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Abstract

In this paper we study the asymptotic behaviour of the bounded solution of the
following forced system and its discretization

εu′′ + |u′|αu′ +∇F (u) = g(t)

with conditions on F and g. We present similar forced angle conditions for both con-
tinuous and discrete cases, and then we apply it to examples from the literature.
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1 Introduction

In this paper we study the asymptotic behaviour of the following differential equation and
its discretization

εu′′ + |u′|αu′ + ∇F (u) = g(t), (1)
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where F : Rd −→ R, g : R+ −→ Rd, ε ≥ 0 and α ≥ 0. The main question that we want to
deal with is whether a bounded solution of (1) or its implicit discretization converges to an
equilibrium point. It is now well known that convergence or nonconvergence may occur.

There are some previous works in the literature on this subject in continuous situation:
- when ε = 0, α = 0, F is analytic and g = 0 (see [20, 21]);
- when ε = 1, α = 0, F is analytic and g = 0 (see [14, 13]);
- when ε = 1, α > 0 is small enough, F is analytic and g = 0 (see [7]);
- when ε = 1, α > 0 small enough, F is analytic and g in some sense in L1 (see [5]).
There are also previous works in the discrete situation:
- when ε = α = 0, gn = 0 (gn is a discretization of g) and F is analytic (see [1] for explicit

discretization and [3, 22] for implicit discretization);
- when ε = 1, α = 0, gn = 0 and F is analytic (see [2]);
- when ε = 1, α = 0, gn is in l2 and F is analytic (see [11]);
- when ε = 1, α > 0 is small enough, gn = 0 and F is analytic (see [18]);
- when ε = 1, α > 0 small enough, gn in some sense in l1 and F is analytic (see [6]).
Note that convergence of bounded solutions does not always occur, as illustrated in

[23, 19, 13, 17] in the continuous case and in [1] in the discrete case.
An important tool used to obtain the convergence is the so-called angle condition. Let us
quickly review this approach. Equation (1) (with g = 0) can be written as a first-order
system

u̇(t) + F(u(t)) = 0, t ≥ 0, (2)

where F : RN −→ RN is a continuous function. Let E : RN −→ RN be a function of class
C1.
If there exists σ > 0 such that

∀u ∈ RN : ⟨E ′(u),F(u)⟩ ≥ σ ∥E ′(u)∥ ∥F(u)∥,

then we say that E and F satisfy an angle condition.
This condition first appeared in [1]. It proved that every solution of (1) with ε = α = 0 et
g = 0 satisfies this angle condition. Chill et al. [8] generalized this result for second order
system by proving that every solution of (1) with ε = 1 and α = 0, g = 0 satisfies this angle
condition. Haraux and Jendoubi [13] propose the more general inequality

∃β ≥ 0 | ∀u ∈ RN : ⟨E ′(u),F(u)⟩ ≥ σ ∥E ′(u)∥ 1+β∥F(u)∥.

to cover the case of equation (1) with α > 0.
In this paper, we present similar forced angle conditions for both continuous and discrete

cases (forced in the sense that g ̸= 0), and then we apply it to examples from the literature.
With these angle conditions (see (3) and (29)) and under the assumption that some energy
satisfies the Lojasiewicz inequality, we give new proofs of our preceding results given in [6].
In order to do so, we prove two main abstract theorems (Theorem 2.2 and Theorem 3.2).
Our proofs are inspired by the ideas in [9, 5, 11] for the continuous case and in [22, 11] for
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the discrete case.
Note that the natural condition for a forced system is

∀t ∈ R+ : − d

dt
[ϕ(u(t))] + Cf(t) ≥ σ ∥∇ϕ(u(t))∥β+1 ∥u′(t)∥ ,

with ϕ ∈ C1(RN ,R) and f ∈ C(R+,R+).
Let us also mention that, to our best knowledge, angle conditions in the forced case have
never been used before.

This article is organized as follows:
Section 2 deals with the continuous case. In Subsection 2.1, we specify an abstract result
for the continuous case. In Subsection 2.2, we apply the result of Subsection 2.1 to (1) with
various cases depending on the values of ε and α.
Section 3 deals with the discrete case.
In Subsection 3.1, we specify an abstract result for the discrete case. In Subsection 3.2,
we apply the result of Subsection 3.1 in an implicit discretization of (1) with various cases
depending on the values of ε and α.

This method allows us to get the same results as in [11]. However, we obtain different
results from those in [5]. It is not surprising, since our conditions on g are different from the
ones in [5].

2 Continuous case

2.1 An abstract result

In this section we give the definition of an angle condition and we prove that functions
satisfying this condition converge.

Definition 2.1. Let ϕ ∈ C1(RN ,R) and f ∈ C(R+,R+).
We say that a function x ∈ C1(R+,RN) satisfies a forced continuous angle condition relative
to ϕ and f if there exist constants C > 0, β > 0 and λ > 0 such that

∀t ∈ R+ : − d

dt
[ϕ(x(t))] + Cf(t) ≥ λ

(
∥∇ϕ(x(t))∥β+2 + ∥x′ (t)∥β+2

)
. (3)

We now state and prove the main result of this part:

Theorem 2.2. Let x be a function that satisfies a forced continuous angle condition relative
to functions ϕ, f and constants C, β, λ. We assume that ϕ satisfies a Lojasiewicz-type
inequality (see [20, 21]), that is, there exists θ ∈ (0, 1

2
] such that

∀a ∈ RN , ∃γa > 0,∃σa > 0 | ∀u ∈ RN : ∥u− a∥ < σa

=⇒ ∥∇ϕ(u)∥ ≥ γa |ϕ(u) − ϕ(a)|1−θ , (4)
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and that there is a constant δ > 0 such that f satisfies

+∞∫
0

f(s)ds < +∞ and sup
t∈R+

t1+β+δ +∞∫
t

f(s)ds

 < +∞. (5)

Assume also that (β + 1)(1 − θ) < 1.
Then either lim

t−→+∞
∥x(t)∥ = +∞, or there exists x∗ ∈ RN such that lim

t−→+∞
x(t) = x∗.

Precisely, in the second case there exists a constant A > 0 such that

∀t > 0 : ∥x(t) − x∗∥ ≤ At−µ where µ = min

(
1 − (1 − θ)(β + 1)

−1 + (1 − θ)(β + 2)
,

δ

β + 2

)
. (6)

Remark 2.3. If ϕ satisfies (4) for some exponent θ ∈
(
0, 1

2

]
, then, by changing σ and γ if

necessary, it is easy to see that ϕ also satisfies (4) for every exponent θ′ ∈ (0, θ].

Proof. By modifiying the constants θ, σ and γ in the inequality (4) (see Remark 2.3) we can
assume that θ ∈ ( β

β+1
, 1
2
) is small enough so that:

δ

β + 2
≥ 1 − (1 − θ)(β + 1)

−1 + (1 − θ)(β + 2)
.

This clearly comes from the fact that 1
2
≥ θ > β

β+1
and the study of the function s →

1−(1−s)(β+1)
−1+(1−s)(β+2)

.
Using this last inequality, we observe that

θ ≤
β + δ(β+1)

β+2

β + δ + 1
. (7)

Assume that ∥x(t)∥ ̸−→ +∞ as t → +∞. Then x(t) has an accumulation point x∗ in
RN .
Let us define

∀t ≥ 0 : ψ(t) = ϕ(x(t)) − ϕ(x∗) + C

+∞∫
t

f(s)ds.

Using (3), we get

∀t ≥ 0 : −ψ′(t) ≥ λ
(
∥∇ϕ(x(t)∥β+2 + ∥x′ (t)∥β+2

)
.

Then there exists a constant λ′ > 0 such that

∀t ≥ 0 : −ψ′(t) ≥ λ′ (∥∇ϕ(x(t)∥ + ∥x′ (t)∥)
β+2

. (8)

The last inequality implies that ψ is nonincreasing. Moreover, since x∗ is an accumulation
point of x(t), it follows by continuity of ψ that ψ(t) decreases towards 0. If there is t0 such
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that ψ(t0) = 0, then ψ must be constant because ψ(t) decreases towards 0. By using (8),
we can therefore deduce that x is constant which proves the result in this case. Otherwise,
without loss of generality we can assume that

∀t ∈ R+ : 0 < ψ(t) ≤ 1 and 0 ≤ C

+∞∫
t

f(s)ds ≤ 1. (9)

For all t ≥ 0 such that ∥x(t) − x∗∥ < σx∗ (σx∗ as in (4)), we have

(ψ(t))1−θ ≤ |ϕ(x(t)) − ϕ(x∗)|1−θ +

C +∞∫
t

f(s)ds

1−θ

.

We can apply the inequality (4) and we obtain

(ψ(t))1−θ ≤ C1 ∥∇ϕ(x(t)∥ +

C +∞∫
t

f(s)ds

1−θ

(10)

where C1 = 1
γx∗
.

Let ζ = (β + 1)θ − β. We have ζ = 1 − (1 − θ)(β + 1). From β ∈ [0, θ
1−θ ), it follows that

ζ > 0.
Now, let t ≥ 0 be such that ∥x(t) − x∗∥ < σx∗ . We distinguish two cases.

First case, we assume that

∥x′ (t)∥ + ∥∇ϕ(x(t)∥ ≤

C +∞∫
t

f(s)ds

1−θ

. (11)

Using (7) and (9), we obtain

∥x′ (t)∥ + ∥∇ϕ(x(t)∥ ≤

C +∞∫
t

f(s)ds


1+ δ

β+2
β+δ+1

.

Thanks to (5), there exists a constant C2 > 0 such that

∥x′(t)∥ ≤ C2t
−(1+ δ

β+2
). (12)

Second case, we assume that

∥x′ (t)∥ + ∥∇ϕ(x(t))∥ >

C +∞∫
t

f(s)ds

1−θ

. (13)
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Then combining (10) and (13), there exists a constant C3 > 0 such that

(ψ(t))1−θ ≤ C3(∥x′ (t)∥ + ∥∇ϕ(x(t)∥). (14)

We have

− d

dt
ψζ/t=t = −ζψ′(t) (ψ(t))ζ−1

= −ζψ′(t) (ψ(t))−(1−θ)(β+1) .

By using (8) and (14) we obtain

−C4
d

dt
ψζ/t=t ≥ ∥x′ (t)∥ (15)

with C4 =
Cβ+1

3

ζλ′
.

So, in both cases for all t such that ∥x(t) − x∗∥ < σx∗ , we have

∥x′ (t)∥ ≤ −C4
d

dt
ψζ(t) + C2t

−(1+ δ
β+2

). (16)

Note that the function on the right-hand side is integrable on (1,+∞).
Now, let t be sufficiently large such that

∥∥x(t) − x∗
∥∥ < σx∗

2
and C4ψ

ζ(t) + C2

+∞∫
t

s−(1+ δ
β+2

)ds <
σx∗

2
. (17)

Define
t+ = sup

{
t ≥ t : ∥x(s) − x∗∥ < σx∗ ∀s ∈ [t, t)

}
.

Let us assume by contradiction that t+ < +∞, so that ∥x(t+) − x∗∥ = σx∗ . For all t ∈ [t, t+),
estimate (16) is satisfied, and due to the choice of t, we obtain

∥∥x(t) − x(t)
∥∥ ≤

t∫
t

∥x′(s)∥ ds ≤ σx∗

2
. (18)

Applying the triangle inequality,∥∥x(t+) − x∗
∥∥ ≤

∥∥x(t+) − x(t)
∥∥+

∥∥x(t) − x∗
∥∥ < σx∗ .

This leads to a contradiction. Therefore, t+ = +∞, estimate (18) is valid for all t ≥ t, then
+∞∫
t

∥x′(s)∥ ds < +∞ which implies that x(t) has a limit as t tends to infinity.
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Now, we will prove the convergence rate (6).
We follow the ideas in [12]. We define

J1 = {t > 0 : (11) holds} and J2 = {t > 0 : (13) holds} .

By (8) and (14), there exists a constant C5 > 0 such that, for every t ∈ J2

− d

dt
ψ1−(1−θ)(β+2)(t) = −[1 − (1 − θ)(β + 2)]ψ′(t) (ψ(t))−(1−θ)(β+2)

≥ C5. (19)

To get (6), let us assume first that either [t0,+∞) ⊂ J1 or [t0,+∞) ⊂ J2 for some t0 > 0.
In the first case we have, for any t ≥ t0,

∥x(t) − x∗∥ ≤
+∞∫
t

∥x′(s)∥ ds

≤
by (12)

+∞∫
t

C2s
−(1+ δ

β+2)ds

≤ C6t
− δ

β+2 .

If [t0,+∞) ⊂ J2, we get by integrating (19) from t0 to t.

ψ(t) ≤
(
C5 (t− t0) + (ψ(t0))

1−(1−θ)(β+2)
) −1

−1+(1−θ)(β+2)

≤ C7t
−1

−1+(1−θ)(β+2) .

Using (15) we get

∥x(t) − x∗∥ ≤
+∞∫
t

∥x′(s)∥ ds

≤ C4 (ψ(t))ζ

≤ C4C
ζ
7 t

−ζ
−1+(1−θ)(β+2) .

The case where neither J1 nor J2 contain a half-line must specifically be handled in order to
finish the proof. Because J2 is an open set by definition, there exists a countable family of
disjoint open intervals (an, bn) such that J2 =

⋃∞
n=0(an, bn).

Let us consider t ∈ J2. Let n∗ be the integer n such that t ∈ (an, bn). Note that t can be
chosen such that an∗ ≥ 1. We get by integrating (19) from an∗ to t

ψ(t) ≤
(
C5 (t− an∗) + (ψ(an∗))1−(1−θ)(β+2)

) −1
−1+(1−θ)(β+2)

≤
(
C5 (t− an∗) + (ψ(an∗))1−(1−θ)(β+2)

) −1
−1+(1−θ)(β+2)

.
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We obtain, by using (5), (10) and (11)

(ψ(an∗))1−θ ≤
(
C8a

−(1+β+δ)
n∗

)(1−θ)
,

and, thus,

ψ(t) ≤
(
C5 (t− an∗) +

(
C

1−(1−θ)(β+2)
8 a

−(1+β+δ)(1−(1−θ)(β+2))
n∗

)) −1
−1+(1−θ)(β+2)

.

From (7), it follows that

(1 + β + δ)[−1 + (1 − θ)(β + 2)] ≥ 1.

Replacing C5 by C ′
5 = min

(
C5, C

1−(1−θ)(α+2)
8

)
, we obtain

ψ(t) ≤ (C ′
5t)

−1
−1+(1−θ)(β+2) .

Note that this last inequality holds for every t ∈ (an∗ ,∞) ∩ J2.
We have, according to (12) and (15), for every t > an∗

∥x(t) − x∗∥ ≤
∫

(t,+∞)∩J1

∥x′(s)∥ ds+

∫
(t,+∞)∩J2

∥x′(s)∥ ds

≤
∫

(t,+∞)∩J1

C2s
−(1+ δ

β+2
)ds+

∫
(t,+∞)∩J2

−C4
d

ds
ψζ(s)ds

≤ C6t
− δ

β+2 + C4(C
′
5t)

−ζ
−1+(1−θ)(β+2) .

We, therefore, obtain the convergence rate (6) again.

2.2 Applications

In this section, we implement our approach on the following examples of continuous functions.
Let F : Rd −→ R be a C2 function. We define

S =
{
u⋆ ∈ Rd/ ∇F (u⋆) = 0

}
.

We assume that:

∃θ ∈ (0,
1

2
] ∀u⋆ ∈ S ∃ra > 0 ∃ca > 0 | ∀u ∈ Rd : ∥u− u⋆∥ < ra

=⇒ ∥∇F (u)∥ ≥ ca |F (u) − F (u⋆)|1−θ . (20)

Proposition 2.4 ([18]). The Assumption (20) holds if one of the following two cases is
satisfied:
- F is a polynomial function, or
- F is analytic and S is a compact set.
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2.2.1 A first order gradient system

We consider the differential system:

U ′(t) + ∇F (U(t)) = g(t) (21)

where g : R+ −→ Rd is a continuous function.

Theorem 2.5. Let U ∈ W 1,∞(R+,Rd) be a function which satisfies (21), and assume that
there exists a constant δ > 0 such that g satisfies

+∞∫
0

∥g(s)∥2 ds < +∞ and sup
t∈R+

t1+δ +∞∫
t

∥g(s)∥2 ds

 < +∞.

Then there exists U∗ ∈ Rd such that lim
t−→+∞

U(t) = U∗.

Moreover, there exists a constant A > 0 such that for all t > 0, we have

∥U(t) − U∗∥ ≤ At−µ where µ = min

(
θ

1 − 2θ
,
δ

2

)
.

Proof. We define ϕ := F , x := U , f := ∥g∥2 and β = 0.
We have for all t ≥ 0 :

− d

dt
ϕ(x(t)) +

1

2
f(t) = −⟨∇F (U(t)), U ′(t)⟩ +

1

2
⟨g(t), g(t)⟩

= −⟨∇F (U(t)), U ′(t)⟩ +
1

2
⟨U ′(t) + ∇F (U(t)), U ′(t) + ∇F (U(t))⟩

=
1

2

(
∥∇F (U(t))∥2 + ∥U ′(t)∥2

)
=

1

2

(
∥∇ϕ(x(t))∥β+2 + ∥x′ (t)∥β+2

)
.

Then the function x satisfies (3) with the function ϕ and the statement follows from Theorem
2.2.

2.2.2 A second order gradient system

We consider the differential system:

U ′′(t) + ∥U ′(t)∥α U ′(t) + ∇F (U(t)) = g(t) (22)

where 1 > α > 0 and g : R+ −→ Rd is a continuous function.
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Theorem 2.6. Let U ∈ W 2,∞(R+,Rd) be a function which satisfies (22), and assume that
(i) α ∈ (0, θ

1−θ ),
(ii) there exists a constant a constant δ > 0 such that g satisfies

+∞∫
0

∥g(s)∥ ds < +∞ and sup
t∈R+

t1+α+δ +∞∫
t

∥g(s)∥ ds

 < +∞.

Then there exists U∗ ∈ Rd such that lim
t−→+∞

U(t) = U∗.

Moreover, there exists a constant A > 0 such that for all t > 0, we have

∥U(t) − U∗∥ ≤ At−µ where µ = min

(
1 − (1 − θ)(α + 1)

−1 + (1 − θ)(α + 2)
,

δ

α + 2

)
.

Proof. We define

ϕε(u, v) =
1

2
∥v∥2 + F (u) + ε∥∇F (u)∥α⟨∇F (u), v⟩, (23)

x = (U,U ′), f = ∥g∥ and β = α. Using [5] and the fact that (U,U ′) is bounded, we can find
ε = ε > 0 small enough such that there exists constant γ > 0 satisfying

− d

dt
ϕε(x(t)) + C ∥g(t)∥ ≥ γ [∥U ′(t)∥ + ∥∇F (U(t))∥]

α+2
. (24)

Let us show that x satisfies (3) with the function ϕε. We have

∇ϕε(u, v) =(
∇F (u)+ε∥∇F (u)∥α∇2F (u)·v+εα∥∇F (u)∥α−2⟨∇F (u),v⟩∇2F (u)·∇F (u)

v+ε∥∇F (u)∥α∇F (u)

)
.

Since (U,U ′) is bounded, there exists a constant C9 > 0 such that

∀t ∈ R+ : ∥∇ϕε(x(t))∥ ≤ C9[∥U
′
(t)∥ + ∥∇F (U(t))∥]. (25)

On the other hand

∥x′(t)∥ = ∥(U ′(t), U ′′(t))∥
= ∥(U ′(t),−∥U ′∥α −∇F (U(t)) + g(t))∥
≤ C10[∥U ′(t)∥ + ∥∇F (U)∥]

where we used the fact that U ′ and g are bounded.
By combining this last inequality with (24) and (25), we get that x satisfies (3).
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Now, let us show that ϕε satisfies (4).
Let B ⊂ Rd × Rd be a ball containing {(U(t), U ′(t)) , t ∈ R+}. We have ∀(u, v) ∈ B

∥∇ϕε(u, v)∥
= ∥∇F (u) + ε∥∇F (u)∥α∇2F (u) · v + εα∥∇F (u)∥α−2⟨∇F (u), v⟩∇2F (u) · ∇F (u)∥

+∥v + ε∥∇F (u)∥α∇F (u)∥
≥ ∥∇F (u)∥ − ε∥∥∇F (u)∥α∇2F (u) · v + εα∥∇F (u)∥α−2⟨∇F (u), v⟩∇2F (u) · ∇F (u)∥

+∥v∥ − ε∥∥∇F (u)∥α∇F (u)∥
≥ (1 − εC11)[∥v∥ + ∥∇F (u)∥].

By choosing a smaller value for ε > 0, there exists ρ > 0 such that

∀(u, v) ∈ B ∥∇ϕε(u, v)∥ ≥ ρ[∥v∥ + ∥∇F (u)∥]. (26)

If (a,b) is not a critical point of ϕε, then, using the continuity of ϕε, it is evident that ϕε
satisfies (4).
Consider (a, b) ∈ B to be a critical point of ϕε. Then ∇F (a) = 0 and b = 0. By (20)

∃ra > 0 ∃ca > 0 ∀u ∈ Rd : ∥u− a∥ < ra =⇒ ∥∇F (u)∥ ≥ ca|F (u) − F (a)|1−θ. (27)

Applying the Cauchy-Schwarz inequality, we obtain

[ϕε(u, v) − ϕε(a, 0)]1−θ =
[
1
2
∥v∥2 + F (u) − F (a) + ε∥∇F (u)∥α⟨∇F (u), v⟩

]1−θ
≤ ∥v∥2(1−θ) + |F (u) − F (a)|1−θ + ∥∇F (u)∥(α+1)(1−θ)∥v∥1−θ. (28)

By using Young’s inequality, we get

∥∇F (u)∥(α+1)(1−θ)∥v∥1−θ ≤ ∥∇F (u)∥ + ∥v∥
1−θ

θ−α(1−θ) .

Hence

[ϕε(u, v) − ϕε(a, 0)]1−θ ≤ ∥v∥2(1−θ) + |F (u) − F (a)|1−θ + ∥∇F (u)∥ + ∥v∥
1−θ

θ−α(1−θ) .

Using (27) and the fact that 2(1 − θ) and 1−θ
θ−α(1−θ) are larger than 1, we obtain for all

(u, v) ∈ B with ∥v∥ ≤ 1 and ∥u− a∥ < ra

[ϕε(u, v) − ϕε(a, 0)]1−θ ≤ ∥v∥ + |F (u) − F (a)|1−θ + ∥∇F (u)∥ + ∥v∥

≤
(

2 +
1

ca

)
[∥∇F (u)∥ + ∥v∥]

≤
by (26)

1

ρ

(
2 +

1

ca

)
∥∇ϕε(u, v)∥ .

Then the function x satisfies (3) with the function ϕε and the statement follows from Theorem
2.2.
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Remark 2.7. In [11], the equation (22) was studied with α = 0, where it was assumed that

F satisfies (20) and g satisfies
+∞∫
0

∥g(s)∥2 ds < +∞ and

sup
t∈R+

(
t1+δ

+∞∫
t

∥g(s)∥2 ds
)
< +∞. By considering ϕε defined by (23) with α = 0 and using

[11] and following the same proof as in the previous section, we get the same convergence
result as in the previous theorem with α = 0

3 Discrete case

3.1 An abstract result

In this section we prove an abstract theorem for the discrete case. For this we define the
angle condition and we prove that sequences satisfying this condition converge.

Definition 3.1. Let ϕ ∈ C1(RN ,R) and (fn)n∈N be a non-negative sequence.
We say that a sequence (xn) of elements of RN satisfies a forced discretized angle condition
relative to ϕ and (fn)n∈N if there exist constants C > 0, β ≥ 0 and λ > 0 such that

∀n ∈ N : ϕ(xn) − ϕ(xn+1) + Cfn+1 ≥ λ[∥∇ϕ(xn+1)∥β+2 + ∥xn+1 − xn∥β+2]. (29)

We now state and prove the main result of this part:

Theorem 3.2. Let (xn) be a sequence that satisfies a forced discretized angle condition
relative to function ϕ, sequence (fn) and constants C, β, λ. We assume that ϕ satisfies a
Lojasiewicz-type inequality, that is, there exists θ ∈ (0, 1

2
] such that

∀a ∈ RN ,∃γa > 0,∃σa > 0 | ∀u ∈ RN : ∥u− a∥ < σa =⇒ ∥∇ϕ(u)∥ ≥ γa |ϕ(u) − ϕ(a)|1−θ
(30)

and that there is a constant δ > 0 such that (fn) satisfies

+∞∑
k=0

fk <∞ and sup
n∈N

(
n1+δ+β

+∞∑
k=n

fk

)
<∞. (31)

Additionally, we assume that (β + 1)(1 − θ) < 1.
Then either lim

n−→+∞
∥xn∥ = +∞, or there exists x∗ ∈ RN such that lim

n−→+∞
xn = x∗.

Precisely, in the second there exists a constant A > 0 such that

∀n ∈ N∗ : ∥xn − x∗∥ ≤ An−µ where µ = min

(
1 − (1 − θ)(β + 1)

−1 + (1 − θ)(β + 2)
,

δ

β + 2

)
. (32)
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Proof. We recall that it can be assumed that θ ∈ ( β
β+1

, 1
2
) satisfies

δ

β + 2
≥ 1 − (1 − θ)(β + 1)

−1 + (1 − θ)(β + 2)
.

So that

θ ≤
β + δ(β+1)

β+2

β + δ + 1
. (33)

Now we assume that lim
n−→+∞

∥xn∥ ≠ +∞. The sequence (xn) then admits an accumulation

point x∗.
Let for all n ∈ N :

ψn = ϕ(xn) − ϕ(x∗) + C

+∞∑
k=n+1

fk+1.

Using (29), we get

ψn − ψn+1 ≥ λ(∥∇ϕ(xn+1)∥β+2 + ∥xn+1 − xn∥β+2). (34)

Then there exists a constant λ′ > 0 such that

ψn − ψn+1 ≥ λ′(∥∇ϕ(xn+1)∥ + ∥xn+1 − xn∥)β+2. (35)

So that (ψn)n is nonincreasing. Let nk −→ +∞ such that xnk
−→ x∗. We clearly have

ψnk
−→ 0 as k −→ +∞. So ψn −→ 0 as n −→ +∞ and ψn ≥ 0 for all n ≥ 0.

Without loss of generality we assume that

∀n ∈ N : 0 ≤ ψn ≤ 1 and 0 ≤ C
+∞∑

k=n+1

fk+1 ≤ 1. (36)

We have, since 0 < θ < 1,

(ψn+1)
1−θ ≤ |ϕ(xn+1) − ϕ(x∗)|1−θ +

(
C

+∞∑
k=n+1

fk+1

)(1−θ)

. (37)

If ∥xn+1 − x∗∥ < σx∗ (σx∗ as in (30)), we can apply the inequality (30) and we obtain from
(37)

(ψn+1)
1−θ ≤ C1 ∥∇ϕ(xn+1)∥ +

(
C

+∞∑
k=n+1

fk+1

)(1−θ)

(38)

where C1 = 1
γx∗
. We recall that

ζ = (β + 1)θ − β.

13



We have

ζ − 1

β + 2
=

(β + 1) (β + 2) θ − β (β + 2) − 1

β + 2

≤
1
2
(β + 1) (β + 2) − β (β + 2) − 1

β + 2

=
−1

2
(β2 + β)

β + 2
≤ 0,

so that

0 < ζ ≤ 1

β + 2
. (39)

Now, consider n ∈ N∗ such that ∥xn+1 − x∗∥ < σx∗ .
First case, we assume that

∥xn+1 − xn∥ + ∥∇ϕ(xn+1)∥ ≤

(
C

+∞∑
k=n+1

fk+1

)1−θ

. (40)

Using (33) and (36), we obtain

∥xn+1 − xn∥ + ∥∇ϕ(xn+1)∥ ≤

(
C

+∞∑
k=n+1

fk+1

) 1+ δ
β+2

β+δ+1

.

Thanks to (31), there is a constant C2 > 0 such that

∥xn+1 − xn∥ ≤ C2n
−(1+ δ

β+2
). (41)

Second case, we assume that

∥xn+1 − xn∥ + ∥∇ϕ(xn+1)∥ >

(
C

+∞∑
k=n+1

fk+1

)1−θ

. (42)

As in [22] and [11], we distinguish two cases:
- If ψn+1 ≤ ψn/2, according to (34), there holds

∥xn+1 − xn∥ ≤
(

1

λ

) 1
β+2

[ψn − ψn+1]
1

β+2

≤
by (39)

(
1

λ

) 1
β+2

[ψn]ζ

≤ C3

[
(ψn)ζ − (ψn+1)

ζ
]
, (43)
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where

C3 =

(
1

λ

) 1
β+2

(1 − 2−ζ)−1.

- If ψn+1 > ψn/2, we have

(ψn)ζ − (ψn+1)
ζ =

ψn∫
ψn+1

ζsζ−1ds

≥ ζ (ψn)ζ−1 [ψn − ψn+1]

≥ ζ2ζ−1 (ψn+1)
ζ−1 [ψn − ψn+1] . (44)

Let us estimate (ψn+1)
ζ−1 from the below. Combining (38) and (42), there exists a constant

C4 > 0 such that
(ψn+1)

1−θ ≤ C4(∥xn+1 − xn∥ + ∥∇ϕ(xn+1)∥) (45)

then
(ψn+1)

1−ζ = (ψn+1)
(1−θ)(β+1) ≤ Cβ+1

4 (∥xn+1 − xn∥ + ∥∇ϕ(xn+1)∥)β+1. (46)

Using (35) together with (44) and (46), we obtain

(ψn)ζ − (ψn+1)
ζ ≥ ζ2ζ−1

Cβ+1
4

λ′ ∥xn+1 − xn∥ . (47)

By combining (41) and (43) and (47), we can deduce that for all n ≥ 0 such that
∥xn+1 − x∗∥ < σx∗

∥xn+1 − xn∥ ≤ C2n
−(1+ δ

β+2
) + C5

[
(ψn)ζ − (ψn+1)

ζ
]

(48)

where

C5 = max

(
Cβ+1

4

ζ2ζ−1λ′
, C3

)
.

Let n0 ∈ N∗ be sufficiently large such that

∥xn0 − x∗∥ < σx∗

3

and

C2

+∞∑
n=n0

n−(1+ δ
β+2

) + C5 (ψn0)
ζ <

σx∗

3
. (49)

We define N0 ≥ n0 the largest integer such that ∥xn − x∗∥ < 2σx∗
3

for all n0 ≤ n ≤ N0 (we

take N0 = +∞ if
∥∥xn − x

∗∥∥ < 2σx∗
3

for all n ≥ n0).
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Suppose, by contradiction, that N0 < +∞. According to (34), we obtain

∥xN0+1 − x∗∥ ≤ ∥xN0+1 − xN0∥ + ∥xN0 − x∗∥

≤ C3 (ψN0)
1

β+2 + ∥xN0 − x∗∥

≤ C3 (ψn0)
1

β+2 + ∥xN0 − x∗∥
≤

by (36) and (39)
C5 (ψn0)

ζ + ∥xN0 − x∗∥

< σx∗ ,

where we used (49) and the fact that (ψn)n is nonincreasing. Thus, we can apply (48) for
all n ∈ {n0, ..., N0} and summing from n = n0 to n = N0, we get

N0∑
n=n0

∥xn+1 − xn∥ ≤ C2

+∞∑
n=n0

n−(1+ δ
β+2

) + C5 (ψn0)
ζ

<
σx∗

3
. (50)

So, ∥xN0+1 − x∗∥ ≤ σx∗
3

+ ∥xn0 − x∗∥ < 2σx∗
3
, which contradicts the definition of N0.

As a result, N0 = +∞, estimate (50) remains true, and the sequence (xn)n converges to x∗.
Now, we will prove the convergence rate (32).

If ψn = 0 for some n0 ∈ N, then ψn = 0 for n ≥ n0 and by using (35) we obtain that
xn+1 = xn for n ≥ n0, we deduce xn = x⋆ for n large enough and (32) is clearly true.
Now, we assume that ψn > 0 for all n ≥ 0 and let n0 ∈ N⋆ large enough so that ∥xn+1 − x⋆∥ <
σ for all n ≥ n0.
Let us define

J1 = {n ≥ n0 : (40) holds} and J2 = {n ≥ n0 : (42) holds} .
We remark that J1 and J2 are disjoint and J1 ∪ J2 = {n ≥ n0} . Let n ∈ J2.
If ψn+1 ≤ ψn

2
then

(ψn+1)
1−(1−θ)(β+2) − (ψn)1−(1−θ)(β+2) ≥ (ψn)1−(1−θ)(β+2) × (2−1+(1−θ)(β+2) − 1)

≥
by (36)

2−1+(1−θ)(β+2) − 1.

If ψn+1 >
ψn

2
we have

(ψn+1)
1−(1−θ)(β+2) − (ψn)1−(1−θ)(β+2)

= [−1 + (1 − θ)(β + 2)]

ψn∫
ψn+1

s−(1−θ)(β+2)ds

≥ [−1 + (1 − θ)(β + 2)](ψn)−(1−θ)(β+2)[ψn − ψn+1]

≥ [−1 + (1 − θ)(β + 2)]2−(1−θ)(β+2)(ψn+1)
−(1−θ)(β+2)[ψn − ψn+1].
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By using (35) and (45), we have

(ψn+1)
1−(1−θ)(β+2) − (ψn)1−(1−θ)(β+2) ≥ [−1 + (1 − θ)(β + 2)]2−(1−θ)(β+2) × λ′

Cβ+2
4

.

Therefore, in the two cases, for all n ∈ J2, we obtain that

(ψn+1)
1−(1−θ)(β+2) − (ψn)1−(1−θ)(β+2) ≥ C6. (51)

for some constant C6 > 0. According to (43) and (47) we also get for all n ∈ J2,

∥xn+1 − xn∥ ≤ C5

(
(ψn)ζ − (ψn+1)

ζ
)
. (52)

Furthermore, estimate (41) is available for all n ∈ J1.
We distinguish now between three cases.

First case: if J1 contains {n ≥ n1} for some n1 ≥ n0, then we obtain that

∥xn − x⋆∥ ≤
+∞∑
k=n

∥xk+1 − xk∥ ≤
+∞∑
k=n

C2k
−(1+ δ

β+2
) ≤ C7n

− δ
β+2 ,

for all n ≥ n1.
Second case: we assume that J2 contains {n ≥ n1} for some n1 ≥ n0.
Consequently, by summing (51) from n1 to n− 1, we find

ψn ≤
(
C6(n− n1) + (ψn1)

1−(1−θ)(β+2)
) −1

−1+(1−θ)(β+2)

≤ C8n
−1

−1+(1−θ)(β+2) ,

for all n ≥ n1. By summing (52) from n ≥ n1 to ∞, we obtain that

∥xn − x⋆∥ ≤
+∞∑
k=n

∥xk+1 − xk∥ ≤ C5 (ψn)ζ ≤ C5C
ζ
8n

−ζ
−1+(1−θ)(β+2) ,

for all n ≥ n1. So, we again get (32).
If neither of the two cases above applies, we have two sequences of positive integers, (np)p∈N⋆

and (mp)p∈N⋆ , such that J2 ∩ {n ≥ n1} = ∪p∈N {np, ...,mp} , with n1 > n0,np ≤ mp and
np − 1 /∈ J2, ∀p ≥ 1. Let n ∈ {np, ...,mp}. By summing (51) from np to n− 1, we find

ψn ≤
(
C6(n− np) +

(
ψnp

)1−(1−θ)(β+2)
) −1

−1+(1−θ)(β+2)
. (53)

We have, according to (31), (38) and (40)(
ψnp

)1−θ ≤ (C9n
−(1+β+δ)
p

)(1−θ)
.
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Using this in (53), we get

ψn ≤
(
C6(n− np) + C

1−(1−θ)(β+2)
9 n(1+β+δ)[−1+(1−θ)(β+2)]

p

) −1
−1+(1−θ)(β+2)

.

From (33), it can be deduced that

(1 + β + δ)[−1 + (1 − θ)(β + 2)] ≥ 1.

Replacing C6 by C ′
6 = min

(
C6, C

1−(1−θ)(β+2)
9

)
, we find

ψn ≤ (C ′
6n)

−1
−1+(1−θ)(β+2) ∀n ∈ {np, ...,mp} .

By using (41) and (52), we have, for all n ≥ n1

∥xn − x⋆∥ ≤
+∞∑
k=n

∥xk+1 − xk∥

≤
∑

k≥n,k∈J1

C2k
−(1+ δ

β+2
) +

∑
k≥n,k∈J2

C5

(
(ψk)

ζ − (ψk+1)
ζ
)

≤ C7n
− δ

β+2 + C5(C
′
6n)

−ζ
−1+(1−θ)(β+2) .

We once more find the convergence rate (32).

3.2 Applications

In this section, we implement our approach on the following examples. We find the same
result in [11] and [6].
Let F : Rd −→ R be a function of class C2. We define

S =
{
u⋆ ∈ Rd | ∇F (u⋆) = 0

}
.

We assume that:

∃LF > 0 ∀u, v ∈ Rd ∥∇F (u) −∇F (v)∥ ≤ LF ∥u− v∥ , (54)

∃θ ∈ (0,
1

2
] ∀u⋆ ∈ S ∃ra > 0 ∃ca > 0 | ∀u ∈ Rd : ∥u− u⋆∥ < ra

=⇒ ∥∇F (u)∥ ≥ ca |F (u) − F (u⋆)|1−θ . (55)
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3.2.1 A first order gradient system

We consider a sequence un ∈ Rd which satisfes:
un+1 − un

∆t
= −∇F (un+1) + gn+1

u0 ∈ Rd
(56)

where (gn)n∈N is a sequence in Rd.

Theorem 3.3. Let (un)n∈N be a sequence satisfying (56), and assume that
(i) (un)n∈N is bounded,
(ii) 1 > LF

2
∆t,

(iii) there exists a constant δ > 0 such that (gn)n∈N satisfies

+∞∑
k=0

∥gk∥2 <∞ and sup
n∈N

(
n1+δ

+∞∑
k=n

∥gk+1∥2
)
<∞.

Then there exists u⋆ ∈ S such that lim
n−→+∞

un = u⋆. Additionally, there exists a constant

A > 0 such that for all n > 0, we have

∥un − u⋆∥ ≤ An−µ where µ = min

(
θ

1 − 2θ
,
δ

2

)
.

Proof. We define ϕ := F , xn := un, fn := ∥gn∥2 and β = 0. Using Section 4 from [11] we can
find constant γ > 0 satisfying

ϕ(xn) − ϕ(xn+1) + C ∥gn+1∥ ≥ γ
[
∥xn+1 − xn∥2 + ∥∇F (xn+1)∥2

]
.

Then the sequence (xn) satisfies (29) with the function ϕ and the statement follows from
Theorem 3.2.

3.2.2 A second order gradient system

We consider a sequence (un, vn) ∈ Rd × Rd which satisfes:
un+1 − un

∆t
= vn+1

vn+1 − vn
∆t

= −∥vn+1∥αvn+1 −∇F (un+1) + gn+1

u0, v0 ∈ Rd

(57)

where 1 > α > 0 and (gn)n∈N is a sequence in Rd.
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Theorem 3.4. Let (un, vn)n∈N be a sequence satisfying (57), and assume that
(i) (un)n∈N is bounded,
(ii) there exists a constant cF > 0 such that F satisfies

∀u, v ∈ Rd < ∇F (u) −∇F (v), u− v >≥ −cF ∥u− v∥α+2 ,

(iii) 1 > cF
2

(∆t)α+1 and α ∈ (0, θ
1−θ ),

(iv) there exists a constant a constant δ > 0 such that (gn)n∈N satisfies

+∞∑
k=0

∥gk∥ <∞ and sup
n∈N

(
n1+δ+α

+∞∑
k=n

∥gk+1∥

)
<∞.

Then there exists u⋆ ∈ S such that lim
n−→+∞

un = u⋆. Additionally, there exists a constant

A > 0 such that for all n > 0, we have

∥un − u⋆∥ ≤ An−µ where µ = min

(
1 − (1 − θ)(α + 1)

−1 + (1 − θ)(α + 2)
,

δ

α + 2

)
.

Proof. We define

ϕε(u, v) :=
1

2
∥v∥2 + F (u) + ε∥∇F (u)∥α⟨∇F (u), v⟩ (58)

as the continuous case, xn := (un, vn), fn := ∥gn∥ and β = α. Given that (un) is bounded,
using (57), (vn) is also bounded. Using Lemma 3.8 from [6] and the fact that the sequence
(xn) is bounded, we can find a small enough ε = ε > 0 such that there exists a constant
γ > 0 satisfying

ϕε(xn) − ϕε(xn+1) + C ∥gn+1∥ ≥ γ [∥vn+1∥ + ∥∇F (un+1)∥]α+2 . (59)

Let us show that when (un) is a bounded sequence, (xn) satisfies (29) with the function ϕε.
Indeed, a simple computation gives

∇ϕε(u, v) =(
∇F (u)+ε∥∇F (u)∥α∇2F (u)·v+εα∥∇F (u)∥α−2⟨∇F (u),v⟩∇2F (u)·∇F (u)

v+ε∥∇F (u)∥α∇F (u)

)
.

Since we assume that (un) is bounded, there exists a constant C10 > 0 such that

∀n ∈ N ∥∇ϕε(xn+1)∥ ≤ C10[∥vn+1∥ + ∥∇F (un+1)∥]. (60)

Besides

∥xn+1 − xn∥ = ∥(un+1 − un, vn+1 − vn)∥
= ∥(∆tvn+1,−∆t∥vn+1∥αvn+1 − ∆t∇F (un+1) + ∆tgn+1)∥
≤ C11[∥vn+1∥ + ∥∇F (un+1)∥].
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where we used the fact that (vn) and (gn) are bounded. By combining this last inequality
with (59) and (60), we deduce that (xn) satisfies (29).
By using the same function ϕε as in the continuous case, we obtain that ϕε satisfies the
Lojasiewicz inequality (30) and the statement follows from Theorem 3.2.

Remark 3.5. In [11], the equation (57) was studied with α = 0, where it was assumed that

F satisfies (54) and (55), with α = 0, and (gn) satisfies
+∞∑
k=0

∥gk∥2 <∞ and

sup
n∈N

(
n1+δ

+∞∑
k=n

∥gk+1∥2
)
< ∞. By considering ϕε defined by (58) with α = 0 and using

Lemma 3.3 of [11] and following the same proof as in the previous section, we get the same
convergence result as in the previous theorem with α = 0.
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