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ABSTRACT

Education is a field greatly impacted by the digital revolu-
tion. Online courses and MOOCs give access to education
to most parts of the world, and many assessments are made
online as they are easier to evaluate. This creates an im-
portant collection of learning analytics that can be used to
provide and generate personalized content, which is essen-
tial to keep learners engaged and to have increased learning
gains. The purpose of this thesis is to see how machine
learning algorithms can be used to learn better knowledge
representations of learners, and consequently to recommend
learning tasks (exercises or courses) tailored to a student’s
needs. We are learning instructional policies from student
data so that we can understand how students learn and
which lessons/exercises in a course have a strong impact
on learning for which students.
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1. INTRODUCTION

Reinforcement learning (RL) is a convenient setting for per-
sonalizing instruction: it consists in learning new instruc-
tional policies to assist teacher decision making. However,
RL usually requires many samples, i.e., it is not sample-
efficient, and collecting extra data can be expensive or time-
consuming. In any case, we cannot ask too many questions
to a given student, nor collect invasive data. While learning
analytics may be various and abundant for a given student
and can increase the efficiency of student models, it is still a
challenge to combine various modalities of data or to assess
external factors like engagement, motivation, etc.

Another significant problem in student modeling is to prop-
erly define and assess the validity of the knowledge state of a
student. How can we be sure that a notion is learned or that
a student has understood a course? We need to be robust to

changes in data distribution or to people gaming the system.
In this thesis, we intend to build a general RL framework to
find new teaching policies from learning analytics. Notably,
we need to estimate a broader context of how the student has
interacted with an intelligent tutoring system (ITS) to un-
derstand with greater precision their learning process. This
is essential for proposing personalized content and possibly
generate content tailored to their specific needs. This is in
continuity with the generative Al revolution where models
are fine-tuned with user feedback [8].

In particular, should the RL approach be model-free or fol-
low heuristics from cognitive student models (model-based)?
Both methods come with advantages and drawbacks. Like
in any machine learning application, it is also challenging to
frame a reward objective while ensuring it does not discrim-
inate one part of the population from another.

This paper is organized as follows. In Section 2, we present
our research questions. Then, we present the related work
in Section 3, we present our preliminary work on offline RL
in Section 4, and we give a conclusion and expected contri-
butions in Section 5.

2. RESEARCH QUESTIONS

To effectively use machine learning in education, it’s im-
portant to rely on the research literature of psychometrics,
cognitive science, and statistics and machine learning. A
successful model should mimic the way we learn. Therefore,
the research questions in our thesis cover these various fields.

2.1 RQ1: How to enrich student knowledge

states using cognitive models?
To determine the knowledge state of students, several meth-
ods are focused mainly on the assessment of knowledge com-
ponents. Typically, these student models are trained on ex-
isting data to predict future student performance, a pro-
cess known as knowledge tracing. But when we rely only
on knowledge components and attempted exercises, we lack
other aspects of cognitive processes: it is important to as-
sess the concentration or motivation of a student through
temporal data such as response time, number of items at-
tempted, etc. A work so far inspired by cognitive models has
been focused mainly on memorization of items with spaced
repetition techniques [14], but this can and should be encom-
passed in a more general framework for knowledge tracing.
Using cognitive models to improve knowledge tracing models
has also the advantage to boost their interpretability, which



is essential for practitioners [20].

We should differentiate between students who attempt an
exercise randomly and those who give it some thought while
their outcomes appear the same. Cognitive models will be
studied to track the level of engagement perceived through
the data. The willingness to learn may be intrinsically linked
to our dopamine system: in neuroscience, the state of full
engagement with no self-referential thinking is called the
flow state [15]. Several studies have proved that areas re-
lated to the brain’s dopaminergic reward system are more
active during flow. It has been established that, in order
to experience flow, a key dimension is the match between
a person’s skills and the challenge from the task. Present-
ing students with exercises that are too straightforward can
lead to a lack of commitment, i.e., the temporal difference
between the expected reward signal and the real reward is
small — similarly for too difficult exercises. This is related
to the so-called zone of prozimal development [16].

2.2 RQ2: What reward functions do we want
to optimize?

An important goal is also to define the reward. Do we
expect students to score better at a future test [6], to be
more engaged in the platform, or to be knowledgeable on a
wider range of skills [19]? Ideally, a little of everything, but
this objective is solely reached by the reward signal, defined
arbitrarily. Different articles have shown different rewards
adapted to the end goal [5].

The challenge lies in finding a reward signal that would pro-
vide maximum information while requiring minimal estima-
tion. In an educational setting, observations are usually
simplified to binary outcomes (exercise was correct or in-
correct) as it is hard to model nuance. More data, such as
response time, should be taken into account, but this mul-
timodal data leads to more complex models.

Rewards can be short-term, i.e., correct answer, or long-
term, e.g., the score at an exam [2], but this highlights an-
other open problem in the RL literature: the temporal credit
assignment problem [13, 7]. What would be the most im-
pactful action from a sequence on the long-term reward?
Should we optimize several rewards at the same time, mak-
ing it a multi-objective RL problem?

2.3 RQ3: How to assess the validity of RL in

educational settings?

How to make sure that the findings in simulated experi-
ments are actually validated in the real world with real stu-
dents? Usually, we do cross-validation. One goal of our re-
search project is to elaborate a robust reinforcement learning
framework. In order to find robust policies, i.e., that resist
changes in data distribution or variance in the data, it is
important that our contexts (the information retained by a
student) are defined in a compact manner while retaining
maximum information. Having interpretable contexts is a
plus.

Sometimes, it is expensive to conduct user studies. There-
fore, it is good to conduct offline experiments to make sure
that a learned policy works no matter the student model [4],

this is called offfine reinforcement learning. This implies we
can first evaluate teaching policies on logged data without
performing more online experiments on new students.

Another line of work would be to validate inferred knowl-
edge states: How can we be confident in our assessment?
We could trick students with adversarial items. For exam-
ple, presenting an MCQ with distractors, with all wrong but
plausible answers, and then assessing the level of confidence
of the students. This is sometimes done in a two-step pro-
cess, inviting students to change their answer after they see
that a classmate answered differently [1].

2.4 RQ4: How to properly define the struc-

tures of items to generate?

An important aspect to consider in reinforcement learning
is the action space; an exercise has a particular structure
we should take advantage of. By defining the structure of
an item through expert knowledge or unsupervised learning,
we could infer much more than its knowledge components
or difficulty. Each question has a purpose; sometimes, the
difficulty lies in the understanding more than the answer-
ing part, and most exercises follow a path of reasoning that
might not always be adapted to students. By structuring
properly an item into different components, we could refine
the action space into a continuous multi-dimensional space:
such a space would not only contain the corpus of exist-
ing exercises but also fully generated exercises, as variants
of existing ones. A method to consider is to use LLMs to
retrieve the structure of exercises in the corpus into an em-
bedding and possibly generate new questions that would be
more adapted to a given student. Some items rely on much
more than their textual content, therefore the use of LLMs
for item generation is essential but not sufficient: additional
constraints are necessary to improve the mathematical va-
lidity of item generation such as arithmetic math word prob-
lems [17]. Another approach could be seen as an extension
of the work proposed by [3] by choosing an action where
each parameter is selected by a bandit algorithm.

3. RELATED WORK

Reinforcement Learning in education has been studied ex-
tensively using POMDPs [10, 18]: we do not observe the
knowledge of a student, only their interactions with items,
hence the name “partially observable”, and those interac-
tions allow us to update the actual belief state of the student
knowledge. POMDPs allow us not to make the assump-
tion that learners’ understanding can be directly observed
or approximated by a large number of features. A major in-
convenience with POMDPs is that their learning is usually
intractable unless under certain conditions, as it requires a
lot of data, something hard to counter given the scarcity of
educational data.

Consequently, the majority of the literature focuses on the
idea of assuming a model of student behavior and then de-
termining the best sequence of learning exercises or policies
to achieve specific educational objectives according to this
model. Various techniques are used, such as HOT-DINA
[12], a hybrid of Bayesian Knowledge Tracing (BKT) and
Item Response Theory (IRT); and deep knowledge tracing
[9], among others.



However, relying solely on model-based techniques has its
limitations, as these models are not perfect and can lead
to overfitting, making the learned policies less effective in
real-world educational settings (cf. our research question
RQ3). To address this issue, [4] suggests using off-policy es-
timation with multiple student models to find simpler, more
robust policies that can perform well regardless of the chosen
student model. Alternatively, when no student model is ex-
plicitly assumed (model-free), the policy learned is learned
solely through the reward function.

A lot of work has been done on automatic item generation
(AIG), we are able to generate exercises of better quality
and even explanations if the student makes a mistake [11]
but we are still lacking on adapting generated items to other
aspects than proficiency.

4. OUR PRELIMINARY WORK

So far, we have focused on research questions RQ2 and RQ3
in offline RL. The purpose of our methodology is to have
an increase in the student’s learning gains, i.e. we want
them to solve harder problems correctly, hence we defined
a short-term reward signal that is 0 if the student answers
incorrectly, and that is positively correlated to the difficulty
of the exercise if solved correctly. This is a short-term re-
ward, and this setting is also related to contextual bandits:
a machine learning model that selects actions based on con-
text (input information) to maximize a reward, often used
in recommendation systems and online advertising. Given a
context x, that is some summarized student history, we seek
to select an action a with a probability w(a | z) that leads
to a reward r. Our primary objective is to maximize the
average reward, which can be calculated using this formula:

V(r) = ///rp(r | z,a)m(a | z)p(z)dx dadr.

The objective of off-policy evaluation is to assess a policy
7. using logged data collected from a distinct policy 7. In
this scenario, we are constrained to use existing logged data
Do, represented as samples (0;,a;,7;) for 1 < i < n, and
conducting new experiments is impractical or costly. To
perform offline evaluations, we first estimate a behavior pol-
icy mo(a | 0) from the existing logged data Dy. Then, we
assess the potential outcomes r; that would have occurred
if a different question-asking policy, 7. (a | 0), had been em-
ployed.

Once we have selected an estimator V for the average reward
of new policies, we can even use it as an objective function
for the purpose of learning new policies (off-policy learning),
all while relying only on the existing logged data Dy:

7V = argmax \7(71')

There are several average reward estimators; some of them
are model-based, and others are model-free (such as in-
verse probability weighting), leading to different variance-
bias trade-offs. In model-based methods, the idea is to learn
a model 7 that estimates missing rewards. It has the advan-
tage of having a very low variance but a high bias due to
the learned reward model that might be itself biased. On
the other side, model-free methods can be unbiased but have
subsequent variance and may require more data.

In our first experiment, we assumed the context for a stu-
dent is a scalar that is characterizing the “proficiency” of a
student. In this particular model, we can estimate the diffi-
culties of each action, i.e., exercise, using an item response
theory model such as the IRT-1PL model.

In one dimension, the proficiency of a given student is given
by a single parameter § € R. In its simplest form, the one-
parameter model (1PL), each item a is assigned a parameter
d, representing the difficulty of the item. In IRT-1PL, the
probability that a student with a knowledge 6 answers item
a correctly is given by Pr(O = 1| 6,a) = 0 (0 — ds) where
d, is the difficulty of item a and 0 is the estimated ability
of the student. Item difficulties d, are estimated from prior
data.

When we initially encounter a student, we lack any prior
information, so we set the context as 6y = 0. At each time
step, we update the context of a student with IRT 6,41 =
0+ + K (0 — p:) where o is the binary outcome, i.e. 1 if
the answer is correct, 0 otherwise, and p; is the probability
that they got the answer correct according to IRT, that is
pt = Pr(O=1]6a:) = 0(0: —at). We can see that if
students get a question correct, then 6 increases; if they fail,
0 decreases. If the initial estimation of IRT was far away,
i.e., |pt — 04| is high, then the context will change a lot.

As stated earlier, our objective is to ask harder questions
while making sure that students will solve them. In order to
do so, we define the reward for a context 6 and action a as
R(0,a¢,0¢) = da, X 0r. Therefore, a question answered in-
correctly will have a reward of 0 no matter its difficulty (we
assume here that difficulty values are shifted so that they
are always positive). Our early results have shown that the
learned policies had better average reward than the base-
line, i.e., existing teaching strategies. As we expected, the
model-free estimator has shown great variance due to the
limited quantity of data, but it has also led to more inter-
esting and visualizable policies. This work will be available
as a preprint at the time of the conference.

S. CONTRIBUTIONS AND IMPACT

So far, we have been focusing on performing offline RL ex-
periments (RQ2 & RQ3), but we also plan to possibly con-
duct experiments on real students. Studying cognitive mod-
els may consistently lead to better student models that can
be used in the knowledge-tracing community (RQ1).

One aim of this thesis is to define a relevant RL framework
in an educational setting. The choice of the reward (RQ2)
or the state-action space structure will lead to the creation
of different RL environments that can benefit both the RL
community for benchmarking algorithms and the EDM com-
munity for understanding thought processes.

Finally, personalized exercise generation tailored to students
has been a key goal in the EDM community. One focus
of this thesis is to reason at the item template level and
manipulate structures of items in order to generate multiple
variants of items without relying on too large sources of
educational data.

The challenges associated with the application of RL in edu-



cational settings serve to address several open issues within
the RL community. These include concerns regarding sam-
ple efficiency, managing continuous time dynamics (due to
the irregular intervals at which students respond to exer-
cises), and navigating within a continuous action space of

items.

These issues will also form a focal point of inves-

tigation in my thesis, with the aim of offering theoretical
contributions to the field.
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