

Tof-SIMS spectra of historical inorganic pigments: Copper-, zinc-, arsenic-, and phosphorus-containing pigments in positive polarity

Caroline Bouvier, Sebastiaan van Nuffel, Alain Brunelle

▶ To cite this version:

Caroline Bouvier, Sebastiaan van Nuffel, Alain Brunelle. Tof-SIMS spectra of historical inorganic pigments: Copper-, zinc-, arsenic-, and phosphorus-containing pigments in positive polarity. Surface Science Spectra, 2024, 31 (2), pp.025001. 10.1116/6.0003722. hal-04637506

HAL Id: hal-04637506 https://hal.science/hal-04637506v1

Submitted on 6 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RESEARCH ARTICLE | JULY 03 2024

Tof-SIMS spectra of historical inorganic pigments: Copper-, zinc-, arsenic-, and phosphorus-containing pigments in positive polarity •

Special Collection: ToF-SIMS Spectra of Historical Inorganic Pigments

Caroline Bouvier ¹⁰; Sebastiaan Van Nuffel ¹⁰; Alain Brunelle ■ ¹⁰

Surf. Sci. Spectra 31, 025001 (2024) https://doi.org/10.1116/6.0003722

Tof-SIMS spectra of historical inorganic pigments: Copper-, zinc-, arsenic-, and phosphoruscontaining pigments in positive polarity (

Cite as: Surf. Sci. Spectra 31, 025001 (2024); doi: 10.1116/6.0003722 Submitted: 27 April 2024 · Accepted: 18 June 2024 · Published Online: 3 July 2024

AFFILIATIONS

¹Sorbonne Université, CNRS, Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Paris 75005, France

 2 Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht 6229ER, The Netherlands

Note: This paper is part of the 2024 Special Topic Collection on ToF-SIMS Spectra of Historical Inorganic Pigments.

a) Author to whom correspondence should be addressed: alain.brunelle@cnrs.fr

ABSTRACT

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is increasingly used to analyze cultural heritage materials because it can simultaneously detect organic and inorganic materials while mapping them on a surface. The precise identification of a pigment in a specific layer of a painting or of remaining color on a statue can inform about the technique used or the time of manufacture as well as expose possible forgeries when anachronistic ingredients are identified. Reference spectra are required to confidently identify a given pigment using ToF-SIMS. This paper focuses on eight pigments containing copper, zinc, arsenic, or phosphate, all manufactured following historical 8 recipes. The positive polarity ToF-SIMS reference spectra using a Bi₃⁺ primary ion species are presented here. Presented together, these 🖧 spectra and corresponding tables of secondary ions provide a valuable help in differentiating these pigments, because copper, zinc, arsenic, or phosphate, combined with oxygen, share many mass interferences.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/6.0003722

Accession#: 01939, 01940, 01941, 01942, 01943, 01944, 01945, 01946

Technique: SIMS

Specimen: Peach black, Bone black, Realgar, Bristol yellow

medium, Azurite, Malachite, Verdigris, Zinc white

Instrument: IONTOF, TOF SIMS IV

Major Species in Spectra: O, H, C, Cu, Zn, P, Ca, As, S, V, Bi, Cl

Minor Species in Spectra: Hydrocarbon contamination **Published Spectra:** 8

Spectral Category: Reference

INTRODUCTION

ToF-SIMS imaging can detect a wide range of elements, so colored minerals can be identified and mapped, given that reference spectra are available for reliable assignment. This paper provides a comparative ToF-SIMS spectral database for eight historical inorganic pigments, containing copper carbonate, zinc oxide or phosphates, vanadium oxide, calcium phosphates, or arsenic sulfide. Numerous possibilities for mass interferences exist between combinations of these elements. Without being able to refer to comparative datasets that provide an overview of the fragment ions for each pigment, it would be difficult to accurately identify one of them as an unknown pigment.

The reference materials were supplied by specialized manufacturers selling pigments reproducing historical recipes as closely as possible, such as Kremer Pigmente GmbH. Pigments were available as finely ground powder of variable particle size (between one and a few tens of μ m) conditioned in glass sealed vials. In paintings, pigment particles are dispersed in the binder and not dissolved, so all references were analyzed without any preparation treatment. Natural and synthetic pigments may contain impurities, and specimen compositions described below are the major components as found on the material data sheets provided by the suppliers.

³Faculty of Science and Engineering, Maastricht University, Maastricht 6229EN, The Netherlands

A stainless-steel spatula was cleaned with propan-2-ol and the powder was directly deposited on a $1 \times 1 \text{ mm}^2$ piece of conductive double-sided tape (3M Electrically Conductive Adhesive Transfer Tape 9703) already fixed to a $1 \text{ cm} \times 1 \text{ cm} \times 0.125 \text{ mm}$ stainless steel plate (17-7PH, Goodfellow Cambridge Limited, UK) fitting the dimensions of the sample holder. A hand press covered with clean aluminum foil was applied onto the powder to fix it to the tape. This allowed to operate in the analysis chamber under ultrahigh vacuum $(10^{-8}$ – 10^{-9} hPa) while ensuring a flat surface. For highly toxic pigments, such as the arsenic sulfide Realgar (#01941), a pellet with a flat surface was prepared using a press (Mini-Pellet Press P/N GS03940, Specac Ltd, UK) to limit dust formation.

All spectra were obtained on an IONTOF TOF SIMS IV equipped with a 25 keV bismuth liquid metal ion gun and an Argon gas cluster ion beam (GCIB). Before all analyses, a $500 \times 500 \,\mu\text{m}^2$ surface was cleaned using 1500–2000 Ar clusters with a kinetic energy of 20 keV (sputter ion dose 2×10^{15} ions/cm²). Analyses were then performed on a $250 \times 250 \,\mu\text{m}^2$ area centered in this larger cleaned area, rastered over 128 × 128 pixels using the high current bunched mode. The primary ion dose (25 keV Bi₃⁺) was 4.35×10^{11} ions/cm². Surface potential was compensated and charging of the sample was compensated with the low-energetic 20 eV electrons of the flood gun.

Data were calibrated using sets of peaks as similar as possible for all spectra, using peaks that could be confidently identified. Potassium, copper, zinc, and calcium have distinctive isotopic patterns ensuring confident attribution of the peaks, so #01939 data were calibrated using lists including potassium-containing ions K⁺, K₂⁺, K₂OH⁺, and K₂Cl⁺; #01943, #01944, and #01945 data were calibrated using lists including Na+, Cu+, Cu2OH+, and Cu3O+ ions; and #01946 data were calibrated using Na+, Zn+, Zn2O2+, Zn3O3+, ⁶⁶Zn⁶⁸ZnZn₂O₄⁺, and ⁶⁶Zn⁶⁸ZnZn₃O₅⁺. Both #01940 and #01942 were calibrated using calcium-containing ions including Ca+ and Ca₂O⁺. No bismuth and vanadium-containing ions were used to calibrate #01942 data, since bismuth has no isotope and is close in mass to VP₂O₆. Arsenic sulfide #01941 data were calibrated using ions having high intensity, namely, As+, AsS+, As₂S₂+, AsPbS+, and As₃S₃⁺ ions. These calibration lists allowed for a good coverage of the mass range of interest for each specimen, and they are fully detailed in the corresponding tables below.

Pigments contain diverse metallic oxides, hydroxides, carbonates, and even hydrocarbons. They are found inside painting layers that are mostly organic materials. All these compounds do not follow the same ionization processes and have different ionization kinetics. In this context, the choice for the calibration ions is a crucial step to ensure proper peak attribution. If the analytical question aims at identifying the nature of a pigment particle, then the calibration must include inorganic ions, such as the list above, spanning all the mass range of interest, and if possible of the same ion family as those of interest. However, if the analytical question focuses mainly on the identification of organic materials, the calibration must include known low-mass hydrocarbon ions (such as C₂H₃⁺, C₃H₅⁺, C₄H₇⁺, and C₇H₇⁺). The safest strategy when interpreting data from a painting cross-section would be to rely on several calibration sets adapted to the ions of interest and that can be confidently defined independently of the sample's unknowns.

Figures and tables presented below contain the major peaks for positive polarity. Each pigment is uniquely identified thanks to an accession number and they are grouped according to their composition and described in the following section. Their historical relevance is briefly described based on the current literature.² Spectrum ID# refers to that number.

SPECIMEN DESCRIPTION (ACCESSION # 01939)

Specimen: Peach black (Kremer Pigmente Ref. 12010)

CAS Registry #: Unknown

Specimen Characteristics: Unknown homogeneity; solid; amorphous; dielectric; inorganic compound; powder;

Chemical Name: Amorphous carbon Source: Kremer Pigmente GmbH

Specimen Composition: Amorphous carbon (charred peach kernel)

Form: Ground pigment powder

History and Significance: Black pigments derived from charcoals are rarely detectable by the analytical techniques used to investigate pigments such as XRF, while carbon-based black pigments have been used in every society since the domestication of fire. Peach black, for instance, only requires the calcination of kernels. Identifying this pigment is of interest, as they are omnipresent in historical artistic practice. ToF-SIMS is able to map and identify micrometric particles of carbon-based pigments.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto conductive double-sided tape attached to stainless steel $1 \times 1 \text{ cm}^2$ plates. The resulting deposit of powder had a flat $\frac{\cancel{N}}{\cancel{N}}$ surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and -30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa Pre-analysis Beam Exposure: $Ar_{1500-2000}$, 20 keV, 2×10^{15} ions/cm²

SPECIMEN DESCRIPTION (ACCESSION # 01940)

Specimen: Bone black (Kremer Pigmente Ref. 47100)

CAS Registry #: 8021-99-6

Specimen Characteristics: Unknown homogeneity; solid; amorphous; dielectric; inorganic compound; powder;

Chemical Name: Bone charcoal Source: Kremer Pigmente GmbH

Specimen Composition: Amorphous carbon, calcium phosphates

Form: Ground pigment powder

History and Significance: Bone black is made by carbonization of animal bones at temperatures over 400 °C but not above 800 °C. It mainly consists of calcium phosphate and carbonized

organics. It is very frequently used in paintings, especially in preparation layers.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto conductive double-sided tape attached to stainless steel $1 \times 1 \text{ cm}^2$ plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and -30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa **Pre-analysis Beam Exposure:** $Ar_{1500-2000}$, 20 keV, 2×10^{15} ions/cm²

SPECIMEN DESCRIPTION (ACCESSION # 01941)

Specimen: Realgar/red orpiment (Kremer Pigmente Ref. 10800) CAS Registry #: 1303-33-9

Specimen Characteristics: Unknown homogeneity; solid; unknown crystallinity; dielectric; inorganic compound; powder;

Chemical Name: Arsenic (III) sulfide (natural mineral)

Source: Kremer Pigmente GmbH

Specimen Composition: Natural arsenic sulfide α-As₄S₄

Form: Ground pigment powder

History and Significance: A mineral prized for its bright red color that was used until the beginning of the 19th century. Found in volcanic and geothermal regions, and its geographic origin varies. It was found in luxurious articles in antiquity to show opulence and was used as ritual offerings and in cosmetics, despite its high toxicity. It exists in rare natural and synthetic forms. Its occurrence is difficult to investigate due to light instability, converting it to yellow pararealgar (As₄S₄), thereby often mistaken for other yellow As pigments unless crystalline phases can be differentiated by the analytical techniques used. Red realgar can be found in environments where the absence of light preserves it.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Because of the toxicity of arsenic sulfide, a pellet was prepared using a Specac Mini Pellet Press. A flat surface was obtained, and dust formation was limited when handling the sample. The pellet was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and -30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa **Pre-analysis Beam Exposure:** $Ar_{1500-2000}$, 20 keV, 2×10^{15} ions/cm²

SPECIMEN DESCRIPTION (ACCESSION # 01942)

Specimen: Bristol yellow medium (Kremer Pigmente Ref. 43111) **CAS Registry #:** 7779-90-0, 14059-33-7

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder;

Chemical Name: Trizinc bis(ortho)phosphate + Bismuth vanadium tetraoxide

Source: Kremer Pigmente GmbH

Specimen Composition: $Zn_3(PO_4)_2 + BiVO_4$

Form: Ground pigment powder

History and Significance: Due to their toxicity, lead pigments have been gradually prohibited over the past two centuries. Alternative yellow pigments such as modified bismuth yellows (Bristol yellows) were produced to replace them. Bristol yellows have been used since the 20th century to imitate Naples yellow as they have similar optical properties. Copper and zinc compounds can have mass interference with Bristol Yellow ions, so their distinction is of interest.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto conductive double-sided tape attached to stainless steel E $1 \times 1 \text{ cm}^2$ plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum $\frac{8}{4}$ chamber. The plate was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and -30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa **Pre-analysis Beam Exposure:** $Ar_{1500-2000}$, 20 keV, 2×10^{15} ions/cm²

SPECIMEN DESCRIPTION (ACCESSION # 01943)

Specimen: Azurite (Kremer Pigmente Ref. 10207)

CAS Registry #: 12069-69-1

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder;

Chemical Name: Basic copper (II) carbonate

Source: Kremer Pigmente GmbH

Specimen Composition: Cu₃(CO₃)₂(OH)₂

Form: Ground pigment powder

History and Significance: A natural blue to turquoise-blue-green copper carbonate that results from the erosion of copper deposits. It was used in many contexts over the centuries and was considered a fairly precious material.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto conductive double-sided tape attached to stainless steel $1 \times 1 \text{ cm}^2$ plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and -30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa **Pre-analysis Beam Exposure:** Ar₁₅₀₀₋₂₀₀₀, 20 keV, 2×10^{15} ions/cm²

SPECIMEN DESCRIPTION (ACCESSION # 01944)

Specimen: Malachite, natural (Kremer Pigmente Ref. 10300)

CAS Registry #: 1319-53-5

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder;

Chemical Name: Basic cupric carbonate Source: Kremer Pigmente GmbH Specimen Composition: CuCO₃·Cu(OH)₂

Form: Ground pigment powder

History and Significance: A natural green to turquoise-green copper carbonate, which results from the erosion of copper deposits. It is one of the earliest known bright green pigments, and a dominant one until the mid-18th century. It was considered a fairly precious material. It consists of rather large spherical particles.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto conductive double-sided tape attached to stainless steel $1 \times 1 \text{ cm}^2$ plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and -30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa **Pre-analysis Beam Exposure:** $Ar_{1500-2000}$, 20 keV, 2×10^{15} ions/cm²

SPECIMEN DESCRIPTION (ACCESSION # 01945)

Specimen: Verdigris, synthetic (Kremer Pigmente Ref. 44450) **CAS Registry #:** 6046-93-1

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder;

Chemical Name: Copper-(II)-acetate-1-hydrate

Source: Kremer Pigmente GmbH

Specimen Composition: Cu(CH₃COO)₂·[Cu(OH)₂]₃·2H₂O

Form: Ground pigment powder

History and Significance: A family of synthetic pigments, containing variations of copper acetate, with green to blue-green hues. Synthesized since Antiquity, it is an acetate copper salt produced by the reaction of acetic acid with copper and has been particularly common in wine-growing regions. It has a characteristic vinegar odor. A better knowledge of the ion signal of Verdigris pigments is of interest. Indeed, considered unstable, it reacts with binders and other pigments forming soaps and other copper salts, respectively, making its identification in a painting often ambiguous. Degradation products result in a brown tint.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto conductive double-sided tape attached to stainless steel $1 \times 1 \text{ cm}^2$ plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and -30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa **Pre-analysis Beam Exposure:** $Ar_{1500-2000}$, 20 keV, 2×10^{15} ions/cm²

SPECIMEN DESCRIPTION (ACCESSION # 01946)

Specimen: Zinc white (Kremer Pigmente Ref. 46300)

CAS Registry #: 1314-13-2

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder;

Chemical Name: Zinc oxide Source: Kremer Pigmente GmbH Specimen Composition: ZnO Form: Ground pigment powder

History and Significance: A widely used substitute for lead-containing whites that was first produced in the 19th century by Winsor & Newton (1834) with Michael Faraday.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of $250 \times 250 \,\mu\text{m}^2$

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto conductive double-sided tape attached to stainless steel 1 cm × 1 cm plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum

chamber. The plate was directly mounted on a "backmount" sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1×10^{-5} and 1×10^{-6} Pa **Pre-analysis Beam Exposure:** $Ar_{1500-2000}$, 20 keV, 2×10^{15} ions/cm²

INSTRUMENT CONFIGURATION

Manufacturer and Model: IONTOF, TOF SIMS IV

Analyzer Type: Time-of-flight

Sample Rotation: No Rotation Rate: 0 rpm Oxygen Flood Source: None Oxygen Flood Pressure: N/A Other Flood Source: None Other Flood Pressure: N/A

Unique Instrument Features Used: None Energy Acceptance Window: 20 eV Post-acceleration Voltage: 10 000 eV

Sample Bias: 10-20 eV

Specimen Normal-to-analyzer (Θe): 0°

Ion sources

Ion source 1 of 2

Purpose of this Ion Source: Analysis beam Ion Source Manufacturer: IONTOF GmbH

Ion Source Model: Liquid metal ion gun (LMIG) with bismuth cluster (25 keV)

Beam Mass Filter: Yes

Beam Species and Charge State: Bi₃⁺

Beam Gating Used: Double pulsed + Bunched

Additional Beam Comments: None

Beam Voltage: 25 000 eV

Net Beam Voltage (impact voltage): 25 000 eV

Ion Pulse Width: 0.8-1.2 ns Ion Pulse Rate: 5-10 kHz DC Beam Current: ~10 nA Pulsed Beam Current: ~0.0004 nA

Current Measurement Method: Faraday cup

Beam Diameter: \sim 2 μ m

Beam Raster Size: $250 \times 250 \,\mu\text{m}^2$ Raster Pixel Dimensions: 128×128

Beam Incident Angle: 45° Source-to-Analyzer Angle: 45°

Ion source 2 of 2

Purpose of this Ion Source: Sputtering beam **Ion Source Manufacturer:** IONTOF GmbH

Ion Source Model: Argon GCIB

Beam Mass Filter: Yes

Beam Species and Charge State: Ar_n^+ with n = 1500-2000

Beam Gating Used: Wien filter

Additional Beam Comments: Used as sputter gun, not analysis

mode.

Beam Voltage: 20 000 eV

Net Beam Voltage (impact voltage): 20 000 eV

Ion Pulse Width: N/A Ion Pulse Rate: N/A DC Beam Current: ~10 nA Pulsed Beam Current: N/A

Current Measurement Method: Faraday cup

Beam Diameter: $\sim 50 \,\mu\text{m}$

Beam Raster Size: $500 \times 500 \, \mu \text{m}^2$ Raster Pixel Dimensions: N/A Beam Incident Angle: 45° Source-to-Analyzer Angle: 45°

ACKNOWLEDGMENTS

This work was financially supported by the Agence Nationale de la Recherche (Grant No. ANR-2015-CE29-0007 DEFIMAGE). C.B. has received funding from the European Union's Horizon Europe Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 101108506. The authors thank Sven Kayser and Matthias Kleine-Boymann (IONTOF GmbH) for providing extended access to the software SURFACELAB 7.3 that allowed thorough processing of the data.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Caroline Bouvier: Investigation (lead); Writing – original draft (lead). Sebastiaan Van Nuffel: Investigation (equal); Writing – review & editing (lead). Alain Brunelle: Conceptualization (lead); Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its supplementary material.

REFERENCES

¹R. G. Cooks and K. L. Bush, Int. J. Mass Spectrom. Ion Phys. 53, 111 (1983).

²N. Eastaugh, V. Walsh, T. Chaplin, and R. Siddall, *Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments*, 1st ed. (Routledge, London, 2008)

³E. Robert and L. Feller, Artists' Pigments: A Handbook of Their History and Characteristics, Vol. 1 (Archetype Publications, London, 1986).

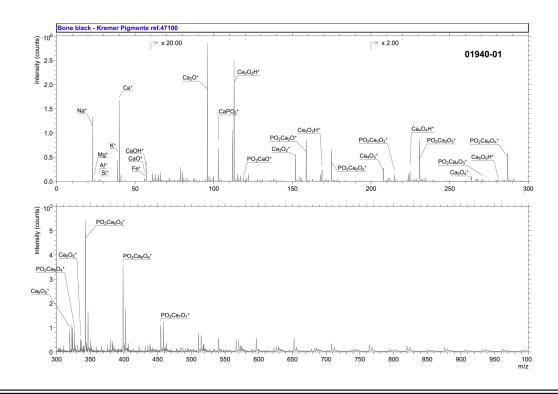
⁴A. Roy, Artists' Pigments: A Handbook of Their History and Characteristics, Vol. 2 (Archetype Publications, London, 1993).

⁵E. W. FitzHugh, Artists' Pigments: A Handbook of Their History and Characteristics, Vol. 3 (Archetype Publications, London, 1997).

⁶J. R. Barnett, S. Miller, and E. Pearce, Opt. Laser Technol. 38, 445 (2006).

⁷L. M. Smieska, R. Mullett, L. Ferri, and A. R. Woll, Appl. Phys. A 123, 1 (2017).

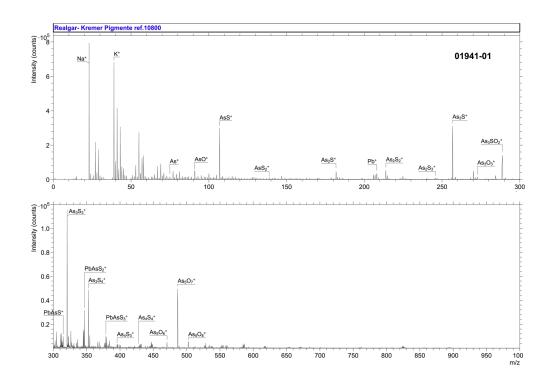
⁸M. Price, Leonardo 33, 281 (2000).


8
c
7
Ĵ
Ŋ
Ĭ
+
_
Ν
•
1

SPECTRAL FEATURES TABLE			
Spectrum ID #	Mass (∆m), Da	Species	Peak Assignment
01939-01	38.963 (4.42)	K ⁺	_
	51.022 (-12.4)	$C_4H_3^+$	Charcoal
	63.022 (-13.6)	$C_5H_3^+$	Charcoal
	77.042 (37.9)	C ₆ H ₅ ⁺	Charcoal
	91.053 (-14.9)	$C_7H_7^+$	Charcoal
	94.927 (-31.1)	K ₂ OH ⁺	_
	102.925 (-4.01)	KSO ₂ ⁺	_
	112.896 (1.74)	$K_2Cl^{\overline{\mathtt{T}}}$	_
	115.052 (<u></u> 15.7)	$C_9^ H_7^+$	Charcoal
	128.062 (2.43)	$C_{10}H_8^{+}$	Charcoal
	140.886 (-29.7)	C ₁₀ H ₈ ⁺ K ₂ PO ₂ ⁺	_
	141.067 (-21.4)	C ₁₁ H ₉ ⁺	Charcoal
	196.840 (—35.0)	K ₃ SO ₃ ⁺	_
	212.834 (-40.0)	$K_3SO_4^{\dagger}$	_

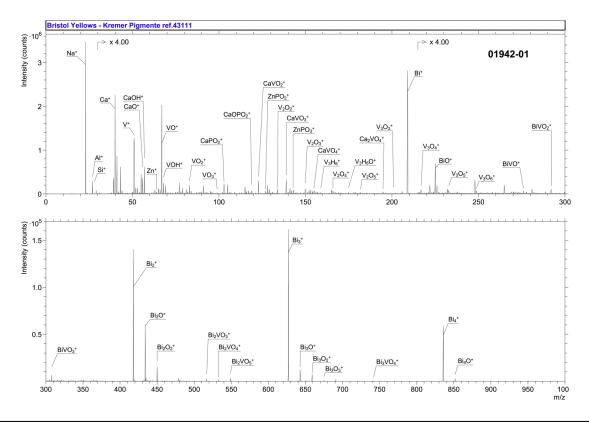
SPECTRAL FEATURES TABLE			
Spectrum ID #	Mass (∆m), Da	Species	Peak Assignment
01940-01	22.990 (23.4)	Na ⁺	_
	23.984 (-20.6)	Mg^{+}	_
	26.981 (-12.7)	Al^+	_
	27.977 (7.35)	Si ⁺	-
	38.963 (3.53)	K ⁺	_
	39.962 (7.67)	Ca [⁺]	Calcium phosphate
	55.934 (-6.43)	Fe ⁺	_
	55.956 (-14.7)	CaO ⁺	_
	56.964 (-12.6)	CaOH [⁺]	Calcium phosphate
	95.919 (-8.30)	Ca(CaO) ⁺	Calcium phosphate
	102.925 (-7.34)	CaPO ₂ ⁺	Calcium phosphate
	112.921 (-8.34)	(CaO)₂H ⁺	Calcium phosphate
	118.922 (9.49)	PO₂CaO ⁺	Calcium phosphate
	151.877 (—1.23)	Ca(CaO) ₂ ⁺	Calcium phosphate
	158.884 (5.26)	PO ₂ Ca ₂ O ⁺	Calcium phosphate
	168.880 (-3.83)	(CaO)₃H ⁺	Calcium phosphate
	174.880 (8.25)	$PO_2Ca_2O_2^+$	Calcium phosphate
	207.836 (5.63)	Ca(CaO) ₃ ⁺	Calcium phosphate
	214.843 (11.0)	PO ₂ Ca ₃ O ₂ ⁺	Calcium phosphate
	224.837 (0.48)	(CaO)₄H ⁺	Calcium phosphate
	230.838 (8.71)	PO ₂ Ca ₃ O ₃ ⁺	Calcium phosphate
	263.793 (3.21)	Ca(CaO) ₄ ⁺	Calcium phosphate
	270.802 (15.8)	PO ₂ Ca ₄ O ₃ ⁺	Calcium phosphate
	280.796 (3.47)	(CaO)₅H ⁺	Calcium phosphate
	286.794 (2.04)	PO ₂ Ca ₄ O ₄ ⁺	Calcium phosphate
	319.751 (5.56)	Ca(CaO) ₅ ⁺	Calcium phosphate
	326.761 (16.6)	PO ₂ Ca ₅ O ₄ ⁺	Calcium phosphate
	336.754 (3.66)	(CaO) ₆ H ⁺	Calcium phosphate
	342.753 (6.05)	$PO_2Ca_5O_5^+$	Calcium phosphate
	398.711 (7.16)	PO ₂ Ca ₆ O ₆ ⁺	Calcium phosphate
	454.678 (26.3)	PO ₂ Ca ₇ O ₇ ⁺	Calcium phosphate

102.925 attributed to KSO₂⁺ found in Peach Black (#01939) using isotopic pattern matching.




```
01940-01
                               Accession #:
                                                                                               Bone Black—Kremer Pigmente Ref. 47100
                              ■ Specimen:
                               Technique:
                                                                                                                     SIMS
                                                                                                           IONTOF, TOF SIMS IV
                                 Instrument:
                            Analyzer Type:
                                                                                                                 Time-of-flight
      Analyzer Mass Resolving Power:
                                                                                                                  3500 m/∆m
Mass Resolving Power Determined at:
                                                                                                                     27 Da
                                                                                            \mathsf{Na}^{^{+}},\ \mathsf{Ca}^{^{+}},\ \mathsf{Ca}_{2}\mathsf{O}^{^{+}},\ \mathsf{Ca}_{3}\mathsf{O}_{2}^{^{+}},\ \mathsf{Ca}_{4}\mathsf{O}_{3}^{^{+}},\ \mathsf{Ca}_{5}\mathsf{O}_{4}^{^{+}},\ \mathsf{Ca}_{6}\mathsf{O}_{5}^{^{+}}
   Species Used for Mass Calibration:
         Specimen Normal-to-Analyzer:
                                                                                                                       0°
                                                                                                                      45°
              Source-to-Analyzer Angle:
                                                                                                                     LMIG
                 Primary Beam Ion Gun:
                                                                                                             \mathrm{Bi}_{3}^{+} 4.37 × 10<sup>11</sup> ion/cm<sup>2</sup>
                     Primary Ion Species:
                        Primary Ion Dose:
                Primary Ion Pulse Width:
                                                                                                                  0.8 - 1.2 \, \text{ns}
                 Primary Ion Pulse Rate:
                                                                                                                     5 kHz
                       Net Beam Voltage:
                                                                                                                  25 000 eV
                   Pulsed Beam Current:
                                                                                                                 0.000 15 nA
                        DC Beam Current:
                                                                                                                    14.7 nA
                           Beam Diameter:
                                                                                                                    \sim 2 \mu m
                        Beam Raster Size:
                                                                                                                250 \times 250 \,\mu\text{m}^2
                    Beam Incident Angle:
                                                                                                                      45°
             Secondary Source Polarity:
                                                                                                                   Positive
                  Mass Range Minimum:
                                                                                                                     0 Da
                  Mass Range Maximum:
                                                                                                                   3545 Da
       Spectrum Dead Time Corrected:
                                                                                                                      Yes
       Total Spectral Acquisition Time:
                                                                                                                     292 s
                                                                     The peak at m/z 102.925 attributed to CaPO<sub>2</sub> can be distinguished from the peak at m/z
                                  Comment:
```

c
8
•
č
Ų
1707
×
- 4
Ī
1
4


SPECTRAL FEATURES TABLE			
Spectrum ID #	Mass (∆m), Da	Species	Peak Assignment
01941-01	74.922 (13.4)	As ⁺	α -As ₄ S ₄
	90.914 (-22.6)	AsO ⁺	Arsenic oxide
	106.891 (-27.9)	AsS ⁺	α -As ₄ S ₄
	138.863 (-15.7)	AsS ₂ ⁺	α -As ₄ S ₄
	181.814 (-6.79)	As ₂ S ⁺	α -As ₄ S ₄
	207.972 (-17.8)	$Pb^{\scriptscriptstyle +}$	Natural impurity
	213.783 (-16.5)	$As_2S_2^+$	α -As ₄ S ₄
	245.756 (- 10.3)	$As_2S_3^{\overline{+}}$	α -As ₄ S ₄
	256.734 (-8.30)	As ₃ S ⁺	α -As ₄ S ₄
	272.748 (-3.46)	$As_3O_3^+$	Arsenic oxide
	288.726 (-0.90)	$As_3SO_2^+$	α-As ₄ S ₄ /arsenic oxide
	314.871 (4.83)	PbAsS [∓]	Natural impurity
	320.678 (-7.97)	$As_3S_3^+$	α -As ₄ S ₄
	346.832 (-27.5)	PbAsS ₂ ⁺	Natural impurity
	352.653 (1.19)	$As_3S_4^+$	α -As ₄ S ₄
	378.807 (-19.5)	PbAsS ₃ ⁺	Natural impurity
	395.601 (-2.70)	$As_4S_3^{+}$	α -As ₄ S ₄
	427.583 (19.8)	As ₄ S ₄ ⁺	α -As ₄ S ₄
	470.576 (—1.02)	As ₅ O ₆ [‡]	α-As ₄ S ₄ /arsenic oxide
	486.578 (12.6)	$As_5^{\circ}O_7^{+}$	α-As ₄ S ₄ /arsenic oxide
	502.575 (15.5)	$As_5O_8^+$	α-As ₄ S ₄ /arsenic oxide

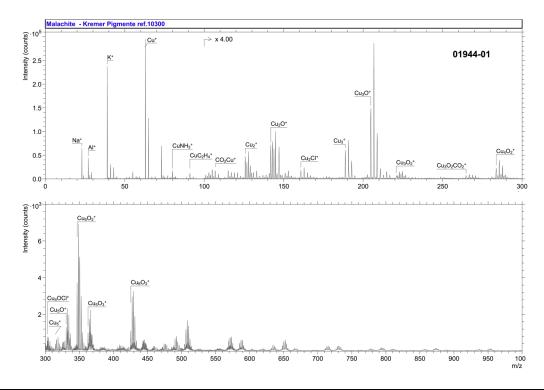
same round-shaped areas of about $10\,\mu\mathrm{m}$ diameter dispersed on the surface, allowing us to confidently determine if a species contained oxygen or only sulfur.

01941-01 Accession #: ■ Specimen: Realgar/red orpiment—Kremer Pigmente Ref. 10800 ■ Technique: SIMS Instrument: IONTOF, TOF SIMS IV Analyzer Type: Time-of-flight **Analyzer Mass Resolving Power:** 3900 m/∆m Mass Resolving Power Determined at: 27 Da Species Used for Mass Calibration: As^+ , AsS^+ , $As_2S_2^+$, $AsPbS^+$, $As_3S_3^+$ 0° Specimen Normal-to-Analyzer: 45° Source-to-Analyzer Angle: Primary Beam Ion Gun: **LMIG** Bi_3^{\dagger} 4.34 × 10¹¹ ion/cm² **Primary Ion Species: Primary Ion Dose:** Primary Ion Pulse Width: $0.8 - 1.2 \, \text{ns}$ Primary Ion Pulse Rate: 5 kHz Net Beam Voltage: 25 000 eV **Pulsed Beam Current:** 0.000 21 nA DC Beam Current: 14.4 nA Beam Diameter: $\sim 2 \mu \text{m}$ $250 \times 250 \,\mu\text{m}^2$ Beam Raster Size: Beam Incident Angle: 45° **Secondary Source Polarity:** Positive Mass Range Minimum: 0 Da Mass Range Maximum: 3545 Da Spectrum Dead Time Corrected: Yes **Total Spectral Acquisition Time:** 207 s Comment: Unstable, sensitive to light and oxygen. All oxygen-containing ions were localized in the


SPECTRAL FEATURES TABLE			
Spectrum ID #	Mass (∆m), Da	Species	Peak Assignmen
01942-01	22.990 (31.5)	Na ⁺	_
	26.981 (-4.76)	AI ⁺	-
	27.976 (-9.51)	Si ⁺	-
	39.962 (5.09)	Ca [⁺]	_
	46.967 (-32.1)	PO⁺	$Zn_3(PO_4)_2$
	50.943 (-10.6)	V ⁺	BiVO ₄
	55.956 (-20.7)	CaO ⁺	_
	56.964 (-9.73)	CaOH [⁺]	_
	63.928 (-8.30)	Zn⁺	-
	66.939 (5.90)	VO ⁺	BiVO ₄
	67.947 (8.58)	VOH⁺	BiVO ₄
	82.937 (47.8)	VO_2^+	BiVO ₄
	98.931 (29.6)	$VO_3^{\overline{+}}$	BiVO ₄
	102.923 (-2.82)	CaPO ₂ ⁺	_ `
	118.921 (-0.26)	CaOPO ₂ ⁺	_
	122.896 (-2.51)	CaVO ₂ ⁺	_
	126.893 (2.89)	$ZnPO_2^{\overline{+}}$	$Zn_3(PO_4)_2$
	133.876 (—8.97)	$V_2O_2^{+-}$	BiVO ₄
	138.893 (14.5)	CaVO ₃ ⁺	
	142.889 (9.85)	$ZnPO_3^{\check{T}}$	$Zn_3(PO_4)_2$
	149.872 (-0.98)	$V_2O_3^+$	BiVO ₄
	154.889 (21.3)	CaVO ₄ ⁺	_
	158.881 (18.5)	$V_3H_6^+$	BiVO ₄
	165.869 (10.5)	$V_2O_4^{\dagger}$	BiVO ₄
	174.875 (11.1)	$V_3H_6O^+$	BiVO ₄
	181.865 (16.2)	$V_2O_5^+$	BiVO ₄
	194.846 (-9.93)	Ca ₂ VO ₄ ⁺	=
	200.816 (-1.53)	$V_3O_3^+$	BiVO ₄
	208.984 (18.6)	Bi ⁺	BiVO ₄
	216.814 (13.1)	V ₃ O ₄ ⁺	BiVO ₄
	224.977 (11.4)	BiO ⁺	BiVO ₄
	232.810 (16.5)	V ₃ O ₅ ⁺	BiVO ₄
	248.806 (19.8)	V ₃ O ₅ ⁺	BiVO ₄
	275.913 (-21.0)	BiVO ⁺	BiVO ₄
	291.913 (-2.34)	BiVO ₂	BiVO ₄
	307.907 (-3.46)	BiVO ₃ ⁺	BiVO ₄
	417.967 (17.0)	Bi ⁺ ₂	BiVO ₄
	433.961 (14.6)	Bi ₂ O ⁺	BiVO ₄
	449.960 (21.2)	$Bi_2O_2^+$	BiVO ₄
	516.893 (7.63)	Bi ₂ VO ₃ ⁺	BiVO ₄
	532.895 (21.1)	Bi ₂ VO ₄	BiVO ₄
	548.869 (–18.6)	Bi ₂ VO ₅	BiVO ₄
	626.957 (26.1)	Βi ₂ νΟ ₅ Βi ₃ ⁺	BiVO ₄
		DI3 Bi ∩ ⁺	BiVO ₄ BiVO ₄
	642.941 (8.81) 659.035 (7.13)	Bi ₃ O ⁺	
	658.935 (7.13)	Bi ₃ O ₂ ⁺	BiVO ₄
	674.930 (6.75)	Bi ₃ O ₃ ⁺	BiVO ₄
	741.873 (11.8)	$Bi_3VO_4^{\dagger}$	BiVO ₄
	835.936 (18.5)	Bi ₄	BiVO ₄
	851.922 (7.25)	Bi₄O ⁺	BiVO ₄

Accession #:	01942-01
■ Specimen:	Bristol Yellow—Kremer Pigmente Ref. 43111
■ Technique:	SIMS
Instrument:	IONTOF, TOF SIMS IV
Analyzer Type:	Time-of-flight
Analyzer Mass Resolving Power:	3500 m/∆m
Mass Resolving Power Determined at:	25 Da
Species Used for Mass Calibration:	Na ⁺ , Ca ⁺ , Ca ₂ O ⁺ , Ca ₅ O ₅ H ⁺ , Ca ₆ O ₆ H ⁺
Specimen Normal-to-Analyzer:	0°
Source-to-Analyzer Angle:	45°
Primary Beam Ion Gun:	LMIG
Primary Ion Species:	Bi ₃ ⁺
Primary Ion Dose:	$4.35 \times 10^{11} \text{ ion/cm}^2$
Primary Ion Pulse Width:	0.8–1.2 ns
Primary Ion Pulse Rate:	5 kHz
Net Beam Voltage:	25 000 eV
Pulsed Beam Current:	0.000 17 nA
DC Beam Current:	15.1 nA
Beam Diameter:	\sim 2 μ m
Beam Raster Size:	$250 \times 250 \mu\text{m}^2$
Beam Incident Angle:	45°
Secondary Source Polarity:	Positive
Mass Range Minimum:	0 Da
Mass Range Maximum:	3545 Da
Spectrum Dead Time Corrected:	Yes
Total Spectral Acquisition Time:	256 s

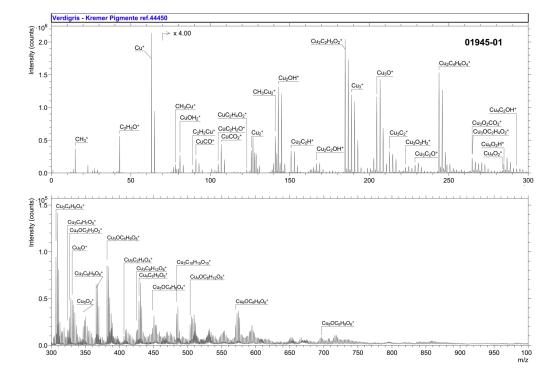
8
ç
Ę
5
1
-
-


SPECTRAL FEATURES TABLE			
Spectrum ID #	Mass (∆m), Da	Species	Peak Assignment
01943-01	26.980 (-31.2)	Al+	-
	38.965 (42.0)	K+	_
	62.928 (-10.3)	Cu+	$Cu_3(CO_3)_2(OH)_2$
	106.915 (-34.4)	CO ₂ Cu+	$Cu_3(CO_3)_2(OH)_2$
	118.913 (-49.5)	CuC ₂ O ₂ +	$Cu_3(CO_3)_2(OH)_2$
	125.857 (-10.8)	Cu ₂ +	$Cu_3(CO_3)_2(OH)_2$
	137.901 (-23.8)	Ba+	Ba-rich impurity found in natural azurite
	141.852 (-11.4)	Cu ₂ O+	$Cu_3(CO_3)_2(OH)_2$
	154.906 (-7.22)	BaOH+	Ba-rich impurity found in natural azurit
	188.790 (6.94)	Cu ₃ +	$Cu_3(CO_3)_2(OH)_2$
	204.781 (-10.8)	Cu ₃ O+	$Cu_3(CO_3)_2(OH)_2$
	214.810 (27.4)	Cu ₃ C ₂ H ₂ +	$Cu_3(CO_3)_2(OH)_2$
	264.762 (-22.7)	Cu ₃ O ₂ CO ₂ +	$Cu_3(CO_3)_2(OH)_2$
	276.777 (34.4)	$Cu_3C_2O_4+$	$Cu_3(CO_3)_2(OH)_2$
	283.701 (-24.9)	Cu ₄ O ₂ +	$Cu_3(CO_3)_2(OH)_2$
	291.802 (-8.48)	Ba ₂ O+	Ba-rich impurity found in natural azurit
	308.800 (-23.7)	Ba ₂ O ₂ H+	Ba-rich impurity found in natural azurit
	330.648 (15.7)	Cu₅O+	Cu ₃ (CO ₃) ₂ (OH) ₂
	346.631 (-18.8)	Cu ₅ O ₂ +	Cu ₃ (CO ₃) ₂ (OH) ₂
	362.625 (-20.1)	Cu ₅ O ₃ +	Cu ₃ (CO ₃) ₂ (OH) ₂
	425.551 (—26.1)	Cu ₆ O ₃ +	Cu ₃ (CO ₃) ₂ (OH) ₂

Accession #:	01943-01
■ Specimen:	Azurite—Kremer Pigmente Ref. 10207
■ Technique:	SIMS
Instrument:	IONTOF, TOF SIMS IV
Analyzer Type:	Time-of-flight
Analyzer Mass Resolving Power:	2000 m/∆m
Mass Resolving Power Determined at:	27 Da
Species Used for Mass Calibration:	Na^+ , Cu^+ , Cu_2OH^+ , Cu_3O^+ , $^{65}CuCu_3O_2^+$, $^{65}CuCu_4O_2^+$
Specimen Normal-to-Analyzer:	0°
Source-to-Analyzer Angle:	45°
Primary Beam Ion Gun:	LMIG
Primary Ion Species:	Bi ₃ ⁺
Primary Ion Dose:	$4.35 \times 10^{11} \text{ ion/cm}^2$
Primary Ion Pulse Width:	0.8-1.2 ns
Primary Ion Pulse Rate:	5 kHz
Net Beam Voltage:	25 000 eV
Pulsed Beam Current:	0.000 13 nA
DC Beam Current:	10.4 nA
Beam Diameter:	~2 µm
Beam Raster Size:	$250 \times 250 \mu\text{m}^2$
Beam Incident Angle:	45°
Secondary Source Polarity:	Positive
Mass Range Minimum:	0 Da
Mass Range Maximum:	3545 Da
Spectrum Dead Time Corrected:	Yes
Total Spectral Acquisition Time:	335 s
Comment:	Organic contamination, likely from pigment processing. ⁸ Additional series of peaks are
	detected, with lower intensity. Some can be attributed to $Cu_nO_4^+$ with $n = 7-8$. Other can
	be attributed to $Ba_nO_nH^+$ with $n = 3-4$ from Ba-rich impurities.

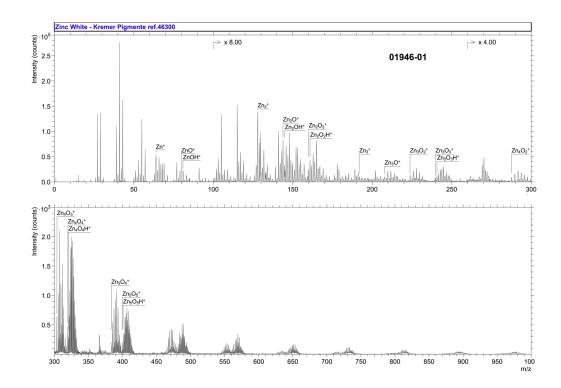
8
c
7
Ĵ
Ŋ
Ĭ
+
_
Ν
•
1

SPECTRAL FEATURES TABLE			
Spectrum ID #	Mass (Δm), Da	Species	Peak Assignment
01944-01	22.990 (29.8)	Na⁺	_
	26.981 (-4.25)	AI^{+}	_
	38.964 (26.9)	K ⁺	_
	62.928 (-18.0)	Cu⁺	CuCO ₃ ·Cu(OH) ₂
	79.958 (26.4)	CuNH ₃ ⁺	
	90.929 (-11.2)	CuC ₂ H ₄ ⁺	CuCO ₃ ·Cu(OH) ₂
	106.916 (-25.9)	CO₂Cu [‡]	CuCO ₃ ·Cu(OH) ₂
	125.857 (-15.3)	Cu ₂ ⁺	CuCO ₃ ·Cu(OH) ₂
	141.852 (-9.92)	Cu ₂ O ⁺	CuCO ₃ ·Cu(OH) ₂
	160.829 (8.01)	Cu ₂ Cl ⁺	
	188.787 (-8.78)	Cu ₃ ⁺	CuCO ₃ ·Cu(OH) ₂
	204.781 (-11.5)	Cu₃Õ ⁺	CuCO ₃ ·Cu(OH) ₂
	220.775 (- 16.1)	$Cu_3^+O_2^+$	CuCO ₃ ·Cu(OH) ₂
	264.757 (-42.9)	$Cu_3O_2CO_2^+$	CuCO ₃ ·Cu(OH) ₂
	283.704 (- 13.0)	$Cu_4O_2^+$	CuCO ₃ ·Cu(OH) ₂
	302.685 (11.3)	Cu ₄ OCl ⁺	
	314.647 (-1.96)	Cu ₅ ⁺	CuCO ₃ ·Cu(OH) ₂
	330.638 (-12.6)	Cu₅Ö ⁺	CuCO ₃ ·Cu(OH) ₂
	346.628 (-27.3)	$Cu_5O_2^+$	CuCO ₃ ·Cu(OH) ₂
	362.624 (-21.8)	$Cu_5^{\circ}O_3^{+}$	CuCO ₃ ·Cu(OH) ₂
	425.555 (—16.9)	$Cu_{\Theta}^{\bullet}O_{3}^{+}$	CuCO ₃ ·Cu(OH) ₂



Accession #:	01944-01	
■ Specimen:	Malachite, natural—Kremer Pigmente Ref. 10300	
■ Technique:	SIMS	
Instrument:	IONTOF, TOF SIMS IV	
Analyzer Type:	Time-of-flight	
Analyzer Mass Resolving Power:	2100 m/∆m	
Mass Resolving Power Determined at:	27 Da	
Species Used for Mass Calibration:	Na ⁺ , Cu ⁺ , Cu ₂ OH ⁺ , Cu ₃ O ⁺ , ⁶⁵ CuCu ₃ O ₂ ⁺ , ⁶⁵ CuCu ₄ O ₂ ⁺	
Specimen Normal-to-Analyzer:	0°	
Source-to-Analyzer Angle:	45°	
Primary Beam Ion Gun:	LMIG	
Primary Ion Species:	Bi ₃ ⁺	
Primary Ion Dose:	4.35×10^{11} ion/cm ²	
Primary Ion Pulse Width:	0.8–1.2 ns	
Primary Ion Pulse Rate:	5 kHz	
Net Beam Voltage:	25 000 eV	
Pulsed Beam Current:	0.000 13 nA	
DC Beam Current:	10.4 nA	
Beam Diameter:	\sim 2 μ m	
Beam Raster Size:	250 × 250 μm	
Beam Incident Angle:	45°	
Secondary Source Polarity:	Positive	
Mass Range Minimum:	0 Da	
Mass Range Maximum:	3545 Da	
Spectrum Dead Time Corrected:	Yes	
Total Spectral Acquisition Time:	335 s	
Comment:	Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other $Cu_xO_v^+$.	

	SPEC	TRAL FEATURES TABLE	
Spectrum ID #	Mass (∆m), Da	Species	Peak Assignment
01945-01	15.023 (-24.0)	CH ₃ ⁺	Cu(CH ₃ COO) ₂
	43.017 (-18.3)	$C_2H_3O^+$	Cu(CH ₃ COO) ₂
	62.931 (29.0)	Cu ⁺	$Cu(CH_3COO)_2 \cdot [Cu(OH)_2]_3 \cdot 2H_2OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO$
	77.956 (47.4)	CH₃Cu ⁺	Cu(CH ₃ COO) ₂
	80.941 (17.0)	\mathring{CuOH}^{+}_2	Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ O
	88.943 (-15.0)	$CuC_2H_2^{+}$	Cu(CH ₃ COO) ₂
	90.924 (-0.84)	CuCO ⁺	Cu(CH ₃ COO) ₂
	104.938 (-14.8)	CuC ₂ H ₂ O ⁺	Cu(CH ₃ COO) ₂
	106.920 (11.2)	CuCO ₂ ⁺	Cu(CH ₃ COO) ₂
	122.949 (-10.4)	$CuC_2H_4O_2^+$	Cu(CH ₃ COO) ₂
	125.857 (-10.2)	Cu ₂ +	Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ C
	140.882 (-3.47)	CH ₃ Cu ₂ ⁺	Cu(CH ₃ COO) ₂
	142.865 (22.0)	Cu ₂ OH ⁺	Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ C
	150.866 (-6.44)	Cu ₂ C ₂ H ⁺	Cu(CH ₃ COO) ₂ -[Ou(O1) ₂₃ 3-211 ₂ C
	166.863 (6.76)	$Cu_2C_2OH^{\dagger}$	Cu(CH ₃ COO) ₂ Cu(CH ₃ COO) ₂
	184.873 (5.96)		
		$Cu_2C_2H_3O_2^+$	Cu(CH ₃ COO) ₂
	188.788 (0.93)	Cu ₃ ⁺	Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ C
	204.786 (15.5)	Cu ₃ O ⁺	Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ C
	212.787 (-4.56)	Cu ₃ C ₂ ⁺	Cu(CH ₃ COO) ₂
	222.796 (-8.43)	$Cu_3O_2H_2^{\dagger}$	Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ C
	228.786 (13.8)	$Cu_3C_2O^+$	Cu(CH ₃ COO) ₂
	243.897 (47.9)	$Cu_2C_4H_6O_4^{\dagger}$	Cu(CH ₃ COO) ₂
	264.759 (-35.2)	$Cu_3O_2CO_2^+$	Cu(CH ₃ COO) ₂
	264.813 (32.1)	$Cu_3OC_2H_4O_2^+$	$Cu(CH_3COO)_2 \cdot [Cu(OH)_2]_3 \cdot 2H_2COO$
	283.710 (8.67)	Cu₄O ₂ +	$Cu(CH_3COO)_2 \cdot [Cu(OH)_2]_3 \cdot 2H_2COO$
	284.718 (8.98)	Cu ₄ O ₂ H ⁺	$Cu(CH_3COO)_2 \cdot [Cu(OH)_2]_3 \cdot 2H_2COO$
	292.718 (-8.63)	Cu ₄ C ₂ OH ⁺	Cu(CH ₃ COO) ₂
	306.810 (-17.3)	$Cu_3C_4H_6O_4^+$	$Cu(CH_3COO)_2$
	323.811 (-20.7)	$Cu_3C_4H_7O_5^+$	$Cu(CH_3COO)_2$
	326.718 (-25.8)	$Cu_4OC_2H_3O_2^+$	Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ C Cu(CH ₃ COO) ₂ ·[Cu(OH) ₂] ₃ ·2H ₂ C Cu(CH ₃ COO) ₂ Cu(CH ₃ COO) ₂ Cu(CH ₃ COO) ₂ Cu(CH ₃ COO) ₂ Cu(CH ₃ COO) ₂
	330.641 (-3.33)	Cu₅O ⁺	$Cu(CH_3COO)_2 \cdot [Cu(OH)_2]_3 \cdot 2H_2COO$
	346.631 (-17.0)	Cu ₅ O ₂ ⁺	$Cu(CH_3COO)_2 \cdot [Cu(OH)_2]_3 \cdot 2H_2COO$
	365.821 (-20.0)	$Cu_3C_6H_9O_6^+$	Cu(CH ₃ COO) ₂
	381.817 (-16.7)	$Cu_3OC_6H_9O_6^+$	Cu(CH ₃ COO) ₂
	406.646 (-30.6)	$Cu_5C_2H_4O_4^{\dagger}$	Cu(CH ₃ COO) ₂
	424.834 (- 17.5)	$Cu_3C_8H_{12}O_8^+$	Cu(CH ₃ COO) ₂
	428.753 (-10.7)	Cu ₄ C ₆ H ₉ O ₆ ⁺	Cu(CH ₃ COO) ₂
	448.663 (-12.5)	Cu ₅ OC ₄ H ₆ O ⁺	Cu(CH ₃ COO) ₂
	483.840 (-31.6)	Cu ₃ C ₁₀ H ₁₅ O ₁₀	Cu(CH ₃ COO) ₂
	503.752 (-28.6)	Cu ₄ OC ₈ H ₁₂ O ₈ ⁺	Cu(CH ₃ COO) ₂
	570.615 (5.87)	Cu ₆ OC ₆ H ₉ O ₇	Cu(CH ₃ COO) ₂
	696.504 (47.0)	$Cu_8OC_6H_9O_6^+$	$Cu(CH_3COO)_2$



Accession #:	01945-01	
■ Specimen:	Verdigris, synthetic—Kremer Pigmente Ref. 44450	
■ Technique:	SIMS	
Instrument:	IONTOF, TOF SIMS IV	
Analyzer Type:	Time-of-flight	
Analyzer Mass Resolving Power:	3800 m/∆m	
Mass Resolving Power Determined at:	27 Da	
Species Used for Mass Calibration:	Na^{+} , Cu^{+} , $Cu_{2}OH^{+}$, $Cu_{3}O^{+}$, $^{65}CuCu_{3}O^{+}_{2}$, $^{65}CuCu_{4}O^{+}_{2}$	
Specimen Normal-to-Analyzer:	0°	
Source-to-Analyzer Angle:	45°	
Primary Beam Ion Gun:	LMIG	
Primary Ion Species:	Bi ₃ ⁺	
Primary Ion Dose:	$1.0 \times 10^{13} \text{ ion/cm}^2$	
Primary Ion Pulse Width:	0.8–1.2 ns	
Primary Ion Pulse Rate:	6.7 kHz	
Net Beam Voltage:	25 000 eV	
Pulsed Beam Current:	0.000 31 nA	
DC Beam Current:	13.2 nA	
Beam Diameter:	$\sim 2 \mu$ m	
Beam Raster Size:	$100 \times 100 \mu \text{m}^2$	
Beam Incident Angle:	45°	
Secondary Source Polarity:	Positive	
Mass Range Minimum:	0 Da	
Mass Range Maximum:	1996 Da	
Spectrum Dead Time Corrected:	Yes	
Total Spectral Acquisition Time:	617 s	
Comment:	Grains were not flat, and topography impacted the mass resolution.	

8
c
9
č
ģ
Ŋ
9
1
*
-
Ν
-
1

SPECTRAL FEATURES TABLE					
Spectrum ID #	Mass (∆m), Da	Species	Peak Assignment		
01946-01	63.928 (-4.74)	Zn⁺	ZnO		
	79.926 (24.9)	ZnO^{+}	ZnO		
	80.934 (33.0)	$ZnOH^{\scriptscriptstyle +}$	ZnO		
	127.858 (3.66)	Zn_2^+	ZnO		
	143.854 (9.57)	Zn(ZnO) ⁺	ZnO		
	144.861 (4.73)	Zn(ŽnOH) ⁺	ZnO		
	159.849 (9.94)	$(ZnO)_2^{+'}$	ZnO		
	160.857 (12.0)	(ZnO)₂H ⁺	ZnO		
	191.789 (8.58)	Zn ₃ +	ZnO		
	207.783 (6.72)	$Zn_3\overset{\circ}{O}^+$	ZnO		
	223.777 (1.53)	$Zn(ZnO)_2^+$	ZnO		
	239.772 (-0.48)	$(\hat{Z}nO)_3^{+2}$	ZnO		
	240.779 (—2.54)	(ZnO)₃H ⁺	ZnO		
	287.708 (7.95)	$\sum_{1}^{\infty} Zn_4O_2^+$	ZnO		
	303.697 (-11.3)	$Zn(ZnO)_3^+$	ZnO		
	319.690 (<u></u> –16.7)	(ŽnO) ₄ +	ZnO		
	320.701 (-9.34)	(ŽnO)₄H ⁺	ZnO		
	383.627 (6.36)	Zn(ZnO) ₄ ⁺	ZnO		
	399.622 (6.27)	(ZnO) ₅ ⁺	ZnO		
	400.634 (16.0)	(ŽnO)₅H ⁺	ZnO		


```
01946-01
                           Accession #:
                                                                                           Zinc White—Kremer Pigmente Ref. 46300
                           ■ Specimen:
                          ■ Technique:
                                                                                                              SIMS
                             Instrument:
                                                                                                      IONTOF, TOF SIMS IV
                         Analyzer Type:
                                                                                                           Time-of-flight
     Analyzer Mass Resolving Power:
                                                                                                           4200 m/∆m
Mass Resolving Power Determined at:
                                                                                                              27 Da
                                                                                     Na_{1}^{+}Zn_{2}^{+}O_{2}^{+}Zn_{3}O_{3}^{+} \stackrel{66}{}^{62}Zn_{3}^{68}Zn_{2}O_{4}^{+}, \stackrel{66}{}^{62}Zn_{3}^{68}Zn_{3}O_{5}^{+}
   Species Used for Mass Calibration:
                                                                                                                0°
        Specimen Normal-to-Analyzer:
                                                                                                               45°
             Source-to-Analyzer Angle:
                                                                                                              LMIG
               Primary Beam Ion Gun:
                                                                                                       Bi_3^+ 4.37 × 10<sup>11</sup> ion/cm<sup>2</sup>
                   Primary Ion Species:
                      Primary Ion Dose:
              Primary Ion Pulse Width:
                                                                                                            0.8-1.2 ns
               Primary Ion Pulse Rate:
                                                                                                              5 kHz
                     Net Beam Voltage:
                                                                                                            25 000 eV
                 Pulsed Beam Current:
                                                                                                           0.000 15 nA
                     DC Beam Current:
                                                                                                             14.7 nA
                        Beam Diameter:
                                                                                                              \sim 2 \mu m
                     Beam Raster Size:
                                                                                                          250 \times 250 \,\mu\text{m}^2
                  Beam Incident Angle:
                                                                                                               45°
                                                                                                             Positive
           Secondary Source Polarity:
                Mass Range Minimum:
                                                                                                              0 Da
                Mass Range Maximum:
                                                                                                             3545 Da
      Spectrum Dead Time Corrected:
                                                                                                               Yes
                                                                                                              293 s
      Total Spectral Acquisition Time:
                                                                          Distinctive isotopic pattern for Zn. Exogenous organic contamination. Peaks
                              Comment:
                                                                           attributed to (ZnO)_x^+ are commonly present up to x = 9, with lower intensity.
```