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Abstract: Semantic segmentation remains a computationally intensive algorithm for embedded deployment even with the 
rapid growth of computation power. Thus efficient network design is a critical aspect especially for applications like 
automated driving which requires real-time performance.  Recently, there has been a lot of research on designing 
efficient encoders that are mostly task agnostic.  Unlike image classification and bounding box object detection tasks, 
decoders are computationally expensive for semantic segmentation task. In this work, we focus on efficient design of the 
segmentation decoder making use of an efficient encoder. We design a novel efficient non-bottleneck layer and a family 
of decoders which fit into a small run-time budget using VGG10 as efficient encoder. We demonstrate in our dataset that 
experimentation with various design choices led to an improvement of 10 % from a baseline performance. The optimal 
configuration of the decoder leads to a performance of 50 fps on an embedded low power SOC namely Renesas V3H. 
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INTRODUCTION 

Semantic segmentation provides complete semantic scene understanding wherein each pixel in an 
image is assigned a class label.  It has applications in various fields including automated 
driving,augmented reality and medical image processing. The complexity of Convolution Neural 
Networks(CNN) architectures have been growing consistently [16] [17] [18] [19] [20] [21].  However 
for industrial applications, there is a computational bound because of limited resources on embedded 
platforms.  It is essential to design efficient models which fit the run-time budget of the system. There 
are many papers which demonstrate large runtime improvements with minimal loss of accuracy by 
using various techniques. An overview of efficient CNN for semantic segmentation is provided in 
[1]. Majority of the work is focused on efficient encoder design and there is limited work on efficient 
decoder design. Wojna etal [12] recently demonstrated that decoder design plays a critical role in 
accuracy. In this paper, we propose the design of a novel non-bottleneck layer particularly to perform 
semantic segmentation task where the encoder is task independent unlike existing methods. Our non-
bottleneck layer based on residual learning, has been designed to perform well for some classes that 
are not well represented in the dataset. Having cascaded skip connections make our non-bottleneck 
layer capable to handle high gradient flow and suitable for an embedded platform to run on real time 
with lightweight encoder model. 
 
PROPOSED METHOD 

Encoder: Efficiency of semantic segmentation is considered as seen by heavy usage of dilated 
convolution as used in [2] [3] [5] [8] [11] or information fusion at different resolution [7] [14] 
[13].However, our study is intended towards use of a more generic encoder.  So we designed a task 
independent VGG [10] style classifier of 10 layers as encoder.  As per Figure 2, convolution with 
stride 2 followed by max-pooling is used to reduce the problem space, thus reducing the number of 
hyperparameters and run-time. Obviously, this is a trade-off for segmentation accuracy, but it is not 
the case for other tasks like detection, classification etc. Considering this encoder to be function 
independent, this gap of spatial information exploration needs extensive semantic feature learning in 
the decoder. Convolution layers are added sequentially along with increasing width and decreasing 
feature space in regular interval.  All the convolution layers use kernel of size 5X5 followed by Batch-
Normalization to speed up the convergence and ReLU to add non-linearity. The last layer of encoder 



produces total 256 feature maps. 
 
Decoder: The proposed architecture of decoder has been obtained after redesigning the existing 
features of the convolutional nets, such as residual learning [6] and non-bottleneck layers [8].  In the 
recent past, learning through residual blocks has shown breakthrough performance in many vision 
related tasks and made it possible to make the network grow more deeper very easily. This 
advancement helped to outperform significantly in many object recognition tasks. Further the same 
learning strategy has also been used for semantic segmentation as in [8].  However, in [4], it has been 
demonstrated that residual learning for a network with lesser depth is not efficient, because the 
network can not handle high gradient flow during back-propagation. To circumvent this issue, in this 
study, the original residual learning [6] strategy has been modified with an adequate arrangement to 
distribute the high gradients through multiple skip connections.  Our encoder design does not employ 
any mechanism to extract semantic features and also the current trend of decoders using few 
deconvolution layer for reconstruction of segmentation output is not sufficient with such encoder 
which has generic non-semantic knowledge.  Thus it becomes a requisite for the decoder to learn 
semantic information from the encoded feature maps. Hence we use non-bottleneck blocks between 
two deconvolution layers.  In [8], the authors have designed non-bottleneck layer which is 1D in 
nature and claimed to be a better regularizer and also faster.  
 

 
Figure 1: Illustration of non-bottleneck layers 

 
The design of our non-bottleneck layer is shown in Figure 1. It contains both 1D and 3D kernels.1D 
kernel is used to extract information mainly in one direction at a time and 3D kernel is forgathering 
features from bigger receptive area. Later we try to look for dense information through multiple 
kernels with different sizes for example 3X3, 5X5 and 1X1 respectively. Following this, the features 
extracted using different kernels are fused to summarize the semantic features from different 
receptive areas and also with the input features to the same non-bottleneck layer. The multiple skip 
connections to the feature fusion blocks in the proposed non-bottleneck layer help to handle high 
gradient flow because during back-propagation the incoming gradient gets distributed among all 
paths. As per Figure 1, our non-bottleneck layer has two variants that are type-1 (left) and type-
2(right). The only difference between two variants is the block at the right uses dilated convolution 
for 3X3 and 5X5 kernels. Dilated convolution helps to extract spatial information by expanding the 
field-of-view as per the dilation factor while maintaining the same resolution. With increased dilation 



                                  

 

 

rate it is possible to achieve better accuracy owing to expanded receptive field, but this becomes 
computationally expensive. Thus we use only dilation rate 1 in our study to target embedded platform 
run-time constraints. After each convolution operation, ReLU is used as activation unit for better 
convergence. 
 

 
Figure 2: CNN based encoder-decoder architecture used for semantic segmentation task 

 
Encoder-Decoder architecture: Figure 2 shows the encoder-decoder pair that is used in this 
work.The encoder is a very generic one and the decoder is our main proposal. The feature maps 
passed from the encoder are downsampled from 256 to 4 as the present study concentrates on 4 
classes. One can argue that drastic change in the number of feature maps such as this can impact on 
accuracy but if we make the decoder wider it will shoot up the runtime significantly. Thus decreasing 
the number of feature maps in regular interval is not affordable and out of our budget. After first 
deconvolution layer, non-bottleneck layer of type-1 is used twice. Following second and third 
deconvolution layers,non-bottleneck layers of type-2 are used twice and once respectively.  There is 
no non-bottleneck layer used after fourth deconvolution. This arrangement of repetitive usage of non-
bottleneck layers(both type-1 and type-2) will help remove the gap of learning semantic information 
in the encoder side. Hence, our proposed non-bottleneck layer is generic and can be used for any 
segmentation task.Additionally, we pulled intermediate feature maps from the second and third last 
convolution layers of the encoder.  
 

 
Figure 3: Comparison of proposed optimal decoder against a standard FCN decoder 

EXPERIMENTS 

Dataset: We have used dataset that is owned by our organization.  However, some samples of the 
dataset are shown in Figure 4, where dimension of each image is 1280X384. Samples are highly 
varied in nature and mostly urban scenes. Diverse lighting conditions and presence of dense shadow 
make this dataset challenging. In the present study, to perform semantic segmentation, we 



concentrated only on 4 critical classes that are lanes, curb, road and void (everything else). The entire 
dataset is divided into Training, Validation and Test set each containing 3016, 981 and 1002 images 
respectively.Corresponding each sample image, single channel annotation was developed where each 
pixel has only one class label. 
 
Training: First we train our encoder from scratch on ImageNet and then transfer the weights for the 
present task.  The pre-training on a much larger dataset was required because our model is quite 
shallow and the dataset used in this work is very small in size. To make our lightweight encoder more 
robust we could follow the concept of layer-wise training in a supervised fashion as reported in 
[9].Implementation of the proposed network and all experiments are executed using Keras 
framework.We considered very popular Adam as optimizer. Regarding the other network 
configuration, weight decay and batch size were set to 0.9 and 4 respectively. Training was started 
with 0.0005 as initial learning rate including standard polynomial decay strategy to decrease this 
value over 350K iterations. Dropout is not used in our model. For all experiments, we used NVIDIA 
Titan X 12G GPU with 24GB RAM. No data augmentation technique has been performed during 
training. 
 
Experimental results and comparison study: The hardware that we use is designed with 
automotive power constraints in mind, thus having restricted number of features for design of a CNN. 
Also we intend to utilize a generic encoder network that stays well within the budget.Thus our main 
objective is to design an efficient decoder that satisfies both these constraints. In the course of design 
of an efficient decoder, we have experimented multiple versions of decoder all of which are explained 
later in this section.  With all these decoders VGG10 pre-trained with Imagenet is used as the encoder, 
to have fair comparison of the different variants of the decoder. The entire network containing the 
encoder along with different decoders is trained end to end with the available pixel wise ground truth 
label.  All these variants of decoder reported in Table 1, fits all our constraints.  It is quite general 
while capturing an urban scene, there will be very limited region occupied by lanes, curbs but it is 
exactly opposite for roads and void classes. So we clearly see that for effective learning there is a 
huge gap in problem space in these two classes while comparing with other. Without even attempting 
any data augmentation and class weighing technique, our non-bottleneck layers worked better for 
curb though there is a slight deterioration for lanes. To evaluate the segmentation performance on all 
the designed decoders, widely used Intersection over Union (IoU) metric is considered and details 
are furnished in Table 1. 
 
As put forth earlier, we did experiments with several combinations of Non-Bottleneck layers in the 
network whose results are updated in Table 1. Decoder D1 uses our proposed non-bottleneck layer 
without 1X1 convolution after 3X3 and 5X5 convolution. Decoder D2 is same as D1 but it does not 
use second skip connection from encoder. Decoder D3 shares the same configuration as D2 but the 
batch size during training was 8 whereas it was 4 for D2. Decoder D4 is same as D3 but it does not 
use 1X1 convolution before 3X3 and 5X5 convolution.  Decoder D5 is a bit different.  After first 
deconvolution layer two sets of 3X1, 1X3 convolutions followed by ReLU is used.  Also it uses skip 
connection to fuse the resultant features with the input feature maps of first 3X1 convolution. 

Table 1: Results of different variants of our decoder with non-bottleneck layer and VGG10 as encoder for 
semantic segmentation on our dataset  



                                  

 

 

 
After second deconvolution layer, one 3X3 dilated convolution with dilation rate 1 is used and then 
the same non-bottleneck as used after first deconvolution layer. Only 3X3 dilated convolution with 
dilation rate 1 is used after third and fourth deconvolution layer.  Decoder D6 is same as D5 butit 
uses batch size as 4 where 8 was used in D5.  Decoder D7 is different in terms of kernel size in 
deconvolution layers.  It uses kernel of size 2X2 in first and second, 3X3 in third and fourth,5X5 in 
fifth upsampling layer. Decoder D8 uses same non-bottleneck as D7 without 3X3 and 5X5 
convolution.  In Table 1, the pattern mNp, m stands for number of non-Bottleneck (N) layers, p stands 
for the type of non-bottleneck layer.  Representation within braces ( and ) stands for set of non-
bottleneck layers after a deconvolution layer starting from the first one. Of the different decoder 
variant, the best version is the one put forth in Figure 2, which is obtained after several optimization 
efforts and this network uses the Non-bottleneck layers detailed in Figure 1. This network also takes 
care of the class imbalance for Lanes and Curb and improves its class-wise IoU. We have done the 
runtime estimates for the top performing variants that uses the non-bottleneck layer on the target 
hardware whose values are put forth in Table 1. It can be seen that the best performing version is also 
the most cost effective one in terms of hardware budget with a runtime of 19.37ms for the entire 
network thus capable of handling 50fps for segmentation on V3H SOC [15].The sample 
segmentation outputs of our proposed optimal decoder and a standard FCN decoder are shown in 
Figure 3. 
 
CONCLUSION 

Design of efficient encoders is a growing area of research.  In this work, we focused on design of 
efficient decoders. Firstly, we designed a novel efficient non-bottleneck layer and a family of 
decoders based on this layer.  We experimentally show that different choice of decoder design had a 
large impact and the optimal configuration had 10% improvement of accuracy in terms of mean IoU 
overa baseline configuration. In particular, for more difficult segmentation classes like lanes and 
curb,higher improvements of 12% and 18% were obtained. Thus we demonstrate that the design of 
an efficient decoder can play a critical role for segmentation tasks as it covers a significant portion 
of the overall computation of the network. We hope that our preliminary study demonstrates the need 
for further research on efficient decoders.  In future work, we build a systematic family of meta-
architectures with a fixed run-time budget and learn the optimal configuration using meta-learning 
techniques. 
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