[16]:		

(44)																																																														 		

Cette	métrique	extérieure	devient	:		

(45)	 	

			is	not	"a	new	radial	variable".	It's	the	expression	"radial	variable"	that	doesn't	make	
sense.	 And	 the	 same	 applies	 to	 the	 letters	 r	 or	 R.	 Coordinates	 are	 simply	 ways	 of	

 

ds2 = 1− α
R

⎛
⎝⎜

⎞
⎠⎟

dt2 − dr2

1− α
R

− R2( dθ2 + sin2 θdϕ2 )

 (Hilfsgröβe)  R ≥ α

 r = x2 + y2 + z2

 u
2 = R − 2m ≥ 0

 ds2 ≥ 0

 R < 2m = α

 t , R , θ ,ϕ{ }

 
u = + R − 2m , θ ,ϕ{ } and u = − R − 2m , θ ,ϕ{ }

 t , R , θ ,ϕ{ } → t ,ρ , θ ,ϕ{ }

 R = α ( 1+ Ln chρ )

 
ds2 = Logchρ

1+ Logchρ
c2dt2 − 2 + Logchρ

1+ Logchρ
α2 th2ρ dρ2 − α2( 1+ Logchρ )2( dθ2 + sin2θdϕ2 )

ρ
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identifying	points	in	the	manifold.	The	only	relevant	quantity	is	the	length	s,	which	must	
then	be	 identified	with	 the	proper	 time	 	by	posing	 .	The	geometric	object	 then	
explicitly	has	two	folds.	The	first	is	traversed	giving	 values	from	minus	infinity	to	0,	the	
second	from	0	to	plus	infinity.	The	two	layers	are	joined	along	a	sphere	with	a	throat	of	
area	 	(minimal,	 in	 the	 case	 of	 the	 family	 of	 SO(3)-invariant	 spheres).	 This	 is	 the	
fundamental	property	of	the	geometric	object	that	is	the	solution	to	Einstein's	equation:	
it	 is	 non-contractile.	 	 And	 this	 time,	 unlike	 the	 Einstein-Rosen	 bridge,	 this	 structure	
creates	a	link	between	two	Lorentzian	spaces.	It	is	a	3D	object	that	undergoes	translation	
in	the	direction	of	time.	Cutting	it	at	constant	gives	a	2D	object,	the	Flamm	surface:	

	

Fig.3	:	Flamm’s	surface	meridian	curve.	

	

5	–	Describing	an	unsteady	phenomenon	using	a	stationary	metric.			

The	most	general	form	of	a	time-independent	SO(3)-invariant	solution	is	([1],	[17]):		

(46)																													 		

Such	a	solution	is	not	invariant	to	changing	t	to	-	t.	So,	for	the	same	coordinate	 	
point,	we	might	expect	to	have	not	one	solution,	but	two.	Now,	in	physics,	when	theorists	
are	looking	for	a	solution	to	a	differential	equation,	or	to	a	system	of	differential	equations,	
they	first	give	themselves	boundary	conditions,	and	then	try	to	construct	a	solution	that	
is	unique.	In	the	case	of	the	search	for	a	stationary	solution	to	the	Einstein	equation,	these	
boundary	conditions	consist	of	imposing	that	the	solution	be	Lorentzian	at	infinity.	If	we	
focus	on	the	requirement	of	uniqueness,	we	obtain	G.D.Birkhoff's	theorem	[18].	This	then	
rules	out	the	presence	of	a	cross	term	in	dr	dt.	Such	a	solution	is	then	invariant	by	time	
inversion,	which	is	not	based	on	any	physical	constraint.	It	is	then	qualified	as	static,	as	
opposed	 to	 stationary,	 which	 expresses	 invariance	 by	 temporal	 translation.	 But,	 for	
example	in	[10],	[12],	[15],	[16],	there	are	interpretations	of	the	stationary	solution	with	
spherical	 symmetry	 that	 reveal	 a	 different	 topology,	 with	 two	 sheets	 connected	 by	 a	
throat	sphere,	described	as	a	bridge	by	Einstein	and	Rosen.	So	the	non-uniqueness	of	the	
solution	is	not	simply	permitted,	but	necessary,	 in	order	to	differentiate	between	what	
refers	to	one	of	the	slicks	and	what	refers	to	the	other.	We	can	therefore	see	that	Birkhoff's	
theorem	implies	an	additional,	implicit	hypothesis	of	a	topological	nature.	If	we	consider	
the	two-folds	structure,	which	is	also	non-contractile,	then	the	presence	of	the	cross	term	

τ  s = cτ
ρ

 4πα
2

 ds2 = h(r)dr2 + k(r)( dθ2 + sin2 θdϕ2 ) + l(r)dt2 + a(r)drdt

 t , r , θ ,ϕ{ }
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in	 dr	 dt	 is	 necessary.	 Its	 implications	 have	 been	 studied	 by	 the	 mathematician	 P.	
Koiran[19].	These	two	solutions	implement	the	change	of	coordinates	initially	proposed	
by	Eddington	[20],	in	order	to	eliminate	the	coordinate	singularity	in	 	:		

	(47)																																																										 		

To	 make	 it	 clear	 that	 the	 scalar	 R	 (Schwarzschid's	 "intermediate	 quantity")	 is	 just	 a	
coordinate,	 a	 simple	 way	 of	 locating	 points	 in	 the	 hypersurface,	 let's	 replace	 these	
coordinates	t	and	R	by	the	Greek	letters	 	and	 	.	Then	we	have	:	

(48)																																				 	

At	this	point	we	should	remember	that	is	 	an	simple	integration	constant,	whose	value	
can	 be	 negative.	 Thus,	 if	 Newtonian	 imperatives,	 in	 the	 component	 where	 the	
observations	are	made,	dictate	that	:		

(49)																																																																							 		

The	line	element	:		

(50)																																					 	

is	also	a	stationary	and	spherically	symmetric	solution	of	the	field	equation,	with		zero	
second	 member.	 Its	 geodesics	 therefore	 suggest	 repulsion.	 	 Remember	 that	 only	 the	
quantity	s	is	relevant	and	has	a	physical	meaning.	We	will	apply	the	change	of	variable	to	
equation	(48):		

(52)																																															 		

With	 (Eddington's	 change	 of	 variable	 [20]):	 (53)																																																							

		

The	equation	(48)	besomes	:	

(54)							 	

P.	Koiran	[19]	has	shown	that,	in	this	form,	with	this	cross	term,	this	Schwarzchild	solution	
goes	hand	in	hand	with	a	finite	free-fall	time	and	an	infinite	escape	time.		

	We	can	now	just	as	easily	apply	the	change	of	variable	to	equation	(50):		

 R = α

 
t ' = t + α

c
Ln

R
α

− 1
⎛
⎝⎜

⎞
⎠⎟

ζ ξ

 

ds2 = 1− α
ξ

⎛
⎝⎜

⎞
⎠⎟

dζ2 − dξ2

1− α
ξ

− ξ2 ( dθ2 + sin2 θdϕ2 )

α

 
α = 2G M

c2 > 0

 

ds2 = 1+ α
ξ

⎛
⎝⎜

⎞
⎠⎟

dζ2 − dξ2

1+ α
ξ

− ξ2 ( dθ2 + sin2 θdϕ2 )

  ζ , ξ , θ ,ϕ{ } → ζ' , ξ , θ ,ϕ{ }

 
ζ = ζ ' + α Ln

ξ
α
− 1

⎛
⎝⎜

⎞
⎠⎟

 
ds2 = 1− α

ξ
⎛
⎝⎜

⎞
⎠⎟

dζ ' 2− 1+ α
ξ

⎛
⎝⎜

⎞
⎠⎟

dξ2 − ξ2 ( dθ2 + sin2 θdϕ2 ) − 2αdξ dζ '
ξ
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(55)																																																									 	

	This	line	element	becomes	:		

(56)

	

																											 	

Always	with		:		

(57)																																																																					 		

This	representation	(56)	of	the	Schwarzschild	solution	goes	hand	in	hand	with	a	 finite	
escape	 time	 and	 an	 infinite	 free-fall	 time.	 With	 this	 pair	 of	 solutions,	 this	 bimetric	
representation	of	the	stationary	solution	with	spherical	symmetry,	we	obtain	a	two-folds,	
non-contractile	structure,	equipped	with	a	throat	sphere,	representing	a	passage	linking	
two	Minkowski	spaces,	whose	geodesics	can,	in	a	short	finite	time,	only	be	traversed	in	
one	direction.	It's	a	one	way	membrane.		

Thus,	the	fact	of	considering	a	non-uniqueness,	a	bimetric	solution,	which	then	authorises	
the	presence	of	a	cross	term	by	combining	space	and	time	variables,	makes	it	impossible	
to	use	the	stationary	solution	to	describe	the	implosion	of	a	star.		

Tu	sum	up		:		

	

	

Fig.4	:	Assuming	uniqueness	of	solution	

 
ζ = ζ ' − α Ln

ξ
α
− 1

⎛
⎝⎜

⎞
⎠⎟

 
ds 2 = 1+ α

ξ
⎛
⎝⎜

⎞
⎠⎟

dζ ' 2− 1− α
ξ

⎛
⎝⎜

⎞
⎠⎟

dξ2 − ξ2 ( dθ2 + sin2 θdϕ2 ) + 2αdξ dζ '
ξ

 
α = 2G M

c2 > 0
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Fig.5	:	Bimetric	solution.		

	

We	can	see	that	the	article	by	Oppenheimer	and	Snyder	[21],	the	founder	of	the	black	hole	
model,	is	based	on	an	assumption	of	the	uniqueness	of	the	solution,	devoid	of	any	physical	
justification.	

	

6	–	The	debate	and	C.	Corda's	"clarification”	[1].		

It	is	therefore	this	article	that	we	should	now	concentrate	on	because,	quoted	by	all	the	
specialists,	it	is	supposed	to	shed	light	on	this	question	of	the	"Schwarzschild	metric	in	an	
'original'	 or	 'standard'	 form".	 It	 presents	 different	 presentations	 of	 the	 solution,	 with	
different	qualifiers.		He	acknowledges	that	the	"standard"	form	found	in	the	literature	is	
not	the	"original"	form	constructed	by	Schwarzschild	on	the	basis	of	his	hypotheses.		

In	what	follows	we	shall	reproduce	extracts	from	C.	Corda's	publication,	which	includes	
numbered	equations	and	reference	calls.	As	we	have	done	above,	so	that	the	reader	can	
tell	the	difference,	the	numbering	of	the	equations,	as	it	appears	in	Corda's	article,	will	be	
placed	 to	 the	 right	 of	 the	 equations	 and	 in	 italics.	 As	 before,	 we	 will	 add	 our	 own	
numbering	of	these	same	equations,	to	the	left	of	them.	His	own	references	will	also	be	in	
italics.		

In	equation	(1)	he	presents	"the	standard	form	of	the	Schwarzschild	solution".		

(58)																													 	

   

ds2 = 1−
rg

r
⎛

⎝⎜
⎞

⎠⎟
dt2 − r 2 ( dθ 2 + sin2θ dϕ 2 )− dr 2

1−
rg

r

(1)
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On	several	occasions	he	refers	to	a	work	by	L.	Landau	and	R.	Lifschit	[22]	.	At	the	beginning	
of	section	2,	he	writes:	

																				«	The	more	general	line-element	which	respects	central	symmetry	is	»		:		

(59)											 		

																			Where	:		

(60)																																							 		

It	is	important	to	reproduce	his	words	exactly.	So	he	writes:		

				At	this	point,	if	one	wants	«	the	standard	solution	»,	i.e.	the	elements	(1)	r	and	
t	have	to	be	chosen	in	a	way	that	a(r,t)	=	0		and	k(r,t)	=	-	r2	.	in	particular,	the	
second	condition	implies	that	the	standard	Schwarzschild	radius	is	determined	
in	a	way	which	garanties	the	the	lenght	of	the	circumference	centred	in	the	origin	
is		 [42].				

				In	our	approach,	we	will	suppose	again	that		a(r,t)	=	0,	but,	differently	from	
the	 standard	 analysis,	 we	 will	 assume	 that	 the	 lenght	 of	 the	 circumference	
centered	 in	 the	 origin	 is	 not	 .	We	 release	 an	 apparent	 different	 physical	
assumption,	i.e.	the	arches	of	circumférence	are	deformd	by	the	presence	of	the	
mass	of	the	central	body	M.	Note	that	this	different	physical	hypothesis	permit	to	
circumnavigate	 the	 Birhoff	 theorem	 [4]	 (our	 reference	 [18])	 In	 fact,	 the	
demonstration	of	the	Birkhoff	Theorem	starts	from	a	line	element	in	which	k(r,t)	
=	−r2	has	been	chosen.	

Then,	we	proceed	assuming	k	=	−mr2,	where	m	is	a	generic	function	to	
be	determined	in	order	to	obtain	that	the	length	of	circumferences	centred	
in	 the	 origin	 of	 the	 coordinate	 system	 are	 not	 2πr.	 In	 other	 words,	 m	
represents	a	measure	of	the	deviation	from	2πr	of	circumferences	centred	
in	the	origin	of	the	coordinate	system.	
	

The	line	element	(2)	becomes	:	
	
(61)													ds2	=	hdr2	–	mr2(sin2	θdϕ2	+	dθ2)	+	ldt2.																												(5)	

One	puts	 			

(62)																																		 		

	
He	writes,	which	is	correct,	that	if	we	want	to	obtain	the	"standard	solution",	i.e.	
our	 equation	 (58)	 (or	 hiss	 equation	 (1)),	we	must	 remove	 the	 cross	 term	 and	
ensure	 that	 the	 coefficient	 of	 is	 r2.	 	 He	 then	 presents	
Schwarzschild's	calculation	as	an	agreed	deviation	from	this	second	hypothesis,	
which	seems	obvious	to	him,	namely	that	the	perimeter	of	a	closed	curve,	lying	in	

   ds2 = h(r ,t)dr 2 + k (r ,t)( sin2θdϕ 2 + dθ 2 ) + l (r ,t)dt2 + a(r ,t)dr dt (2)

   r ≥ 0 , 0 ≤θ ≤ π , 0 ≤ ϕ ≤ 2π (3)

  2π r

  2π r

  

X ≡ 1
3

r3

Y ≡ − cosθ
Z ≡ϕ

(6 )

  ( dθ 2 + sin2θ dϕ 2 )
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a	plane,	is	 ,	for	which	there	is	no	physical	justification.	This	"deviation"	from	
this	 "standard	 solution",	 the	 only	 relevant	 one	 according	 to	 him,	 results	 in	 the	
replacement	of	 by	a	function	m.	What	follows	is	the	identical	calculation	made	
by	Schwarzschild	[4].	He	then	explains	the	result	in	equation	(28):	
	

(63)																				 			(28)										

	

where	he	replaces	the	integration	constant	a	with	the	Schwarzschild	radius	rg	:	

(64)																				 			(30)										

	

He	gives	this	final	expression	of	the	external	metric,	by	Schwarzschild,	without	making	it	
fully	explicit.	We	are	going	to	do	it	and	he	comes:		

(65) 	

																									 	

						This	is	identical	to	equation	(17)	in	this	article.	The	constant	a	is	none	other	than	the	
characteristic	 length	 rg	 ,	 is	 the	 "Schwarzschild	 radius",	 designated	 by	 	.	 This	 result	
means	that	his	function	m	is,	which	he	specifies	in	equation	(29)	:	

(66)																																																																				 																																																								(29)	

The	behaviour	of	 the	 "original	Schwarzschild	metric",	 corresponding	 to	equation	 (17),	
was	examined	above.	With	 these	coordinates	 the	variable	r	 can	 take	any	non-negative	
value,	given	its	definition	by	Schwarzschild.		The	geometric	object	is	non-contractile.	The	
point	r	=	0	can	be	described	as	the	"origin	of	the	coordinates".	Corda	then	introduces	the	
change	of	variable	(his	equation	(31)):	

(63)																																																																	 		

  2π r

  r 2

  

ds2 = 1− a
( r3 + a3)1/3

⎡

⎣
⎢

⎤

⎦
⎥dt2 − ( r3 + a3)2 /3( sin2θ dϕ 2 + dθ 2 )

− d (r3 + a3)2 /3

1− a
( r3 + a3)1/3

  

ds2 = 1−
rg

( r3 + rg
3)1/3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dt2 − ( r3 + rg
3)2 /3( sin2θ dϕ 2 + dθ 2 )

−
d (r3 + rg

3)2 /3

1−
rg

( r3 + rg
3)1/3

  

ds2 =
( r3 + rg

3)1/3 − rg
3

( r3 + rg
3)1/3 c2dt2 − ( r3 + rg

3)2/3( dθ 2 + sin2θ dϕ 2 )

− r 4

( r3 + rg
3) (r3 + rg

3)1/3 − rg
⎡⎣ ⎤⎦

dr 2

α

  
m = (r3 + a3)2 /3

r 2

   
r̂ = ( r3 + rg

3)1/3 (31)
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As	a	result,	he	obtains	(	his	equation	(32)	):	

(64)																															 	

It	then	becomes	important	to	reproduce	his	own	words,	in	the	knowledge	that	all	black	
hole	 specialists	 invoke	 this	 article,	 simply	 positioned	 on	 the	 arXiv	 database,	 and	 not	
published	in	a	peer-reviewed	journal,	as	soon	as	someone	questions	the	relevance	of	the	
"standard	interpretation"	of	the	Schwarzschild	outer	solution,	as	the	basis	of	the	black	
hole	model.	We	quote	him:		

Eq.	(32)	 looks	 formally	equal	to	the	“standard	Schwarzschild	solution”	

(1).	But	one	could	think	that	the	transformation	(31)	is	forbidden	for	the	

following	motivation.	It	transfers	the	origin	of	the	coordinate	system,	r	=	

0,	θ	=	0,	 	=	0,	which	is	the	surface	of	a	sphere	having	radius	rg	in	the	 ,	

θ,	 	coordinates,	in	a	non-dimensional	material		point	 	=	0,	θ	=	0,	ϕ	=	

0	 in	 the	 ,	 θ,	 ϕ	 coordinates.	 Such	 a	 non-dimensional	 material	 point	

corresponds	 to	 the	 point	 	 r	=	 −rg,	 θ	=	 0,	 ϕ	=	 0	 in	 the	 original	 r,	 θ,	 ϕ	

coordinates.	 Thus,	 the	 transformation	 (31)	 could	 not	 be	 a	 suitable	

coordinate	transformation	because	it	transfers	a	spherical	surface,	i.e.	a	

bi-dimensional	manifold,	 in	a	non-dimensional	material	point.	We	will	

see	in	the	following	that	this	interpretation	is	not	correct.		

On	 the	 other	 hand,	 we	 are	 searching	 solution	 for	 the	 external	

geometry	,thus	we	assumed	r	≥	0		in	Eq.(3)	and	from	Eq.	(31)	it	il	always	

		 in	Eq.	(30).	 In	this	way	there	are	not	physical	singularity	 in	Eq.	

(32).	In	fact	r	=	0	in	Eq.	(30)	implies	 	in	Eq.	(32)	which	corresponds	

to	the	mathematical	singularity	at		X	=	0	.	This	singularity	is	not	physical	

but	is	due	to	the	particular	coordinates	t,		X	,	Y	,	Z	defined	defined	by	the	

transformation	(6).		

	

Again,	 we	 emphasize	 the	 apparent	 different	 assumption	 of	 our	
analysis.	As	it	is	carefully	explained	in	[42],	the	“standard	Schwarzschild	
solution”	(1),	arises	from	the	hypothesis	that	the	coordinates	r	and	t	of	
the	two	functions	(4)	are	chosen	in	order	to	guarantee	that	the	length	of	
the	circumference	centred	in	the	origin	of	the	coordinate	system	is	2πr.	
Indeed,	in	the	above	derivation	of	“the	original	Schwarzschild	solution”	
(30),	 r	 and	 t	 are	 chosen	 in	 order	 to	 guarantee	 that	 the	 length	 of	 the	
circumference	centred	in	the	origin	of	the	coordinate	system	is	not	2πr.	
In	 particular,	 choosing	 to	 put	 the	 mathematical	 singularity	 of	 the	

   

ds2 = 1−
rg

r̂
⎛

⎝⎜
⎞

⎠⎟
dt2 − r̂ 2 ( dθ 2 + sin2θ dϕ 2 )− dr̂ 2

1−
rg

r̂

(32)

ϕ  ̂r

ϕ  ̂r

 ̂r

 
r̂ ≥ rg

 
r̂ = rg
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function	A	at	X	=	0	is	equivalent	to	the	physical	condition	that	the	length	
of	 the	 circumference	 centred	 in	 the	 origin	 of	 the	 coordinate	 system	 is	

.	Then,	one	could	think	that	by	forcing	the	transformation	
(31)	for	r	≤	0,	one	returns	to	the	standard	Schwarzschild	solution	(1),	but	
a	 bi-dimensional	 spherical	 surface,	 that	 is	 the	 surface	 of	 the	
Schwarzschild	sphere,	 is	 forced	to	become	a	non-dimensional	material	
point	 and	 we	 force	 a	 non-Euclidean	 geometry	 for	 circumferences	 to	
become	Euclidean.	In	that	case,	such	a	mathematical	forcing	could	be	the	
cause	of	the	singularity	in	the	core	of	the	black-hole.	Thus,	this	singularity	
could	be	only	mathematical	 and	not	physical.	But	 in	 the	 following,	 by	
matching	with	the	internal	geometry,	we	will	see	that	this	interpretation	
is	not	correct	and	that	the	singularity	 in	the	core	of	 the	BH	remains	a	
physical	 singularity	 also	 in	 the	 case	 of	 the	 “original	 Schwarzschild	
solution”	given	by	Eq.	(30).	
Notice	 that	 a	 large	 distances,	 i.e.	where	 	r,	 the	 solution	 (30)	

well	approximates	the	standard	Schwarzschild	solution	(1),	thus,	both	of	
the	weak	field	approximation	and	the	analysis	of	astrophysical	situations	
remain	the	same.	

	
We	have	underlined	in	red	the	geometric	object	described	by	C.	Corda	as	a	'non-

dimensional	material	point'.	We	have	not	been	able	to	find	a	definition	of	such	an	
object	in	mathematics	or	geometry,	and	it	seems	to	exist	only	in	the	imagination	of	
its	author.	
	
He	then	describes	the	portion	of	space	corresponding	to	the	value	 	of	the	

coordinate	singularity,	i.e.	in	the	system	 	,	which	is	correct,	but	he	errs	
in	 saying	 that	 this	 coordinate	 singularity	 is	 also	 present	 in	 r	 =	 0,	 i.e.	 in	 the	
Schwarzschild	coordinate	system	 .	In	this	system	the	form	of	the	metric	
corresponds	to	equation	(55).	In	r	=	0	the	potentials	of	this	metric	are	not	singular	
at	all.	It	is	significant	that	C.	Corda	did	not	fully	explain	the	metric	in	this	form,	which	
suggests	that	he	analysed	Schwarzschild's	original	calculation	only	very	briefly.		
	
Let	us	summarise	the	scheme	of	the	calculation	as	Schwarzschild	led	it			

	
- -	It	starts	with	Cartesian	coordinates		 		

	
- Then	he	shifts	to	polar	coordinates		 	with	 		

	
- He	uses	a	 third	system,	 for	computational	convenience	(equation	(7)	 from	

[4])			:		

(55)																													 																		(7)	

  
2π( r3 + rg

3)1/3

  
rg ≪ r

 
r̂ = rg

 t , r̂ ,θ ,ϕ{ }

 t , r ,θ ,ϕ{ }

 t , x , y , z{ }

 t , r ,θ ,ϕ{ }   r = x2 + y2 + z2 ≥ 0

 
x4 = t , x1 =

r3

3
, x2 = −cosθ , x3 =ϕ



	 18	

- He	gets	his	metric	potentials	expressed	in	 	

(56)																																																			 	

	

(57)																																																			 	

	
(58)																																																				 	
	
-	He	did	not	publish	his	result,	which	he	would	have	done	if	he	had	gone	back	
to	 coordinates	 ,	 because	 he	 realised,	 after	 having	 no	 doubt	
explained	 it,	 that	 he	 would	 have	 difficulty	 making	 the	 junction	 with	 his	
internal	metric,	 first	expressed	in	spherical	coordinates	 ,	then	
expressed	in	polar	coordinates	using	:			
	
(69)	 	

																																											 	
	
-	To	negotiate	this	connection	between	the	two	metrics,	it	then	makes	a	final	
change	of	variable	in	its	external	metric,	passing	from	its	r	coordinate	to	an	
intermediate	quantity	(Hilfsgöbe)	R	according	to	:				

	

	
	

variable	designated	by	the	character	 	in	Corda's	article.		
	

In	his	articles	Corda	uses	coordinates	X	,	Y	,	Z	,	which	are	the	coordinates	 .	
He	 is	 right	 that	 in	 the	 coordinates	 the	non-regularity	of	 the	 term	

introduces	this	coordinate	singularity.	But	it	disappears	in	the	system	

because	when	r	tends	towards	zero,	,	see	equation	(16),	 	tends	towards	 ,	
i.e.	towards	zero,	and	not	towards	infinity.		
	
One	 thing	 is	 clear.	 The	 "standard	 form"	 of	 the	 solution	 results	 entirely	 from	 a	
transformation	of	the	form	envisaged	by	Schwarschild	(equation	(6)	in	[4]):		
	

(70)																										 		

	

 x3 , x1 , x2 , x3{ }

  
f4 = 1− α

(3x1 +α
3)1/3 (10 )

  

f1 =
(3x1 +α

3)1/3

1− α
(3x1 +α

3)1/3

(11 )

  f2 = f3 = (3x1 +α
3)2 /3 (12 )

 t , r ,θ ,ϕ{ }

 t ,χ ,θ ,ϕ{ }

 
R = 3c2

8π G ρo

sinχ = R̂ sinχ

  R = ( r3 +α 3 )1/3

 ̂r

  x1 , x2 , x3

  x4 , x1 , x2 , x3{ }
 t , r ,θ ,ϕ{ }

 
gr r   3r / α

  

ds2 = Fdt2 − G ( dr 2 + r 2dθ 2 + r 2 sin2θdϕ 2 ) − H r 2dr 2

= Fdt2 − (G + H )dr 2 − G( r 2dθ 2 + r 2 sin2θdϕ 2 )
(6 )
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The	first	person	to	modify	this	expression	was	David	Hilbert,	on	23	December	
1916	[23].	In	Schwarzschild's	presentation,	three	functions	of	r	:	F	,	G	,	H	are	to	be	
determined.	Hilbert	wrote:		

	
According	 to	 Schwarzschild	 the	 most	 general	 metric	

conforming	 to	 these	 assumptions	 ins	 represented	 in	 polar	
coordinates	

(71)																																									 	 		

by	the	expression	
	
(72)				 	
	
where 	, 	, 	,	are	still	arbitrary	functions	of	r.	If	we	put			
	
(73)																																														 	
	
Then	we	 are	 equally	 justified	 in	 interpreting	 	as	 spatial	
polar	coordinates.	If	we	introduce		 	in	(42)	instead	of	r	and	the	
eliminate	the	sign	 ,	the	result	is	the	expression		
(74)										 	

	
Don't	look	to	Hilbert	for	high-geometry	justifications.	He	simply	sees	this	as	a	

way	of	having	to	determine	only	two	functions,	instead	of	three.		
	

Corda	cites	Droste's	construction	of	the	solution	in	1917[14]	as	leading	to	"the	
standard	form	of	Schwarzshild's	solution".		Droste	presents	his	solution	in	the	form:		

	
(75)																												 	
	
Droste,	too,	realised	that	the	construction	of	the	solution	could	be	reduced	to	

that	 of	 two	 unknown	 functions,	 in	 this	 case	w	 and	 v	 .	 He	made	 two	 successive	
changes	of	variable	:		

(76)																														 		
	
Which	gives	:		
	

(77)																							
	

	

  

w1 = r cosθ
w2 = r sinθ cosϕ
w3 = r sinθ sinϕ
w4 = l

  F (r )dr 2 + G(r ) ( dθ 2 + sin2θ dϕ 2 )+ H (r ) dl2 ( 42 )

  F (r )   G(r )   H (r )

  r * = G(r )

 r * ,θ ,ϕ
 r *

 *

  M (r ) dr 2 + dθ 2 + sin2θ dϕ 2 +W (r ) dl2 ( 43 )

  ds2 = w2 dt2 − dr 2 − v2 ( dθ 2 + sin2θ dϕ 2 ) ( 4 )

 t , r ,θ ,ϕ{ }→ t , x ,θ ,ϕ{ }→ t ,ξ ,θ ,ϕ{ }

  
ds2 = ( 1− ξ )dt2 − 4α 2

( 1− ξ )ξ 4 dξ 2 − α 2

ξ 2 ( dθ 2 + sin2θ dϕ 2 )
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He	then	faced	the	problem	of	boundary	conditions:	How	to	choose	a	new	space	
variable	such	that,	as	it	tends	towards	infinity,	the	metric	tends	towards	the	Lorentz	
metric.	The	solution	was	quickly	found		:		

	

(78)																																																												 		

	
The	result	is	what	Corda	calls	"the	standard	form	of	the	Schwarzchild	solution".:	
	

(79)																									 	

n	fact,	the	only	constraint	is	that	when	the	value	of	a	spatial	coordinate	tends	
towards	infinity,	the	metric	has	a	Lorentzian	form.	Otherwise,	all	coordinate	forms	
are	possible	and	refer	only	to	different	representation	systems.	In	fact,	these	choices	
are	simply	different	ways	of	representing	the	same	object,	where	the	only	intrinsic	
quantity	that	is	invariant	to	changes	in	coordinates	is	the	length	s.	The	scientist	is	
therefore	like	a	blind	man	who	has	only	one	measure	of	length,	using	his	hands,	to	
assess	the	shape	of	an	object..		

	
Flamm	[10]	immediately	understood	that	we	could	concentrate	on	the	spatial	

part	of	a	time	translation	invariant	solution.		This	can	be	taken	into	account	in	the	
physical	solution	presented	by	Schwarzschild	in	the	form	of	two	regular,	connecting	
metrics,	without	any	singular	aspect	appearing	in	space.	This	3D	geometric	object,	
which	we	might	call	the	Schwarzschild-Flamm	hypersurface,	is	then	contractible.	It	
turns	out	that	it	can	be	plunged	into	.	And	plane	cuts	can	be	made	in	such	an	object,	
for	example	at	constant.	The	plane	section	of	a	3D	object	is	a	2D	object.	Here	is	this	
section,	taken	from	[24]..		

	

	
Fig.6	:	Schwarzschild-Flamm	hypersurface		[24].	

	
Pour	obtenir	 l’objet	3D	il	 faut	opérer	des	rotations.	Ce	faisant	 il	est	clair	que	

l’ensemble	 de	 l’espace	 3D	 sera	 balayé	 et	 il	 n’existera	 aucun	 de	 ces	 points	 qui	
n’appartienne	pas	à	l’hypersurface.		

	

 
ξ = α

r

  

ds2 = 1− α
r

⎛
⎝⎜

⎞
⎠⎟

dt2 − dr 2

1− α
r

− r 2 ( dθ 2 + sin2θ dϕ 2 ) (7 )
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Fig.7	:	Flamm’s	surface	[24].	
	
When	only	the	external	metric	is	considered,	the	4D	hypersurface	connects	two	

Minkowski	 spaces.	The	 cross-section	at	 constant	 t	 of	 a	Minkowski	 space	 is	 a	3D	
Euclidean	 space.	 If	we	make	plane	 cuts	of	 these	3D	Euclidean	 spaces,	we	obtain	
planes.	 It	 is	 therefore	 perfectly	 relevant	 to	 say	 that	 the	 plane	 cut	 of	 the	 3D	
hypersurface	gives	an	object	that	is	a	bridge	connecting	two	planes.	The	object	has	
a	 throat	 circle.	Now,	 if	we	want	 to	 generate	 the	 3D	 object,	we	 need	 to	 consider	
rotations	 in	 the	 3D	 plunge	 space.	 By	 doing	 this,	 the	 throat	 circle	will	 envelop	 a	
sphere,	 the	 throat	 sphere.	 Only	 points	 in	 the	 imbedding	 3D	 space	 outside	 this	
sphere	will	 belong	 to	 the	 3D	 hypersurface.	 A	 l’intérieur	 de	 la	 sphère	 les	 points	
donneront	 un	 	.	 Le	 fait	 de	 considérer	 qu’ils	 appartiennent	 ou	 non	 à	 la	
physique	dépend	des	choix	retenus.		

	
	
Figure	6	corresponds	to	a	representation	space	associated	with	the	coordinates	

or	 	What	 about	 the	 3D	 space	 associated	 with	
Schwarzschild's	 initial	 choice?	Once	 again,	 this	would	 correspond	 to	 a	 structure	
linking	two	Euclidean	3D	spaces.	The	junction	would	not	be	made	by	a	sphere	of	
throat,	but	through	a	point,	which	could	be	likened	to	"a	very	small	sphere	of	throat".	
But	this	vision	is	misleading.	In	fact,	this	time	the	3D	object	is	no	longer	"plungable".	

  ds2 < 0

 t , R ,θ ,ϕ{ }  t , r̂ ,θ ,ϕ{ }
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There	is	no	one	representation	space	that	is	better	than	another.	It's	all	a	question	
of	knowing	what	game	you	want	to	play.	If	this	approach	consists	of	imposing	that	

,	then	the	solution	to	the	equation	delivers	the	same	message,	in	different	
forms	depending	on	the	geometric	context	chosen.	If	we	impose	the	uniqueness	of	
the	solution,	then	there	will	only	be	one	layer	and	one	metric.	

	
With	 the	 space-time	 associated	 with	 the	 coordinates	 or	

the	3D	hypersurface	will	have	an	edge	with	the	topology	of	a	sphere	
S2.	In	the	second	case,	the	sphere	will	be	made	up	of	points	with	coordinates	and	
the	area	of	this	sphere	will	be	.	In	the	first	case,	the	edge	sphere	will	have	the	same	
area,	but	its	points	will	correspond	to	 .	This	situation	will	come	as	no	
shock	 to	 a	 geometric	 mathematician.	 Similarly,	 who	 can	 create	 a	 mental	
representation	of	Minkowski	space,	where	the	square	of	the	hypothenuse	is	equal	
to	the	difference	between	two	adjacent	sides?	Who	has	a	mental	diagram	in	which	
the	phenomena	of	quantum	mechanics	become	clear?		

	
If	we	consider	the	possibility	of	non-uniqueness,	of	a	bimetric	solution,	

the	edge	sphere	becomes	a	throat	sphere.		
	

This	being	the	case,	when	C.Corda	says	:	
	

Such	 a	 non-dimensional	material	 point	 corresponds	 to	 the	 point	
	,	θ	=	0,	ϕ	=	0	in	the	original	r,	θ,	ϕ	coordinates.		

	
this	 sentence	 reveals	 his	 lack	 of	mastery	 of	 the	 subject,	 because,	 given	 the	 very	

definition	of	these	coordinates		: on	a	 			
	

				Still	commenting	on	the	second	part	of	C.	Corda's	article,	we	would	say	that	for	
decades,	when	black	hole	specialists	have	been	talking	about	the	foundations	of	the	
model,	they	have	always	referred	to	earlier	work	that	would	have	enabled	them	to	
analyse	them	definitively.	We	were	present	in	2017	at	the	"Schwarzschild	Annual	
Colloquium"	held	in	his	home	town.	Juan	Maldacena,	a	pioneer	in	black	hole	physics,	
was	the	guest	speaker.	He	began	his	talk	by	saying:	
	
- -	Schwarzschild's	solution	baffled	theorists	in	the	early	days.	But	today	it	has	

been	elucidated	and	this	solution	is	now	well	understood.	(…)		
	

Corda	is	no	exception	to	this	rule,	writing:	
	

-	 In	 particular,	 the	 second	 condition	 implies	 that	 the	 standard	
Schwarzschild	 radius	 is	 determined	 in	 a	 way	 which	 garantees	 that	 the	
lenght	of	the	curcumference	centred	in	the	origin	of	the	coordiate	system	is	
2	p	r	.	
	
- Again,	we	emphasize	the	apparent	different	assumption	of	our	analysis.	
As	 it	 is	 carefully	 explained	 in	 [52]	 (our	 reference	 [25]),	 the	 «	standard	

  ds2 ≥ 0

 t , r ,θ ,ϕ{ }
 t , R ,θ ,ϕ{ }

  r = 0 ,θ ,ϕ{ }

 
r = − rg

 t , r ,θ ,ϕ{ }   r = x2 + y2 + z2 ≥ 0
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Schwarzschild	 solution	»	 	 (1)	 (notre	 équation(54)	 ,	 arises	 from	 the	
hypothesis	that	the	coordinates	r	and	t	of	rhe	two	functions	are	chosen	in	
order	to	garantee	that	the	lenght	of	the	circumference	centre	in	the	origin	
of	the	coordinate	is	 	.	

	
But	no	physical	or	mathematical	consideration	justifies	this	hypothesis..		
	
The	 second	 part	 of	 his	 article	 is	 an	 attempt	 to	 model	 the	 implosion	 of	 a	

destabilised	star.	Before	this	happens,	due	to	the	lack	of	energy	from	fusion,	the	star	
will	tend	to	collapse	in	on	itself.	If	it	is	a	neutron	star,	criticality	may	be	due	to	an	
influx	of	matter	from	a	companion	star.	In	both	cases,	the	collapse	of	the	massive	
star	or	the	increase	in	diameter	of	the	neutron	star	will	be	accompanied	by	a	rise	in	
temperature	and	pressure	within	these	objects.	Since	1916,	we	have	known	about	
the	 violent	 increase	 in	 pressure	 within	 a	 sphere	 filled	 with	 an	 incompressible	
material	 of	 constant	 density.	 [5].	 Even	 if	 we	 refuse	 to	 give	 credence	 to	 this	
calculation,	 which	 suggests	 a	 rise	 in	 pressure	 to	 an	 infinite	 value,	 it	 is	 still	
reasonable	 to	 imagine	 that	 before	 this	 collapse	 occurs	 the	 pressure	 has	 already	
reached	a	very	high	value..		
	

	
Fig.8	:	Evolution	of	the	pressure	within	a	sphere	filled	with		
an	incompressible	material	as	a	function	of	radius	[24].	

	
	
The	collapse	model	proposed	by	C.	Corda	at	zero	pressure	therefore	makes	no	

physical	sense..		
	
	
	

	

  2π r
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7	–	The	foundations	of	black	holes	theory.		
	
Before	 the	 Second	 World	 War,	 all	 publications	 in	 mathematics	 or	 theoretical	
physics	journals	were	based	on	the	following	points.	
	
The	metric	was	written	as	([4],[9],[6],[10],[12],[14])	:		
	
(80)																																																							 		

Geodesics	were	defined	as	curves	minimising	a	 length	s	 .	As	C.Corda	refers	to	Droste's	
paper	as	the	first	construction	of	the	"standard	Schwarzschild	solution",	we	will	quote	the	
Lagrangian	expression	given	by	Droste	[14]	in	his	equation	(9):		

(81)																																							 		

At	that	time,	the	concept	of	a	signature	was	not	yet	used,	but	it	was	in	fact	everywhere	in	
the	form	 .	In	his	presentation,	C.	Corda	discusses	the	history	of	this	stationary	
solution	to	Einstein's	spherically	symmetric	equation.	He	writes	

-	A	few	months	after	Schwarzschild,	J.	Droste,	a	student	of	H.Lorentz,	gave	an	
apparently	different	 solution	 for	 the	point	mass	and	wrote	more	 extensively	
about	 its	 properties	 [20]	 (our	 reference	 [14])	 .	 In	 such	 a	work	 Droste	 also	
claimed	that	his	solution	was	physically	equivalent	to	the	one	by	Schwarzschild.	
In	 the	 same	year,	1917,	H.Weyl	 reobtained	 the	 same	solution	by	Droste	 [21]	
(our	reference	[12]).		This	solution	had	a	peculiar	behaviour	and	what	is	now	
called	the	Schwarzschild	radius,	where	it	becomes	singular,	,	meaning	that	the	
sum	of	the	terms	in	the	Einstein	equation	became	infinite.	The	nature	of	this	
surface	was	not	quite	understood	at	the	time,	but	Hilbert	[22]	(our	reference	
[13])	 claimed	that	the	 forma	by	Droste	and	Weyl	was	preferable	 in	 [3]	(our	
reference	[6])	and	even	since	the	phrase	«	Schwarzschild	solution	»	has	been	
taken	to	mean	the	line	element	in	[20,21].	rather	than	the	original	solution	in	
[2]	(our	reference	[26]).		

There	 is	 only	 one	 "Schwarzschild	 solution",	 which	 is	 presented	 and	 interpreted	 in	
different	coordinate	systems.	 In	1917	[12],	H.	Weyl	analysed	 the	solution	of	Einstein's	
equation	in	vacuum,	taken	in	isolation,	in	an	attempt	to	geometrise	mass,	as	Einstein	and	
Rosen	did	in	1935	[15].	He	wrote	his	action	(his	equation	(2)	from	[12]):	

(82)																																																														 		

He	then	separates	the	two	elements	of	the	metric	according	to:	

(83)																																																																 		

He	specifies	the	hypothesis	concerning	the	length	element:		

(84)																																																												 		

 
ds2 = gi j

i j
∑ dxi dx j ≥ 0

  

L = ds
dt

= 1− α
r
−
!r2

1− α
r

− r2 !θ 2 − r2 sin2θ !ϕ 2 ( 9 )

 ( + − − − )

 
dm g ik dxi dxk∫{ }∫ ( 2 )

 f dt2 − dσ 2

  
ds2 = gik dxi dxk > 0
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And	the	nature	of	his	r	coordinate:	

(85)																																																													 		

He	obtains	the	expression	for	his	function	f	:	

(86)																																																																			 		

where	2a	is	the	Schwarzschild	radius.	As	L.Flamm	did	in	1916	[10],	he	makes	a	plane	
section	of	the	3D	object	passing	through	the	origin	and	also	gives	the	equation	of	the	
meridian		:		

(87)																																																											 		

This	is	the	very	first	time	that	this	solution	has	been	considered	as	a	two-layer	coating,	
which	is	worth	mentioning.		

Let's	mention	Weyl	[12]:		

- If	the	paraboloid	is	projected	orthogonally	on	the	z=0	plane	with	the	polar	
coordinates	 	the	projection	covers	the	exterior	of	the	circle	 	twice,	but	
does	not	cover	the	interior	at	all.		

	
			In	other	words,	this	projection	is	the	2D	two-folds	covering	of	a	non-contractile	variety	
with	a	circular	edge,	perimeter	 	.	He	then	introduced	a	second,	isotropic	coordinate	
system,	where	the	metric	of	this	"gravitational	space"	becomes	conformal	to	a	Euclidean	
space,	according	to	the	factor	:		
	

(88)																																																																			 		

	
This	(now	classic)	change	of	variable	is:		
	

(89)																											 		

(90)																										 									

						However,	in	so	doing,	Weyl	expresses	the	metric	with	this	new	coordinate	which	he	
designates	by	the	letter	r	,	but	which	is	no	longer	the	R	coordinate	of	Schwarzschild	or	
from	Corda.	For	ease	of	reading,	we	will	keep	r'	and	write	:	

(91)																			 	

  r = x1
2 + x2

2 + x3
2

  
f = 1− 2a

r

  z = 8a( r − 2a )
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  2π r
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and,	repeating	Weyl's	text,	we	write:		

		is	regular	for	all	values	r	>	0	,	f		is	always	positive	and	becomes	zero	
only	for	

	

The	circumference	of	the	circle	 	is		

		

if	we	allow	r’	to	run	over	its	range	of	values	begining	with	 		,	then	this	
function	decreases	monotonocally	until	it	reaches	the	value		 	for		

		

after	which	it	begins	to	increase	again		as	r’	is	decreased	further	toward	zero,	
and	grows	finally	without	bound.		

What	is	interesting	is	that	H.	Weyl	has	introduced	a	parameter	r'	which,	varying	from	
to	zero,	makes	it	possible	to	describe	the	two	layers,	with	the	throat	sphere	corresponding	
to	the	value	a/2.	Of	course,	he	intends	to	use	this	geometry	to	describe	a	mass,	which	he	
therefore	imagines	to	have	an	exterior,	for	r'	>	a/2,	and	an	interior,	for	r	<	a/2.		The	most	
important	 thing	 is	 that	he	envisages	 the	values	of	 ,	which	will	be	called	 the	"time	
factor",	since	it	represents	the	coefficient	of	dt.	And	he	writes	

(92)																																																						 	

Coefficient	which	would	 therefore	become	negative	beyond	 the	 throat	 sphere.	 s	 is	 the	
length,	measured	along	the	geodesics	and	cannot	be	negative.	The	negativity	of	the	time	
factor	would	imply,	if	Schwarzschild's	geometry	leads	to	another	sheet	of	space-time,	that	
the	time	coordinate	reverses	at	the	passage	of	the	throat,	but	not	the	proper	time,	in	other	
words	 that	 the	 two	 sheets	 are	 T-symmetrical.	 End	 of	 this	 digression	 regarding	 the	
interpretation	of	Weyl's	solution.		However,	contrary	to	what	Corda	writes,	Weyl	does	not	
find	the	same	solution	as	Droste	and	Schwarzschild.	To	his	credit,	the	English	translation	
of	Weyl's	text	only	became	available	in	2012,	after	his	article	had	been	published.		

It	is	now	necessary	to	return	to	the	article	published	on	23	December	1916	[13].	Before	
1915,	 Einstein	 had	 convinced	 the	 great	 mathematician	 David	 Hilbert	 that	 the	 use	 of	
modern	 geometry,	 which	 was	 in	 the	 process	 of	 being	 born,	 would	 shed	 a	 new	 and	
powerful	light	on	physics.	It	should	also	be	remembered	that	in	1915	:		

-	We	only	know	two	forces,	the	force	of	gravity	and	the	electromagnetic	force.	
The	electron	has	just	been	discovered.		
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-	We	have	no	idea	that	the	universe	can	evolve	over	time.		

	

-	 The	 deviation	 from	 Euclidean	 geometry	 and	 Newtonian	 and	 Maxwellian	
physics,	 when	 trains	 run	 on	 steam,	 is	 just	 a	 tiny	 phenomenon,	 part	 of	 the	
philosophy	of	science,	with	no	immediate	physical	application.	

In	1915	Hilbert,	who	had	just	discovered	that	the	high	mathematics	he	championed	had	
some	application	in	physics,	applied	the	principle	of	least	action	to	electromagnetism	and	
gravitation.	In	an	article	entitled	"The	Foundations	of	Physics"	[27],	which	dealt	jointly	
with	gravitation	and	electromagnetism,	he	published	what	we	would	today	call	a	"Theory	
of	Everything".	In	it,	he	set	out	his	own	understanding	of	special	relativity:	what	did	he	
mean	 by	 the	 presence	 of	 a	minus	 sign	 in	 the	metric?	His	 own	 answer:	 time	 is	 simply	
imaginary,	when	squared,	the	minus	sign	appears.	Whereas	Einstein	strove	to	show	that	
this	 temporal	dimension	 is	 of	 the	 same	nature	 as	 the	other	 three,	 and	 that	 it	must	be	
measured	in	metres	and,	incidentally,	converted	into	seconds	by	dividing	by	a	constant:	c.	
So,	for	Hilbert,	space,	with	its	three	coordinates	 ,	is	'prime'.	Time	is	just	another	
dimension,	grafted	onto	a	quasi-Euclidean	space.	The	relativistic	effects	do	not	appear	
until	the	very	end	of	the	calculation,	which	is	carried	out	with	dimensions	 ,	
and	it	is	only	in	the	last	line	that	a	time	coordinate	appears,	according	to	 .	The	two	
articles,	from	1915	and	1916,	have	the	same	title:	"The	Foundations	of	Physics".	This	is	
Hilbert's	aim:	 to	discover	 the	ultimate	workings	of	 the	universe,	which	 is	governed	by	
what,	 for	 him,	 takes	 the	 place	 of	 Nature	 and	 God:	 logic.	 Everything	 is	 governed	 by	
mathematics,	 which	 reveals	 its	 facets	 one	 by	 one	 to	 enable	 man	 to	 understand	 the	
universe.	The	key	words	are	completeness,	consistency	and	decidability.	Hence	the	motto	
of	an	absolute	intellectual	optimist,	which	will	be	engraved	on	his	tombstone	in	Göttingen			

Wir	müssen	wissen,	wir	werden	wissen	

We	need	to	know,	and	we	will	know.	

For	him,	the	production	of	measurable	quantities,	in	this	case	time	itself,	is	the	work	of	
the	engineer.	What	counts	is	the	matrix	that	gives	birth	to	these	quantities.	And	this	matrix	
is	a	bilinear	form,	extraordinarily	compact	and	elegant.:		

(93)																																																									 		

For	Hibert,	the	metric	is	just	a	tiny	variation	on	the	Euclidean	metric,	associated	with	the	
Kronecker	tensor .	Curvature	is	a	very	small	perturbation	:	

(94)																																																														 		

On	20	November	1915,	Hilbert	published	his	first	version	[27]	of	his	"Fundamentals	of	
Physics",	which	also	contained	the	field	equation,	to	the	great	displeasure	of	Einstein,	who	
published	the	same	equation	five	days	later	[8],	in	the	same	journal.	After	a	brief	moment	
of	 hesitation	 between	 these	 geniuses	 who	 had	 become	 friends,	 Hilbert	 decided	 that	

  x1 , x2 , x3

  w1 , w2 , w3 , w4

  w4 = it
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∑ gµν Xµ Xν + i2 X4
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Einstein	alone	would	retain	the	paternity	of	what	would	serve	as	the	basis	 for	general	
relativity.	 But	 in	 early	 1916	 Schwarzschild	 published	 the	 first	 exact	 solution	 to	 this	
equation	[4].	Hilbert	then	decided	to	publish	a	second	version	of	his	article,	with	the	same	
title	[13],	which	incorporated	Schwarzschild's	result.	But	he	focused	his	attention	only	on	
the	exterior	metric	[4],	completely	neglecting	the	February	paper	on	the	interior	metric	
[5].	Moving	on	to	polar	coordinates,	he	denoted	these	new	coordinates	by	 	.	
It	is	important	to	quote	this	key	passage	in	which	he	presents	his	bilinear	form	:	

(95)																	 		

l	is	the	time	coordinate,	which	becomes	it	a	little	further	on.	The	 has	disappeared.	At	
this	stage	the	"signature"	is	Euclidean:	 .	At	this	stage	Hilbert	has	three	functions	
of	r	to	determine.	With	what	follows,	he	reduces	this	number	to	two	:	

where	 are	still	arbitrary	functions	of	r.	Il	we	put	

	(96)																																										 		

then	we	 are	 equally	 justified	 in	 interpreting	 as	 spatial	 polar	
coordinates.	 If	we	 introduce	 	in	(42)	 instead	of	r	and	the	eliminate	
the	sign 	,	the	result	is	the	expression	

(97)																			 	

This	approach	was	described	as	an	error	by	L.S.	Abrams	[29]	and	later	commented	on	by	
S.	Antoci	[30].	This	is	not	an	error,	but	a	simple	change	in	Schwarzschild's	notation	from	
the	polar	co-ordinate	system	 to	 the	system	 	with	 .	 It	
remains	for	Hilbert	to	provide	the	result	of	his	calculation			

(98)																													 	

So	we	have	four	+	signs,	one	signature	 .	Then,	with	l	=	it		

(99)																							 	

You	can	find	the	origin	of	the	signature	change	here:		

(100)																																																			 	

which,	 in	 the	 post-war	 period,	 was	 generalized	 to	 the	 whole	 of	 theoretical	 physics,	
without	it	being	possible	to	mention	an	article	in	which	this	transformation	was	justified.	
Previously,	for	example,	the	Lorentz	line	element	was	written	as:	

(101)																																																		 		

To	express	the	fact	that	matter	moves	at	a	speed	slower	than	the	speed	of	light,	 it	was	
sufficient	 to	 state	 that	 .	 The	 length	 s	 was	 identified	 with	 the	 proper	 time	

 r ,θ ,ϕ , l{ }

  F (r ) dr2 + G(r )( dθ 2 + sin2θ dϕ 2 )+ H (r ) dl2 ( 42 )
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according	to	 .	With	Hilbert,	attention	is	now	focused	on	the	bilinear	form,	which	we	
will	write	as	:	

(102)																																																				 	

How,	in	these	conditions,	can	a	real	clean	time	appear?	It's	as	simple	as	asking:		

(103)																																																												 		

This	is	exactly	what	Hilbert	does	in	his	1915	article	[13],	where	he	writes:		

A	piece	of	curve	for	which	

(104)																																																			 		

Shal	be	called	a	segment	and	the	integral	piece	of	the	curve		

(105)																																													 	

Shall	be	called	the	length	of	the	segment.	A	piece		of	the	curve	for	wich	

(106)																																																					 	

will	be	called	a	time	line,	and	the	integral		

(107)																																													 	

evaluated	along	this	piece	of	curve	shall	be	the	proper	time	of	the	time	
line.	Finally	a	piece	of	curve	along	which	

(108)																																																						 	

shall	be	called	a	null	line.		

	

To	calculate	geodesics,	he	uses	the	variational	calculation	method,	as	follows:		

(109)																							 		

Everything	was	in	place	for	the	birth	of	the	black	hole	model	in	the	post-war	period.		In	
1992,	 the	 future	Nobel	 laureate	S.	Chandrasekhar	 [31],	who	published	a	book	entitled	
“Mathematical	Theory	of	Black	Holes”,	took	up	this	same	Lagrangian:		
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(110)																											 		

Let's	return	to	the	Droste	action,	i.e.	equation	(70).	Its	Lagrangian	is:		

(111)																												 	

Lagrangians	(97)	and	(98)	lead	to	the	same	Lagrange	equations,	and	therefore	to	the	same	
geodesic	curves.	Simply,	in	the	pre-war	mathematical	context	of	Einstein,	Schwarzschild,	
Droste,	 etc	 ,	 curves	 such	 as	 	are	 considered	 not	 to	 belong	 to	 the	 hypersurface,	
whereas	 those	 who	 now	 opt	 for	 (97)	 will	 consider	 that	 curves	 "spiralling	 towards	 a	
central	singularity"	are	"inside	the	black	hole".		Chandrasekhar	writes;	

(112)																													 	

on	page	96,	we	quote:		

For	time-like	geodesics,	 	may	be	identified	with	the	proper	time	s	,	of	
the	particle	describing	tge	geodesic.		

So	the	particles	travelling	along	the	portion	of	its	curve	"inside	the	Schwarzschild	sphere"	
evolve	with	an	imaginary	pure	time	of	their	own..		

	

Fig.9	:	Geodesic	curves,	"inside	the	black	hole",	according	to	Chandrasekhar	[31].	
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8	–	Conclusion	

In	this	article	we	have	tried	to	explain	the	ins	and	outs	of	black	hole	theory.	What	can	we	
say	about	the	only	two	data	available	([2],	[3])?	These	images	do	not	fit	in	with	the	very	
large	 number	 of	 computer-generated	 images	 available.	We	 can	 try	 to	 account	 for	 the	
strong	 darkening	 of	 the	 central	 parts,	 which	 evokes,	 for	 both	 images,	 an	 increase	 in	
wavelength	 by	 gravitational	 redshift	 corresponding	 to	 .	 Referring	 to	
Schwarzschild's	solution	for	the	interior	metric	[5],	we	obtain	;	

(113)	 																																															 	

in	 other	 words,	 a	 subcritical	 object	 whose	 mass	 would	 be	 equal	 to	 its	
Schwarzschild	radius,	and	where	the	force	of	gravity	would	therefore	be	balanced	by	the	
very	strong	rise	 in	pressure	at	 its	centre.	What	remains	 to	be	done	 is	 to	construct	 the	
scenario	that	would	allow	the	formation	of	such	objects,	which	would	not	be	giant	black	
holes.	
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