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Abstract: In this study, we demonstrate the ability of a new operational system to detect forest loss
at a large scale accurately and in a timely manner. We produced forest loss maps every week over
Vietnam, Cambodia, and Laos (>750,000 km2 in total) using Sentinel-1 data. To do so, we used
the forest loss detection method based on shadow detection. The main advantage of this method
is the ability to avoid false alarms, which is relevant in Southeast Asia where the areas of forest
disturbance may be very small and scattered and detection is used for alert purposes. The estimated
user accuracy of the forest loss map was 0.95 for forest disturbances and 0.99 for intact forest, and
the estimated producer’s accuracy was 0.90 for forest disturbances and 0.99 for intact forest, with
a minimum mapping unit of 0.1 ha. This represents an important step forward compared to the
values achieved by previous studies. We also found that approximately half of forest disturbances in
Cambodia from 2018 to 2020 occurred in protected areas, which emphasizes the lack of efficiency
in the protection and conservation of natural resources in protected areas. On an annual basis, the
forest loss areas detected using our method are found to be similar to the estimations from Global
Forest Watch. These results highlight the fact that this method provides not only quick alerts but also
reliable detections that can be used to calculate weekly, monthly, or annual forest loss statistics at a
national scale.

Keywords: forest loss detection; Sentinel-1; tropical forest; Southeast Asia; protected areas

1. Introduction

The world’s forests have undergone substantial changes in the last few decades. In
the tropics, the authors of [1] estimated that 17% of moist forests disappeared between 1990
and 2019. In certain regions and countries, these changes have been more rapid. This is
the case in the Greater Mekong subregion, which is recognized as deforestation hotspot.
Vietnam is one of the countries that has seen the largest annual changes in primary forest
and planted forest area in the last 20 years. The primary forest area in Vietnam decreased
by 6.9%, 15.6%, and 1.2% from 1990 to 2000, 2000 to 2005, and 2005 to 2010 [2], respectively.
In 2020, the proportion of primary forest area reached 0.5% of the total forest area (Table 1).
Meanwhile, the extent of planted trees increased by values of 0.75 Mha in 1990, 1.92 Mha in
2000, and 3.08 Mha in 2010 [2]. Vietnam is considered by the FAO as a reforesting country
because tree plantations are included as forests, as shown by the forest area temporal
evolution carried out from 1990 to 2020 listed in Table 1. On the contrary, the amount of
forest in Cambodia dropped from approximately 11 to 8 Mha between 1990 and 2020. Laos
has also experienced a constant decline in its forest surface.
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Table 1. Forest area in 1990, 2000, 2010, and 2020; forest area proportion in 2020; and primary forest
proportion in 2020 in Vietnam, Cambodia, and Laos according to the FAO (2020).

Vietnam Cambodia Laos

Forest area 1990 (ha × 103) 9376 11,005 17,843

Forest area 2000 (ha × 103) 11,784 10,781 17,425

Forest area 2010 (ha × 103) 13,388 10,589 16,940

Forest area 2020 (ha × 103) 14,643 8068 16,595

Forest area % of land area 2020 47.2 45.7 71.9

Primary forest % of forest area 2020 0.5 4 -

In this region, illegal and unsustainable logging and the conversion of forests for
agriculture, the construction of dams, and infrastructure are direct causes of deforestation
and biodiversity loss. These activities are driven by population growth, increasing market
demand, and policies that promote short-term economic growth. Commercial logging
and log exports are regulated by governments in all Greater Mekong subregion countries.
However, the higher demand for timber and weak law enforcement have hindered efforts
to control logging and the log trade. Effective tools are thus urgently needed to survey
illegal logging operations that are causing widespread concern in the region.

Forest disturbance detection systems have been developed prior to this research. For
instance, the FORMA [3], Terra-I [4], and IDEAM systems were developed for the national
(IDEAM) and pantropical scale. These systems are based on MODIS data at a 250 m
resolution and provide biweekly, monthly, and quarterly detections, respectively. The
Brazilian operational system DETER-B [5] provides detections at a 60 m spatial resolution
every 5 days. In addition, the MINAM (Peru) produces weekly forest alerts through the so-
called PNCB Early Warning Alerts, while the Global Land Analysis and Discovery (GLAD)
team from the University of Maryland (UMD) produces GLAD forest alerts [6]; both of
these use Landsat data at a 30 m resolution. However, most monitoring approaches rely
predominantly on optical remote sensing, following the opening of the Landsat archive
in 2008 together with the availability of easily downloadable fully processed images.
Nevertheless, a major limitation for optical-based alerts is the presence of haze in the dry
season (caused by fire) and, more importantly, of clouds persisting in the tropics during
the wet season, causing substantial temporal detection delays.

Synthetic aperture radar (SAR) images have great potential in tropical areas because
electromagnetic waves are partly insensitive to clouds. However, SAR images have been
used less than optical images for forest loss monitoring, in particular because of the low
data availability until the Sentinel-1 program and the lack of data processing chains, as
detailed in [7]. The JJ-FAST system developed by JAXA/JICA and based on ALOS-2
SAR allows one to produce forest loss alerts every 1.5 months at a 5 ha resolution over
77 tropical countries [8]. The dense time series of the Sentinel-1 satellites offer a great
opportunity to monitor forests weekly at the global scale. Since the launch of Sentinel-1
in 2014, SAR images are now easily accessible with systematic acquisitions at a 5 × 20 m
spatial resolution and a 6- to 12-day revisit time, regardless of the weather conditions. As a
result, Sentinel-1 data are increasingly becoming the subject of research works on forest
loss detection. We counted 28 papers related to forest loss detection using Sentinel-1 data
published in peer-reviewed journals as of January 2021. The study areas covered in these
papers are relatively small, i.e., <10,000 km2 in 20 out of 28 papers. However, large-scale
forest loss mapping emerged very recently. The authors of [9,10] mapped forest loss over
areas of approximately 265,000 km2 and 227,000 km2, respectively. In [11], the authors
used Google Earth Engine to develop a method for forest loss detection over the Brazilian
Amazon, which may lead to the creation of an automated, cloud-based deforestation
detection system running on INPE’s servers. More recently, the authors of [12] released a
new forest loss alert detection system based on Sentinel-1 data called RADD. This system
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has been applied over the Congo Basin, insular Southeast Asia and Amazonia thus far, and
the map is available via Google Earth Engine. It is interesting to note that the minimum
mapping unit (MMU), when reported in the 28 papers, is always larger than 0.2 ha, except
in [13–15]. We found this surprising given the high impact of the MMU on forest loss
detection accuracy. There is thus a need for methods that could allow us to detect, over
large areas, small and scattered areas of disturbance, as encountered in many illegal logging
operations around the world.

In this study, we present a new operational system that allows one to accurately detect
forest loss in a timely manner. The method is applied to Vietnam, Cambodia, and Laos
(approximately 750,000 km2 in total) in the Greater Mekong region in Southeast Asia, which
is considered to be a hotspot of deforestation. For the demonstration, we produced forest
loss maps every week using Sentinel-1 data from January 2018 to January 2021, with an
MMU of 0.1 ha. To do so, we used the forest loss detection method based on the detection
of shadows that occur at the edge of intact and disturbed forest, as detailed in [13–15]. The
main advantage of the method is the low false alarm detection rate. This method is based
on the use of the radar change ratio (RCR) indicator [16] at VH polarization. Two different
thresholds are applied for RCR temporal values to first detect shadows and then the forest
loss areas around the shadows. We investigated the adaptation of the forest loss detection
method to the context of Vietnam, Laos, and Cambodia. We then assessed the capacity of
the method to provide not only quick alerts but also reliable detections that can be used
to calculate weekly, monthly, or annual forest loss statistics. The results were thoroughly
validated following the recommendations from [17,18]. We also compared the annual
detections rates from this study and from Global Forest Watch (GFW) and estimated, in
each country, the proportion of forest disturbances occurring in protected areas.

The study area, data, and methods are described in Section 2 of this paper. The results
and discussion are provided in Section 3. Finally, conclusions are given in Section 4.

2. Materials and Methods
2.1. Study Area

Vietnam is located in Southeast Asia from roughly 9 to 23◦N and covers approximately
332,000 km2. The country shares borders with Cambodia, Laos, and China. Vietnam has
a dry season and a rainy season, the latter from May to September with rainfalls above
1000 mm per year in nearly every region. The terrain of Vietnam is mountainous in the
northwest and in the Central Highlands, with elevations reaching up to 2450 m. In con-
trast, there are extensive flat regions with a low elevation in the Red River Delta and the
Mekong Delta. In Vietnam, forest ecosystems are considered to be abundant and rich in
biodiversity [2]. Three main types of forests constitute most of the Vietnamese natural
forest: (1) evergreen broadleaf forest occupying approximately 85% of the natural forest
area; (2) deciduous forest, mainly occurring in the Central Highlands and South-Central
Coast; (3) coniferous forest, in particular in the Central Highlands. According to FAO
FRA [2], the Vietnam forest extent amounted to 14.6 Mha in 2020, as shown in Table 1
(47.2% of the land area), representing an increase of 13.4 Mha from 2010 (43.2% of the land
area), with an annual rate of +0.4% in 10 years, due to reforestation through tree plantations
compensating for forest loss. However, it is important to know where and to what extent
forest loss occurs due to its impacts on biodiversity reduction and carbon emissions.

Cambodia is located roughly between 10.5 and 14.5◦N and 102 to 107.5◦E and covers
more than 180,000 km2. Cambodia has a dry season and a rainy season, with the mean daily
temperature rising and falling in both seasons, creating four annual seasons. Cambodia
is relatively flat except in the southwest (mostly in Koh Kong province). The forest in
south and central Cambodia is mostly evergreen, being deciduous in the north and east.
Cambodia is recognized as the world hotspot of deforestation. According to [2], forested
area amounted to 8.1 Mha (45.7% of the land area), representing a large decrease of 11 Mha
from 2010 (60% of the land area), with an annual rate of −0.58%.
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Laos is located from 20 to 26◦N and from 100 to 107◦E, covering approximately 237,000 km2,
and is surrounded entirely by land. Mountains and plateaus constitute approximately 75%
of the country’s surface area, particularly in the north. Laos has a rainy season that lasts
from May to September and a dry season from October to April. Mixed deciduous forest is
the most dominant forest type occurring in the region, accounting for about approximately
10 Mha of the forested area. Other types of forest include dry evergreen, coniferous, and
mixed coniferous and broadleaved forests. The forest extent in 2020 amounted to 15.6 Mha
(67.6% of the land area), which represents a decrease of 16.9 Mha from 2010 (73.46% of the
land area), with an annual rate of −1.43%.

In this region, where a substantial part of the population is forest-dependent, strong an-
thropization increases the pressure on forests. In addition, strong anthropization increases
the risk of transmission of viruses. As a result, the risk of newly emerging CoV-associated
diseases in Southeast Asia should be taken seriously [19].

2.2. Forest Definition

In this study, we defined forest as trees that are at least 5 m tall with a tree cover
exceeding 50%. Forest loss was defined as a forest area that had a tree cover of greater
than 50% before disturbance and a very low percent of cover after the disturbance (less
than 10%, although this value is qualitative). Forest loss (also called forest disturbance
in the following) is detected without distinction between deforestation and degradation.
The selected forest loss definition applies to severe disturbances, such as natural forest
and plantation logging, as well as the conversion of forest areas to other types of land
use, such as agriculture and the construction of infrastructure, which are the main causes
of forest disturbances in Southeast Asia. Note that the selected tree cover threshold of
50% is much higher than the ones mentioned in the official reports submitted by the three
countries to the United Nations Climate Change (UNFCCC). In the latter, Vietnam and
Cambodia use the same forest definition—i.e., a tree cover of 10%, a minimum tree height
of 5 m at maturity and a minimum area of 0.5 ha. Laos employs a tree cover value of 20%,
a 10 cm stand diameter at breast height, and a minimum area of 0.5 ha. Rubber, oil palm,
eucalyptus, acacia, and teak plantations, amongst others, which are included under the
above criteria, are also considered to be forests, as they are in this study.

2.3. Data
2.3.1. Sentinel-1 Data

Over the three countries of interest in this study, Sentinel-1a and -1b images were
both acquired at a repeat cycle of 12 days and in interferometric wide swath (IW) mode,
defined by the European Space Agency (ESA) as the predefined mode over land. In IW
mode, images were provided at a resolution of 5 m in azimuth and 20 m in range, with a
pixel size of 10 m after processing. The incidence angle ranged approximately from 29◦ to
41◦ over the 250 km-wide swath. In this study, we used Level-1 ground range-detected
(GRD) products that consisted of multi-looked focused SAR data projected to ground range
using an Earth ellipsoid model. A total of 37 and 34 frames of Sentinel-1 data in ascending
and descending geometry, respectively, were processed every 12 days to cover the whole
study area.

2.3.2. Forest/Non-Forest Map

Forest/non-forest maps are crucial for detecting changes in forests and for removing
false alarms due to changes in non-forest areas (e.g., due to soil moisture variations or to
changes in other land use-land cover classes). The quality of the initial forest/non-forest
map has a huge impact on the quality of the resulting forest loss maps. We compared
various tree canopy cover maps and finally selected the annual tree canopy cover map
that was produced in a joint project conducted by the GLAD laboratory from UMD and
SERVIR-Mekong. The method used to derive the tree canopy cover map is extensively
described in [20]. The obtained tree canopy cover (shown in Figure 1) is defined as the
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proportion of canopy cover from woody vegetation taller than 5 m at a 30 m pixel size
from 2010 until now. Note that the natural tree cover and tree plantations and agroforestry
were not distinguished. Figure 1 illustrates the gain in the quality of the regional tree
map from [20] compared to the global one from [21] hosted on the GFW platform. In this
example, the map from Hansen is particularly affected by the failure of the Landsat-7 Scan
Line Corrector in the Enhanced Thematic Mapper Plus (ETM+) instrument.
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2.4. Method

The overall method is summarized in the flowchart in Figure 2 and includes pre-
processing, masking, the detection of forest loss areas for the years 2016 and 2017 (used to
improve the quality of the forest/non-forest map), forest loss detection from 2018 using the
improved forest/non-forest map, and the validation of the final maps.

2.4.1. Pre-Processing

A pre-processing chain was developed at CESBIO [22] to efficiently process the large
quantity of available Sentinel-1 data. This chain is an operational tool for Sentinel-1 GRD
data processing and tiling as per the 110× 110 km2 Military Grid Reference System (MGRS).
The chain is highly scalable (multithreading and multiprocessor) and autonomous. It is
based on open-source libraries and can be used freely [23]. The processing steps include
downloading it from the Sentinel Product Exploitation Platform (PEPS) repository, a mirror
of the ESA’s Scihub handled by the French Spatial Agency (CNES) that provides access to
Sentinel satellite data (https://www.peps.cnes.fr, accessed on 2 July 2021). Then, calibra-
tion in the gamma naught of the multi-polarized images was performed using the CNES

https://www.peps.cnes.fr
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Orfeo ToolBox (OTB) utilities (https://www.orfeo-toolbox.org, accessed on 2 July 2021)
to obtain the SAR backscatter coefficient. The obtained images were orthorectified at a
10 m pixel size using digital elevation models (DEM) from the Shuttle Radar Topographic
Mission (SRTM), cut into tiles using the MGRS grid, normalized using incidence and local
incidence angles to reduce the effects of terrain slope, and finally filtered using prior images
(i.e., each new acquired image was filtered using previously acquired images instead of
filtering the whole stack of images) [24–26]. To do so, we used the multi-image filter
developed by [24,27], which allowed us to obtain new images with reduced speckle effects
from multi-temporal and multi-polarized images while preserving the spatial resolution in
the image. The resulting processed images were used as inputs for the forest loss detection
method (see Section 2.4.3).
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2.4.2. Masking

We masked out areas that may have been falsely detected as forest loss areas. We
first masked out water areas using the Global Surface Water dataset [28], because regular
flooding or wind over water areas (such as lakes) can cause significant variations in the
Sentinel-1 backscatter. Likewise, mangroves were masked out using the Global Mangrove
Watch product [29] because of the double bounce that may occur with tidal changes.
We also used SRTM DEM to discard shadow detections over slopes greater than 15◦, as
explained further in Section 2.4.3. Finally, the forest/non-forest map from [20] for the year
2015 was used to mask out non-forest areas, as detailed in Section 2.3.2.

2.4.3. Forest Loss Detection Method

We used the method developed by CESBIO and CNES based on shadow detection,
which provided excellent results over Peru [13], Gabon [14], and French Guiana [15]. This
method is fully described in these papers.

Due to the purely geometrical nature of the shadowing effect that occurs at the
edge of intact and disturbed forests, backscattering does not depend on soil moisture,
remaining vegetation, or other factors affecting the SAR backscatter, and the sudden and
strong decrease in backscattering due to forest loss persists over time. Therefore, the main

https://www.orfeo-toolbox.org
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advantage of this method is the ability to avoid false alarms, which would be worse if
forest loss patches were detected without the prior detection of shadows. The indicator
used was the RCR [16] at VH polarization. In a time series of N dates, the backscatter
change in a given pixel at date ti with i ∈ (1, N), denoted by γ0

i, which occurs between
date ti and date ti+1, was measured using the following RCRi:

RCRi =
ma,i

mb,i

where mb,i is the mean backscatter value in Xb available images until date ti (inclusive) and
ma,i is the mean backscatter value in the Xa images acquired after date ti+1 (inclusive):

mb,i =
1

Xb

i

∑
j=i−Xb+1

γ0
j

Additionally,

ma,i =
1

Xa

i+Xa

∑
j=i+1

γ0
j

RCR is computed at each date by dividing the mean of three images acquired after
date ti+1 (Xa = 3) and a higher number of images acquired before date ti (10 dates in
this study—i.e., Xb = 10), which allows for the filtering of environmental effects (such as
seasonal effects) and speckle. Then, the date corresponding to the lowest RCR value is
considered as our estimate of the detected forest loss date if the lowest RCR value is smaller
than a given threshold.

The forest loss detection system is composed of two main steps, both based on the use
of the RCR indicator:

• The detection of shadows that appear at the boundary between forest and forest loss
areas in a series of images;

• The detection of the deforested patches associated with the shadows (which we call
“reconstructed patches”).

The thresholds in [13] were found to be −4.5 db for shadows and −3 db for re-
constructed patches. Before detecting forest loss, we investigated the need to adapt the
methodology already used in [13–15]—in particular:

• The values of the two thresholds applied to the RCR used to detect shadows and
reconstructed patches;

• The polarization to be used.

To do so, we quantified the separability of forest loss areas and intact forest areas in
order to calibrate threshold values applied on minimum RCR at VH and VV polarizations.
A total of 539 reference data plots were selected manually over Vietnam, Laos, and Cambo-
dia using Google Earth data. The plots were selected in natural forest areas and plantations,
with sizes ranging from 0.1 to dozens of ha, and over flat and steep terrain and various
different landscapes. We selected 457 plots of forest loss (with a mean size of 4.3 ha and
a total surface area of 1971 ha) and 82 plots of intact forest (mean size of 381.2 ha and a
total surface area of 31,260 ha). We then analyzed the probability density functions (PDF)
and cumulative PDF of the minimum RCR over the reference plots of forest loss and intact
forest areas. It was apparent that the thresholds applied on the minimum RCR values to
accurately detect forest loss were remarkably stable over the study sites covered in this
study and in [13–15]—i.e., systematically lower than −4 db whatever the polarization.
However, the VH polarization provided slightly better separability between forest loss
and intact forest areas than VV polarization, especially over steep slopes, whereas VH
and VV exhibited similar results over Peru [13]. This is the reason why we used VH
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polarization in this study. Finally, the detection method was found to be generalizable to
the three countries.

The processing of the whole study area was achieved using the CNES High Perfor-
mance Computing (HPC) cluster. We mosaicked the maps first derived for the years 2016
and 2017. We used these detections for the improvement of the forest/non-forest map only
(i.e., these detections were not distributed to any end-user) in order to ensure higher-quality
detections for the year 2018 to the present. Indeed, the forest/non-forest map used in this
study, despite performing better than any other mask to the best of our knowledge, had its
flaws and uncertainties. It is likely that non-forest areas that are considered to be forest
areas in the forest/non-forest map would be detected as forest loss areas due to the strong
variations in backscatter over the non-forest areas. These detections (including true and
false detections) were used to update the 2017 forest/non-forest map from [20]. We again
applied the forest loss detection method using the updated 2017 forest/non-forest map
and Sentinel-1 images acquired from 2018.

We mosaicked the resulting maps, checked their quality, and manually corrected
outliers. Outliers were found to be rarer in our maps than in the 2016–2017 forest loss maps,
as the forest loss detection method was not applied over areas with potential false alarms—
i.e., with backscattering that varied in time (such as water areas, bare soils, mangroves, and
non-forest areas in general).

2.4.4. Validation

We selected as our sampling design a stratification with strata defined by the map
classes, mainly to improve the precision of the accuracy and area estimates. We selected
a buffer stratum in addition to an intact forest stratum and a forest loss stratum, as rec-
ommended by [18]. We specified a target standard error of 0.01 for the overall accuracy
and supposed that the user accuracies of the change class were 0.70 for forest disturbances
and 0.90 for intact forest. The resulting sample size was therefore 803 in total, which we
rounded up to 1000 samples. We then assessed the allocation of the sample to strata so that
the sample size allocation resulted in precise estimates of accuracy and area. We followed
Olofsson’s recommendations and allocated a sample size of 100 for the forest disturbance
stratum, then allocated the remainder of the samples to the intact forest classes—i.e., 200 in
the buffer areas around detected disturbances and 700 in intact forest outside of these
buffers. Figure 3 shows the location of the 1000 samples in the study area.

Both high and very high spatial resolution (<10 m and <1 m, respectively) satellite data
were viable candidates for the reference data. We used, when possible, freely accessible
very high spatial resolution imagery online through Google Earth™ [30], which offers
low-cost interpretation options. When Google Earth images were not available at the
relevant dates, we instead accessed Planet’s very high-resolution analysis-ready mosaics
as reference data. Through Norway’s International Climate and Forests Initiative, these
pan-tropical 4.8 m-resolution mosaics were recently released to help reduce the loss of
tropical forests, among other things.
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3. Results and Discussion
3.1. Forest Loss Map

The final forest loss map over Vietnam, Laos, and Cambodia from 2018 to 2021 is
shown in Figure 4. The map provides clear hints of the spatial and temporal distribution of
forest losses. For example, the map highlights the fact that forest losses are prevalent in
the three countries and occur everywhere. The map demonstrates the striking difference
between the low forest loss rates in Vietnam (northern Vietnam was severely affected in
the last few decades and its more efforts are being made to preserve its forests now) and
the high forest losses currently happening in northern Laos, which is explained as follows.
The impacts of the transboundary displacement of forest disturbances from Vietnam to
Laos and Cambodia are important and have sped up over the past decade [31]. The risks of
transboundary displacement are increasing with globalization and the growth of commer-
cial exchange. Reduced Emissions from Deforestation and Forest Degradation (REDD+)
initiative aims to conserve forest carbon stocks primarily through national policies and
interventions. However, the dominant drivers of forest loss are becoming increasingly
global in scope. The fragmentary adoption of REDD+ across forest nations has left room
for the move of forest loss from early adopters to late adopters of REDD+. Vietnam is an
early adopter of REDD+ that has experienced substantial reforestation despite exponential
growth in exports of commodities, sourced to a great extent from Laos and Cambodia.
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For example, firms in Vietnam have leased large land areas for plantations in Laos and
Cambodia, with important implications for local communities and the environment [31].
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Specific areas of the whole forest loss map are shown in Figure 5. Figure 5 shows
the forest loss in various environments and forest types and due to various drivers from
the north to south of the study area. Northern Laos recently experienced the largest
deforestation rates as compared with the rest of Laos, Cambodia, and Vietnam. Forest
was cut mostly for commodities in northwestern Laos, as seen in Figure 5(1) (meaning
Subfigure 1 in Figure 5). The shape of the loss areas is not uniform, and their size is large.
In the region located from 101.3◦E to 101.5◦E and from 20.2◦N to 20.4◦N, we detected
963 forest loss areas with a mean size of 12 ha and a median size of 0.95 ha. Northern
Laos is also experiencing a rubber boom, in particular in Namtha Province [32]. Figure 5(3)
shows infrastructure construction at the border between north and central Laos, whereas
Figure 5(5), in central Laos, shows cashew plantations [33]. In the latter, particularly in the
region located from 105.5◦E to 105.7◦E and from 17◦N to 17.2◦N, we detected 2509 forest
loss areas with a mean size of 1.92 ha and a median size of 0.73 ha. Compared to the
plantations located in northern Laos, the cashew plantations in the center of Laos are much
more numerous and far smaller.

Pulp tree, sugarcane, coffee, and rubber plantations can be found in southern Laos
(Figure 5(7)) [33]. In this region, land concessions are mostly conceded to Vietnamese
investors in rubber. Figure 5(8) shows an area where pulp trees have been planted en
masse. We found mean and median sizes of forest loss areas of 6 ha and 0.69 ha, respectively,
with a mix of large and small plots. These figures were computed over the 1936 forest loss
areas detected in the region located from 108.4◦E to 108.6◦E and from 15.3◦N to 15.5◦N.
Figure 5(8) shows the center of a huge area of plantations that extends roughly from 13◦N
to 18◦N; the forest loss in this area corresponds mostly to plantation logging. Pulp trees
are dominant in this area and spread until reaching northern Vietnam. This constitutes the
largest amount of forest loss detected by our method in Vietnam, as forest loss was found
to occur far less in northern Vietnam, and even less in the Mekong Delta.

Logging roads are visible in Figure 5(11), whereas large areas of timber and particularly
rubber plantations can be seen in Figure 5(9) and Figure 5(11)–(13), as well as cashew
plantations in Figure 5(10)–(13) [32]. Although southwestern Cambodia has been partially
preserved thus far, as in the Cardamom mountains that constitute one of the last remaining
natural forests in southeast Asia, Figure 5(10) shows that forest loss occurs in this region.

In Figure 5(13), the rubber plantations are mostly square with a size of 25 ha. From 106.6◦E
to 106.8◦E and from 11.1◦N to 11.3◦N, we found 1746 forest loss areas with a mean size of 2.7 ha
and a median size of 0.54 ha, which reflects the variety of very large and very small plots
in this area. In the triangle formed by locations in Figure 5(7)–(9), Vietnam plantations are
composed of old and new rubber as well as cashew, coffee, and pulp trees, whereas the Laos
and Cambodia plantations are mostly 10-year-old rubber. Indeed, a large number of the
rubber plantations in Cambodia were planted in the early 2010s, replacing natural forest.
However, the following decrease in rubber prices, from 2012, encouraged farmers to diversify
their plantings, which contributed strongly to reducing rubber expansion. For example, this
led to a boom in banana plantations, which replaced rubber in northern Laos [33].

We assessed forest disturbances occurring in protected areas using the database
from [34] (Figure 6). Vietnam has the largest number of protected areas, i.e., 209, but the
smallest land area coverage (7.9%). We found that the proportion of forest disturbances
occurring in protected areas in relation to the total amount of disturbances in Vietnam in
2018, 2019, and 2020 to be 8.6%, 10.2%, and 9.8%, respectively. Laos contains the smallest
number of protected areas, with a total of 31 areas covering 18.7% of Laos. The estimated
proportion of forest disturbances occurring in protected areas in Laos in 2018, 2019, and
2020 is 8.3%, 10.1%, and 11.6%, respectively. Cambodia has 69 protected areas covering
a large proportion of the country—i.e., 40%. However, we estimated the proportion of
forest disturbances occurring in protected areas in Cambodia in 2018, 2019, and 2020 to
be 46%, 57.1%, and 52%, respectively. Approximately half of the forest disturbances in
Cambodia occur in protected areas, emphasizing the lack of effectiveness of the protection
and conservation of natural resources and biodiversity in protected areas.
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Figure 5. Visual comparison of forest loss detection results, highlighting the various sizes and distributions of disturbed
areas (1–13). Forest areas from [20] are in dark green, and the background image is taken from Google Earth. Forest was
cut mostly for commodities in northwestern Laos (1). (3) shows infrastructure construction at the border between the
north and center of Laos, whereas (5), in central Laos, shows cashew plantations. Pulp tree, sugarcane, coffee, and rubber
plantations can be found in southern Laos (7). (8) shows a massive plantation of pulp trees. Logging roads are visible in (11),
whereas timber and particularly rubber plantations can be seen in (9) and (11)–(13), while cashew plantations are evident in
(10)–(13) [33]. In (13), it can be seen that many rubber plantations are square, with a 25 ha size.
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The temporal distribution of detected forest loss over Vietnam, Cambodia, and Laos
from 2018 to 2021 is shown in Figure 7. Forest loss is detected throughout the year, in
particular in Vietnam, with an expected and systematic peak of losses occurring during the
dry season between December and April in the three countries. Note that this finding may
be exacerbated by the fact that soil moisture can lead to an underestimation of forest loss.
Figure 7 also highlights a strong decrease in forest loss at the end of the 2020 dry season,
particularly in April and in Vietnam, compared to 2018 and 2019. This may be because
Vietnam decided to suspend cross-border activities with Cambodia and Laos in April 2020,
thus preventing it from importing wood and thereby curbing forest loss. This hypothesis
does not contradict the fact that forest loss may have intensified locally in some regions
since the appearance of COVID-19 due to the lack of on-site inspection interventions.

3.2. Validation Results

The resulting confusion matrix of the sample counts is shown in Table 2. The confusion
matrix populated by the estimated proportions of area used to report the accuracy results
is shown in Table 3.
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Table 2. Error matrix of sample counts.

Reference

Disturbances Intact Total

Map

Disturbances 96 5 101
Intact buffer 3 194 197

Intact 3 693 696
Total 102 892 994

Table 3. Error matrix populated by estimated proportions of area used to report accuracy results.

Reference

Disturbances Intact Total (Wi) Am,i (km2)

Map

Disturbances 5.55% 0.29% 5.84% 22,222
Intact buffer 0.28% 18.30% 18.58% 70,667

Intact 0.33% 75.25% 75.58% 287,462
Total 6.16% 93.84% 100% 380,351

We estimated from the confusion matrix shown in Table 3 the user accuracy, producer
accuracy, and overall accuracy. Variances for these accuracy measures were estimated
using Equations (5)–(7) on the basis of [17]:

• The estimated user accuracy (±95% confidence interval) is 0.950± 0.043 for forest distur-
bances and 0.993 ± 0.005 for intact forest (including buffer areas around disturbances).

• The estimated producer accuracy is 0.898± 0.061 for forest disturbances and 0.997 ± 0.043
for intact forest.

• The estimated overall accuracy is 0.991 ± 0.006.

By comparison, ref. [12] estimated the producer accuracy to be 0.83 for forest dis-
turbances with the same validation methodology and MMU (using the same number
of validation points, i.e., 1100, with a relatively higher number of validation points for
the forest disturbance stratum at 500). We also estimated the area proportions from the
confusion matrix shown in Table 3. In the confusion matrix, the row totals give the mapped
area proportions Wi, while the column totals give the estimated area proportions according
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to the reference samples. Multiplying the estimated area proportions by the total mapped
area gives the stratified area estimate of each class according to the reference samples. For
instance, the estimated area of the 2018 and 2019 forest loss according to the reference data
is Âdis = p̂.dis × Atot = 0.0616× 380, 351 km2 = 23, 437 km2. The mapped area of forest
loss Am,1 of 22,222 km2 was thus underestimated by 1215 km2.

The final step is to estimate a confidence interval for the area of each class. From
Equation (10) in [17], the standard error for the stratified estimator of proportion of
area is S( p̂.dis) = 0.0029, while the standard error for the estimated area of forest loss
is S(Âdis) = S( p̂.dis)× Atot = 0.0029× 380, 351 km2 = 1092 km2. The margin of error of the
confidence interval is 1.96 × S(Âdis) = 1.96 = 1.96 × 1092 = 2140 km2. We thus estimated
the area of forest loss with a 95% confidence interval: 23,437 ± 2140 km2. All the equations
and explanations used to estimate the confidence interval of the forest loss area can be
found in [17].

3.3. Comparison with GFW and GLAD

We compared the forest loss surface areas obtained from our method with the results
from GFW and GLAD. Although we do not consider the maps of GFW and GLAD as
benchmark and although the use of Sentinel-1 is much more relevant in terms of the timely
detection of forest, we quantitatively compared the statistics per year and country (Table 4).
Note that the GLAD 2018 alerts were not available online.

Table 4. Surface areas of forest loss per year and country in hectares according to this study, Global
Forest Watch [21], and GLAD [6].

This Study (ha) GFW (ha) [21] GFW Minus
This Study (%) GLAD (ha) [6]

Vietnam 2018 345,121 422,300 22 -

Vietnam 2019 445,977 421,910 −5 83,361

Vietnam 2020 333,655 397,066 19 82,174

Cambodia 2018 200,400 180,970 −10 -

Cambodia 2019 281,335 236,780 −16 119,042

Cambodia 2020 262,448 230,317 −12 105,963

Laos 2018 327,152 400,290 22 -

Laos 2019 648,089 498,830 −23 153,187

Laos 2020 650,040 477,299 -26 164,201

As expected, the GLAD alerts allowed us to detect far fewer forest loss areas, with
notable time delays (see [15] for a detailed analysis of this topic). The results from this
study and from GFW are remarkably similar. When computing the average surface areas of
forest loss over 2018, 2019, and 2020, for Vietnam, we obtained surfaces areas of 374,918 and
413,758 from this study and GFW, respectively (+10% for GFW); for Cambodia, we obtained
surfaces areas of 248,061 and 216,022, respectively (−13% for GFW); and for Laos, we
obtained surfaces areas of 541,760 and 458,806, respectively (−15% for GFW).

This result highlights the fact that our detection system can be used as an annual
detection system similar to GFW, which is used for example to compute national statistics,
in addition to being an alert system with a fast detection for Sentinel-1 data.

4. Conclusions

Substantial changes, including deforestation and forest degradation, occurred in the
Greater Mekong subregion. Effective tools are thus urgently needed for monitoring illegal
logging operations, which cause widespread trouble in this region. Forest disturbance
detection systems have been developed prior to this study and are mainly based on
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optical satellite data. However, it has recently been demonstrated that forest losses can be
accurately monitored using Sentinel-1 dense time series.

In this context, the primary objective of this study was to provide weekly forest loss
maps over Vietnam, Cambodia, and Laos using Sentinel-1 data with the forest loss detection
method from [13]. We selected an adapted forest definition and relevant ancillary data and
ran our processing chain through the high-performance computing cluster of CNES. The
resulting map provided clear hints of the spatial and temporal distribution of forest losses.
For example, the difference between the high forest losses currently occurring in northern
Laos and the low forest losses occurring in northern Vietnam can clearly be seen, although
the whole northern mountainous region is covered by similar forest types. We also found
that approximately half of the forest disturbances in Cambodia occur in protected areas.

The forest loss map was thoroughly validated following the recommendations made
by [17,18]. We allocated a sample size of 100 for the forest disturbance stratum, then
allocated the remainder of the samples to the intact forest classes, i.e., 200, in the buffer
areas around detected disturbances and 700 in the intact forest outside of these buffers.
We primarily used Planet’s very high resolution analysis-ready mosaics as reference data.
We then calculated the confusion matrix populated by the estimated proportions of area
and used this to report the accuracy results. The estimated user accuracy was 0.95 for
forest disturbances and 0.99 for intact forest, while the estimated producer accuracy was
0.90 for forest disturbances and 0.99 for intact forest with an MMU of 0.1 ha. Detecting
small forest loss areas up to 0.1 ha with such an accuracy is, to the best of our knowledge,
almost unprecedented.

We also compared the forest loss surface areas obtained from our method with the
results obtained from GFW and GLAD. We quantitatively compared the statistics per year
and country and qualitatively compared both maps. The results obtained from this study
and from GFW are remarkably similar, with the largest difference (26%) being found for
Laos in 2020.

These results highlight the fact that our detection system provides accurate detections
with few false alarms and can thus be used as an alert system (fast detection from Sentinel-1
data) and as an annual detection system similar to GFW, which can be used for example to
compute national statistics.
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