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Abstract. Topological Multiple Correspondence Analysis (TMCA) studies a group
of categorical variables defined on the same set of individuals. Its a topological method
of data analysis that consists of exploring, analyzing and representing the associations
between several qualitative variables in the context of multiple correspondence anal-
ysis. It compares and classifies proximity measures to select the best one according
to the data under consideration, then analyzes, interprets and visualizes with graphic
representations, the possible associations between several categorical variables relat-
ing to, the known problem of Multiple Correspondence Analysis (MCA). Based on
the notion of neighborhood graphs, some of these proximity measures are more-or-
less equivalent. A topological equivalence index between two measures is defined and
statistically tested according to the degree of description of the associations between
the modalities of these qualitative variables.

We compare proximity measures and propose a topological criterion for choosing
the best association measure, adapted to the data considered, from among some
of the most widely used proximity measures for categorical data. The principle of
the proposed approach is illustrated using a real data set with conventional proximity
measures for binary variables from the literature. The first step is to find the proximity
measure that can best adapted to the data; the second step is to use this measure to
perform the TMCA.

Keywords: Burt table, proximity measure, neighborhood graph, adjacency ma-
trix, topological equivalence, associations, graphical representations.

1 Introduction

Similarity measures play an important role in many areas of data analysis. The
results of any operation involving structuring, clustering or classifying objects
are strongly dependent on the proximity measure chosen. The user has to
select one measure among many existing ones. Yet, according to the notion
of topological equivalence chosen, some measures are more-or-less equivalent.
The concept of topological equivalence uses the basic notion of local neighbor-
hood. We define the topological equivalence between two proximity measures,
in the context of association between several categorical variables, through the
topological structure induced by each measure.
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Multiple correspondence analysis (MCA) is an important methodology among
factorial techniques due to the extent of its field of application. It allows us,
among others things, to describe large binary tables, such as socio-economic
surveys, and usually answers questions on modalities.

This method is a generalization of correspondence analysis (CA); it concerns
the relations between or within a set of p ( p > 2 ) qualitative variables simul-
taneously observed on n individuals. Generally the variables are homogeneous
in the sense that they revolve around a particular theme.

In order to understand and act on situations that are represented by a
set of objects, very often we are required to compare them. Humans perform
this comparison subconsciously using the brain. In the context of artificial
intelligence, however, we should be able to describe how the machine might
perform this comparison. In this context, one of the basic elements that must
be specified is the proximity measure between objects.

Certainly, application context, prior knowledge, data type and many other
factors can help in identifying the appropriate measure. For instance, if the
objects to be compared are described by Boolean vectors, we can restrict our
comparisons to a class of measures specifically devoted to this type of data.
However, the number of candidate measures may still remain quite large. Can
we consider that all those measures remaining are equivalent and just pick one
of them at random? Or are there some that are equivalent and, if so, to what
extent? This information might interest a user when seeking a specific measure.
For instance, in information retrieval, choosing a given proximity measure is
an important issue. We effectively know that the result of a query depends
on the measure used. For this reason, users may wonder which one is more
useful? Very often, users try many of them, randomly or sequentially, seeking
a ”suitable” measure. If we could provide a framework that allows the user to
compare proximity measures in order to identify those that are similar, they
would no longer need to try out all measures.

The present study proposes a new framework for comparing proximity mea-
sures in order to choose the best one in the context of association between a
set of qualitative variables. The aim is to establish a TMCA.

We deliberately ignore the issue of the appropriateness of the proximity
measure, as it is still an open and challenging question currently being studied.
The comparison of proximity measures can be analyzed from various angles.

The comparison of objects, situations or ideas is an essential task in or-
der to assess a situation, to rank preferences, to structure a set of tangible or
abstract elements, and so on. In a word, to understand and act, we have to
compare. These comparisons that the brain naturally performs, however, must
be clarified if we want them to be done by a machine. For this purpose, we use
proximity measures. A proximity measure is a function which measures the
similarity or dissimilarity between two objects within a set. These proximity
measures have mathematical properties and specific axioms. But are such mea-
sures equivalent? Can they be used in practice in an undifferentiated way? Do
they produce the same learning database that will serve to find the membership
class of a new object? If we know that the answer is negative, then how do we
decide which one to use? Of course, the context of the study and the type of



data being considered can help in selecting a few possible proximity measures,
but which one should we choose from this selection as the best measure for
summarizing the association?

We find this problematic also in the context of TMCA. The eventual links or
associations between all the qualitative variables partly depends on the learn-
ing database being used. The results of multiple correspondence analysis can
change according to the selected proximity measure.

Several studies on the topological equivalence of proximity measures have
been proposed, [3] [15] [4] [12] [21], also in discrimination context [2], but none
of these propositions has an association objective between several categorical
variables. An approach in the case of association between two qualitative vari-
ables has been proposed in [1].

Therefore, this article focuses on how to construct the best adjacency matrix
induced by a proximity measure, taking into account the association between
all the modalities of the qualitative variables.

This paper is organized as follows. In section 2, after recalling the basic
notions of structure, graph and topological equivalence, we present the pro-
posed method, how to build an adjacency matrix associated with a proximity
measure in the context of association between several qualitative variables, how
to compare and statistically test the degree of topological equivalence between
proximity measures and how to select the best measure to describe multiple
associations. Section 3 presents an illustrative example using real data. The
conclusion of this work is given in section 4.

Table 7, shown in the appendix, summarizes some classic proximity mea-
sures used for binary data [20], we give on {0, 1}n the definition of 22 of them.

We assume that we have at our disposal {xk; k = 1, .., p} a set of p > 2
qualitative variables, partitions of n =

∑p
k=1 nk individuals-objects into mk

modalities-subgroups. The interest lies in whether there is a topological asso-
ciation between all these variables. Let us denote:
- Xk = X(n,mk) the disjonctif table, data matrix associated to the mk dummy

variables of the qualitative variable xk with n rows-objects and mk columns-
modalities, we check that Σmk

k=1x
k
i = 1, ∀i and Σn

i=1x
k
i = nk

- X(n,m) = [X1|X2| · · · |Xp ] the indicator matrix, juxtaposition of the p binary
tables Xk, with n rows-objects and m =

∑p
k=1mk columns-modalities, we

check that Σmk

k=1x
k
i = p, ∀i and Σn

i=1Σ
mk

k=1x
k
i = np.

An alternative coding of such data is as a Burt matrix, a square symmetric
modalities-by-modalities matrix formed from all two-way contingency tables of
pairs of variables, including on the block diagonal the cross-tabulations of each
variable with itself.
- B(m,m) = tX X the symmetric Burt matrix of the two-way cross-tabulations
of the p variables,
- W(m,m) = diag[B] is the diagonal marginal frequency matrices.
- U = 1m

t1m is the m×m matrix of 1s, Im the m×m identity matrix where
1m denotes the m indicator vector of 1s and 1n the n indicator vector of 1s.



The dissimilarity matrices associated with proximity measures are com-
puted from data given by the Burt table B. The attributes of any two points’
modalities’ xk and xl in {0, 1}n of the proximity measures can be easily written
and calculated from the following matrices. Computational complexity is thus
considerably reduced.

• A(m,m) = B, the Burt matrix whose element, akl = |xk∩xl| =
∑n
i=1 x

k
i x

l
i

is the number of attributes common to both points xk and xl,

• B(m,m) = tX (1n
t1m −X) = tX 1n

t1m − tX X

= W 1m
t1m −A = W U −A

whose element, bkl = |Xk − X l| = |Xk ∩ X l| =
∑n
i=1 x

k
i (1 − xli) is the

number of attributes present in xk but not in xl,

• C(m,m) = t(1n
t1m − X) X = t(1n

t1m) X − tX X

= 1m
t1n X − tX X = UW −A

whose element, ckl = |X l − Xk| = |X l ∩ Xk| =
∑n
i=1 x

l
i(1 − xki ) is the

number of attributes present in xl but not in xk.

• D(m,m) = t(1n
t1m − X) (1n

t1m − X)

= 1m
t1n 1n

t1m − 1m
t1n X − tX 1n

t1m + tX X

= n1m
t1m − UW −WU +A = nU − UW −WU +A

= nU − (A+B + C)

whose element, dkl = |Xk ∩X l| =
∑n
i=1(1 − xki )(1 − xli) is the number of

attributes in neither xk or xl.

Xk = {i/xki = 1} and X l = {i/xli = 1} are the sets of attributes present in
data point-modality xk and xl respectively, and |.| the cardinality of a set.

The attributes are linked by the relation:

∀k = 1, p ; ∀l = 1, p akl + bkl + ckl + dkl = n.

Together, the four dependent quantities akl, bkl, ckl and dkl can be used
to construct the 2 × 2 contingency table presented in Table 1, where the in-
formation can be summarized by an index of similarity (affinity, resemblance,
association, coexistence). As a general symbol for a similarity coefficient the
capital letter S will be used. A list of 22 similarity coefficients is given in Table
7 in Appendix.

Table 1. The four depedent quantities between two binary modalities xkr and xls

xlsi = 1 xlsi = 0 Total

xkri = 1 akl bkl akl + bkl
xkri = 0 ckl dkl ckl + dkl

Total akl + ckl bkl + dkl n



2 Topological Correspondence

Topological equivalence is based on the concept of the topological graph also
referred to as the neighborhood graph. The basic idea is actually quite sim-
ple: two proximity measures are equivalent if the corresponding topological
graphs induced on the set of objects remain identical. Measuring the similarity
between proximity measures involves comparing the neighborhood graphs and
measuring their similarity. We will first define more precisely what a topolog-
ical graph is and how to build it. Then, we propose a measure of proximity
between topological graphs that will subsequently be used to compare the prox-
imity measures.

Consider a set E = {x11, . . . , x1m1 , . . . , xp1, . . . , xpmp} of m =
∑p
j=1mj

modalities in {0, 1}n, associated with the p qualitative variables xj with mj

modalities. We can, by means of a proximity measure u, define a neighbor-
hood relationship Vu to be a binary relationship on E × E. There are many
possibilities for building this neighborhood binary relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph
on a set of objects-modalities, where the vertices are the modalities and the
edges are defined by a property of the neighborhood relationship.

Many definitions are possible to build this binary neighborhood relationship.
One can choose the Minimal Spanning Tree (MST) [10], the Gabriel Graph
(GG) [14] or, as is the case here, the Relative Neighborhood Graph (RNG) [18].

For any given proximity measure u, we construct the associated adjacency
binary symmetric matrix Vu of order m =

∑p
j=1mj , where, all pairs of neigh-

boring modalities (xkr, xls), where k, l = 1, p ; r = 1,mk and s = 1,ml,
satisfy the following RNG definition.

Definition 1. Relative Neighborhood Graph (RNG)
Vu(xkr, xls) = 1 if u(xkr, xls) ≤ max[u(xkr, xqt), u(xqt, xls)];

∀xkr, xls, xqt ∈ E, xqt 6= xkr and xqt 6= xls

Vu(xkr, xls) = 0 otherwise

Fig. 1. RNG example with nine groups-modalities - Associated adjacency matrix



This means that if two modalities xkr and xls which verify the RNG prop-
erty are connected by an edge, the vertices xkr and xls are neighbors.

Thus, for any proximity measure given, u, we can associate an adjacency
matrix Vu, of binary and symmetrical order m. Figure 1 illustrates an example
of RNG in R2 of a set of n objects-individuals around nine modalities associ-
ated with three qualitative variables x1, x2 and x3 with three, four and two
modalities respectively.

For example, for the second modality of the first variable and the first
modality of the second variable, Vu(x12, x21) = 1, it means that on the geo-
metrical plane, the hyper-Lunula (intersection between the two hyperspheres
centered on the two modalities x12 and x21) is empty.

For a given neighborhood property (MST, GG or RNG), each measure u
generates a topological structure on the objects in E which are totally described
by the adjacency binary matrix Vu. In this paper, we chose to use the Relative
Neighbors Graph (GNR).

2.1 Comparison and selection of proximity measures

First we compare different proximity measures according to their topological
similarity in order to regroup them and to better visualize their resemblances.

To measure the topological equivalence between two proximity measures ui
and uj , we propose to test if the associated adjacency matrices Vui and Vuj are
different or not. The degree of topological equivalence between two proximity
measures is measured by the following definition of concordance.

Definition 2. Topological equivalence index between two adjacency matrices

S(Vui , Vuj ) = 1
m2

∑p
k=1

∑mk
r=1

∑p
l=1

∑ml
s=1 δkr ls(xkr, xls)

with δkr ls(xkr, xls) =
{

1 if Vui(x
kr, xls) = Vuj (xkr, xls)

0 otherwise.

Then, in our case, we want to compare these different proximity measures
according to their topological equivalence in a context of association. So we
define a criterion for measuring the spacing from the independence or no asso-
ciation position.

A contingency table is one of the most common ways to summarize cate-
gorical data. Generally, interest lies in whether there is an association between
the row variable and the column variable that produce the table; sometimes
there is further interest in describing the strength of that association. The data
can arise from several different sampling frameworks, and the interpretation of
the hypothesis of no association depends on the framework. The question of
interest is whether there is an association between the two variables.

We construct the adjacency matrix denoted by Vu∗ , which corresponds best
to the Burt table. Thus, to examine similarities between the modalities we
examine the gap between each profile-modality and its average profile, that is,
the gap to independence. This best adjacency matrix can be written as follows:



Definition 3. Reference adjacency matrix{
Vu∗(xkr, xls) = 1 if Bkr ls

Bkr ..
≥ Bkr ..

np2
; ∀k, l = 1, p ; r = 1,mk and s = 1,ml

Vu∗(xkr, xls) = 0 otherwise

Bkr ls = Σn
i=1x

kr
i x

ls
i , element of the Burt matrix that corresponds to the num-

ber of individuals who have the modality r of the variable k and the modality
s of the variable l,
Bkr .. = Σp

l=1Σ
ms
s=1bkr ls is the row margin of the modality r of the variable k,

Bkr ls

Bkr ..
is the row profile of the modality r of the variable k,

Bkr ..

np2 is the average profile of the modality r of the variable k, np2 being the
total number.

The binary and symmetric adjacency matrix Vu∗ is associated with an un-
known proximity measure denoted u∗ and called a reference measure.

Thus, with this reference proximity measure we can establish S(Vui
, Vu∗) the

topological equivalence of association between the modalities of the p variables
by measuring the percentage of similarity between the adjacency matrix Vui

and the reference adjacency matrix Vu∗ .

In order to graphically describe the similarities between proximity measures,
we can for example apply the notion of themascope, [11], which is a method-
ological sequence of a clustering method on the results of a factorial method.
In this case, a Principal Component Analysis (PCA) followed by a Hierarchical
Ascendant Classification (HAC) were performed upon the 22 component dis-
similarity matrix defined by [D]ij = D(Vui , Vuj ) = 1−S(Vui , Vuj ) to partition
them into homogeneous groups and to view their similarities in order to see
which measures are close to one another.

We can use any classic visualization techniques to achieve this. For ex-
ample, we can build a dendrogram of hierarchical clustering of the proximity
measures. We can also use multidimensional scaling or any other technique,
such as Laplacian projection, to map the 22 proximity measures into a two
dimensional space.

Finally, in order to evaluate and determine the closest class of proximity
measures to the reference measure u∗, we project the latter as a supplementary
element into the two data analysis methods, positioned by the dissimilarity
vector with 22 components [D]∗i = 1− S(Vu∗ , Vui

).

2.2 Statistical comparisons between two proximity measures

In this section, we use Cohen’s kappa coefficient [7], to test statistically the
degree of topological equivalence between two proximity measures. This non
parametric test compares these measures based on their associated adjacency
matrices.

The comparison between indices of proximity measures has also been stud-
ied by [16], [17] and [8] from a statistical perspective. The authors proposed an
approach that compares similarity matrices obtained by each proximity mea-
sure, using Mantel’s test [13], in a pairwise manner.



Cohen’s nonparametric Kappa test is the statistical test best suited to com-
pare matched binary data. The Kendall or Spearman coefficient compares
matched continuous data. It makes it possible in this context to measure the
agreement or the concordance of the binary values of two adjacency matrices
associated with two proximity measures.

Let Vui
and Vuj

be adjacency matrices associated with two proximity mea-
sures ui and uj . To compare the degree of topological equivalence between
these two measures, we propose to test if the associated adjacency matrices
are statistically different or not, using a non-parametric test of paired data.
These binary and symmetric matrices of order m, are unfolded in two vector-

matched components, consisting of m(m+1)
2 values: the m diagonal values and

the m(m−1)
2 values above or below the diagonal.

The degree of topological equivalence between two proximity measures is
estimated from the Kappa coefficient, computed on the 2×2 contingency table
formed by the two binary vectors, using the following definition:

Definition 4. Kappa coefficient

κ̂ = κ̂(Vui
, Vuj

) = Po−Pe

1−Pe

where,
Po = 2

m(m+1)

∑1
k=0 nkk is the observed proportion of concordance, and

Pe = 4
m2(m+1)2

∑1
k=0 nk.n.k represents the expected proportion of concor-

dance under the assumption of independence.

The Kappa coefficient is a real number, without dimension, between −1 and
+1. The concordance is higher the closer the value of Kappa is to 1 and the
maximum concordance is reached (κ̂ = 1) when Po = 1 and Pe = 0.5. When
there is perfect independence, κ̂ = 0 with Po = Pe, and in the case of total
mismatch, κ̂ = −1 with Po = 0 and Pe = 0.5.

The true value of the Kappa coefficient in the population is a random vari-
able that approximately follows a Gaussian law of mean E(κ) and variance
V ar(κ). The null hypothesis H0 is κ = 0 against the alternative hypothesis
H1 : κ > 0. We formulate the null hypothesis H0 : κ = 0, independence of
agreement or concordance. The concordance becomes higher as κ tends to-
wards 1, and is a perfect maximum if κ = 1. It is equal to −1 in the case of a
perfect discordance.

We also test the topological equivalence between each proximity measure
ui and the perfect measure u∗ by comparing the adjacency matrices Vui and
Vu∗ .

2.3 Graphical representation of the topological associations

In order to represent graphically the possible topological links between the
m modalities of the p qualitative variables, we use Multidimensional Scaling
(MDS). It allows to visualize a proximity matrix (similarity or dissimilarity)



and makes it possible to pass from a proximity matrix between a set of n
objects to the coordinates of these same objects in a p-dimensional space. We
propose to carry out the classical MDS, namely factorial analysis on similarity
Vu∗ or dissimilarity Du∗ = U − Vu∗ table [6]. The topological Correspondence
Analysis (TMCA) returns to perform the following PCA:

Definition 5. TMCA consist to perform the PCA of the triple {Vu∗ ; M ; Dm},
where, Vu∗ is the adjacency matrix associated with the proximity measure

u∗, the most appropriate measure for the considered data, M = Im is the
identity matrix of order m and Dm = W

np is the weighted diagonal matrix of
modality weights.

One can also opt for a normalized PCA if one wishes to give the same weight
to all the variables in the calculation of the distance between two modalities.

This topological analysis leads to the spectral decomposition of the M-
symmetric and positive matrix tVu∗Dm Vu∗M , whose explained inertia is equal
to 1

np trace(
tVu∗W Vu∗), with the first m− p− 1 non-zero eigenvalues.

We can thus establish the topological correspondence analysis of each of
the 22 proximity measures ui considered, by carrying out the PCA of the Vui

adjacency data table.

Aid for the interpretation of TMCA results are those of PCA. Graphical
representations on factorial plans allow to visualize and identify the topological
links between the modalities of the variables. As in weighted PCA, we consider
the most significant modalities on the axes, that is the modalities having both a
strong relative contribution and a good quality of representation, measured by
the square cosine of the angle formed by the point-modality and its projection
on the factorial plane considered.

3 Application to real data

To illustrate the TMCA, we considered the data displayed in Table 2 of a study
on female entrepreneurship conducted in Dakar Senegal in 2014. These data
were collected from 153 female entrepreneurs of the Dakar region, and their
objective here is to give a topological description of the sample’s demographic
features: age, marital status, number of children and level of studies.

In a metric and classical context, we simply have to apply an MCA on the
homogeneous set of the four characteristics of the female entrepreneurs. The
main numerical and graphical results of this MCA, given in Table 9 in the
Appendix and in Figure 4, will be compared to those of the proposed TMCA.

In a topological context, the main results of the proposed method are pre-
sented in the following tables and graphs, which allow us to visualize proximity
measures close to each other and to select the one that best describes the
associations between the modalities of the four characteristics of the sample
population.



Table 2. Burt table - Female Entrepreneurship in Dakar - Senegal

Variables

Modalities Age Marital status Number of children Level of studies

Under 25 22 0 0 18 2 1 1 13 3 6 3 1 18
25 to 50 years 0 80 0 16 9 21 34 14 11 55 58 5 17
Over 50 0 0 51 3 8 24 16 8 35 8 30 10 11

Single 18 16 3 37 0 0 0 20 3 14 9 1 27
Divorcee 2 9 8 0 19 0 0 3 10 6 13 5 1
Monogamous bride 1 21 24 0 0 46 0 7 21 18 26 5 15
Polygamous bride 1 34 16 0 0 0 51 5 15 31 43 5 3

No children 13 14 8 20 3 7 5 35 0 0 11 5 19
From 1 to 3 children 3 11 35 3 10 21 15 0 49 0 27 9 13
More than 3 children 6 55 8 14 6 18 31 0 0 69 53 2 14

Illiterate-Primary 3 58 30 9 13 26 43 11 27 53 91 0 0
Secondary 1 5 10 1 5 5 5 5 9 2 0 16 0
Superior 18 17 11 27 1 15 3 19 13 14 0 0 46

An HAC algorithm based on the Ward criterion [19] was used in order to
characterize classes of proximity measure relative to their similarities.

Fig. 2. Hierarchical tree of the proximity measures

Aggregation based on the criterion of the loss of minimal inertia.



Table 3. PCA & HAC results - Assignment of the reference measure

Class number Class 1 Class 2 Class 3 Class 4
Frequency 8 5 3 6

uJaccard uPearson uRussell−Rao uSimple−Matching

uDice uSokal−Sneath−4 uSimpson uRogers−Tanimoto

Proximity uSokal−Sneath−2 uQ−Y ule uBC uHamann

measure uOchiai uY −Y ule uSokal−Sneath−3

uKulczynski uMichael uGower−Legendre

uBaroni−Urbani−Buser uSokal−Sneath−1

uSokal−Sneath−5

uBraun−Blanquet

Reference measure u∗

The reference measure u∗ is projected as a supplementary element. The
dendrogram of Figure 2 represents the hierarchical tree of the 22 proximity
measures considered.

Table 3 summarizes the main results of the chosen partition into four homo-
geneous classes of proximity measure, obtained from the cut of the hierarchical
tree of Figure 2.

Moreover, in view of the results in Table 3, the reference measure u∗ is
closer to the third class consisting of Russell-Rao, Simpson and BC measures
for which there is a strong topological association between the modalities of the
variables among the 22 proximity measures considered. We will have a stronger
association between the variables of the typical profile of the entrepreneur in
Dakar Senegal.

It was shown in [21], by means of a series of experiments, that the choice of
proximity measure has an impact on the results of a supervised or unsupervised
classification.

For any pair of proximity measures (ui;uj) given in Table 7 in the Ap-
pendix, we will show how to build and apply the Kappa test in order to com-
pare two adjacency matrices to measure and test their topological equivalence
S(Vui

; Vuj
).

Let Vu∗ and VRR the reference and Russell-Rao adjacency matrices, the
topological equivalence between the reference and Russell-Rao proximity mea-
sures equal S(Vu∗ , VRR) = 79.88%. These matrices are unfolded to two vectors

comprising the m(m+1)
2 = 91 diagonal and upper-diagonal values. These two

binary vectors are two dummy variables represented in the same sample size
of 91 pairs of objects. We then formulated the null hypothesis, H0 : κ = 0,
that the topological equivalence between reference and Russell-Rao proximity
measures is not significant according to the considered data.

Table 4 shows the 2× 2 contingency table observed between the two binary
vectors associated to the reference and Russell-Rao proximity measures. Thus,
for this example, the calculated Kappa value κ̂ = 0.5939 corresponds to a
p-value less than 0.01%. Since this probability is lower than a pre-specified
significance level of 5%, the null hypothesis that κ = 0 for these data (no
agreement) is rejected.



Table 4. Kappa statistic - Reference and Russell-Rao measures

VuRR = 0 VuRR = 1 Total

Vu∗ = 0 51 3 54
Vu∗ = 1 14 23 37

Total 65 26 91

We can therefore conclude that the topological equivalence between the two
proximity measures measured by S(VRR ; Vu∗) = 79.88%, is significant.

Table 8 given in the Appendix, summarizes the similarities and Kappa
statistic values between all pairs of proximity measures formed with the 22 mea-
sures considered and the unknown reference measure u∗, in a topological frame-
work. The values below the diagonal correspond to the similarities S(Vui

, Vuj
)

and the values above the diagonal are the Kappa coefficients κ̂(Vui
, Vuj

). All
Kappa statistical tests are significant with α ≤ 5% level of significance.

Table 5. Measures with perfect topological equivalence

Group 1 Group 2 Group 3

uJaccard uPearson uSimple−Matching

uDice uSokal−Sneath−4 uRogers−Tanimoto

uSokal−Sneath−2 uHamann

uSokal−Sneath−3

uGower−Legendre

uSokal−Sneath−1

The similarities in pairs between the 22 proximity measures differ some-
what: some are closer than others. Some measures are in perfect topological
equivalence S(Vui

, Vuj
) = 1 with a perfect concordance κ̂(Vui

, Vuj
) = 1; these

are therefore identical for the data considered, as is the case with the measure
groups presented in Table 5.

Table 6. Row and Average profiles

Row-Profiles Age Marital status Number of child Level of studies
Under 25 years 0.25 0 0 0.205 0.023 0.011 0.011 0.148 0.034 0.068 0.034 0.011 0.205
25 to 50 years 0 0.25 0 0.050 0.028 0.066 0.106 0.044 0.034 0.172 0.181 0.016 0.053
Over 50 years 0 0 0.25 0.015 0.039 0.118 0.078 0.039 0.172 0.039 0.147 0.049 0.054
Single 0.122 0.108 0.020 0.25 0 0 0 0.135 0.020 0.095 0.061 0.007 0.182
Divorcee 0.026 0.118 0.105 0 0.25 0 0 0.040 0.132 0.079 0.171 0.066 0.013
Monogamous 0.005 0.114 0.130 0 0 0.25 0 0.038 0.114 0.098 0.141 0.027 0.082
Polygamous 0.005 0.167 0.078 0 0 0 0.25 0.025 0.074 0.152 0.211 0.025 0.015
No children 0.093 0.100 0.057 0.143 0.021 0.050 0.036 0.25 0 0 0.079 0.036 0.136
From 1 to 3 child 0.015 0.056 0.179 0.015 0.051 0.107 0.077 0 0.25 0 0.138 0.046 0.066
More than 3 child 0.022 0.199 0.029 0.051 0.022 0.065 0.112 0 0 0.25 0.192 0.007 0.051
Illiterate-Primary 0.008 0.159 0.082 0.025 0.036 0.071 0.118 0.030 0.074 0.146 0.25 0 0
Secondary 0.016 0.078 0.156 0.016 0.078 0.078 0.078 0.078 0.141 0.031 0 0.25 0
Superior 0.098 0.092 0.060 0.147 0.005 0.082 0.016 0.103 0.071 0.076 0 0 0.25
Average profile 0.036 0.131 0.083 0.061 0.031 0.075 0.083 0.057 0.080 0.113 0.149 0.026 0.075



The adjacency matrix Vu∗ associated to the best adapted proximity measure
u∗ to the considered data is established from the profile table 6. Figure 3 shows
on the main first TMCA plan, the significant links between the modalities of
the signage of female entrepreneurship. The links are materialized by geometric
shapes.

Vu∗ =



1 0 0 1 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 1 1 0 0
0 0 1 0 1 1 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 0 0 1 0 1 1 0
0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 0 1 1
0 0 1 0 1 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 1 0 0 1 1 0 0
0 0 1 0 1 1 0 1 1 0 0 1 0
1 0 0 1 0 1 0 1 0 0 0 0 1


Fig. 3. TMCA - Adjacency matrix and Graphical representation

Figure 4 presents, for comparison, on the first factorial plan, the graph-
ical representations of the multiple correspondence analyses, the topological
(TMCA) and the classical (MCA) [9], [5].

Unlike the MCA method which describes only three strong links, the TMCA
highlights four: two opposing on the first factorial axis (56.35%) and the other
two on the second factorial axis (32.01%).

Fig. 4. Comparison TMCA & MCA

Considering percentages of inertia presented in Appendix Table 9 which
represent the associations between all modalities, we restrict the comparison of
the graphical representations to the two first factorial axes.

We can represent Figure 5, the different TMCA of 4 of the 22 proximity
measures considered. One can moreover give Figure 6, the graphical represen-
tation associated with a perfect topological independence.



Fig. 5. Jaccard (Class 1), Pearson (Class 2), Russel & Rao (Class 3) and Simple
Matching (Class 4) proximity measures

Vu◦ =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1


Fig. 6. Adjacency identity matrix and Perfect independence representation

4 Conclusion

This paper proposes a TMCA which is a new topological method of multi-
ple correspondence analysis that enriches the classical methods of qualitative
data analysis. This work compares existing proximity measures to perform a
topological multiple correspondence analysis based on the notion of neighbor-
hood graphs according to considered data. Future work involves extending this
topological approach to other factorial methods of data analysis, especially to
analyze the correlation structure of a set of continuous variables - Topological
Principal Component Analysis (TPCA), or to synthesize the relations existing
between two groups of continuous variables - Topological Canonical Analysis
(TCA).



5 Appendix

Table 7. Some proximity measures.

Measures Similarity Dissimilarity

Jaccard s1 = a
a+b+c

u1 = 1− s1
Dice, Czekanowski s2 = 2a

2a+b+c
u2 = 1− s2

Kulczynski s3 = 1
2
( a
a+b

+ a
a+c

) u3 = 1− s3
Driver, Kroeber and Ochiai s4 = a√

(a+b)(a+c)
u4 = 1− s4

Sokal and Sneath 2 s5 = a
a+2(b+c)

u5 = 1− s5
Braun-Blanquet s6 = a

max(a+b,a+c)
u6 = 1− s6

Simpson s7 = a
min(a+b,a+c)

u7 = 1− s7
Kendall, Sokal-Michener s8 = a+d

a+b+c+d
u8 = 1− s8

Russell and Rao s9 = a
a+b+c+d

u9 = 1− s9
Rogers and Tanimoto s10 = a+d

a+2(b+c)+d
u10 = 1− s10

Pearson φ s11 = ad−bc√
(a+b)(a+c)(d+b)(d+c)

u11 = 1−s11
2

Hamann s12 = a+d−b−c
a+b+c+d

u12 = 1−s12
2

bc u13 = 4bc
(a+b+c+d)2

Sokal and Sneath 5 s14 = ad√
(a+b)(a+c)(d+b)(d+c)

u14 = 1− s14

Michael s15 = 4(ad−bc)

(a+d)2+(b+c)2
u15 = 1−s15

2

Baroni, Urbani and Buser s16 = a+
√
ad

a+b+c+
√
ad

u16 = 1− s16
Yule Q s17 = ad−bc

ad+bc
u17 = 1−s17

2

Yule Y s18 =
√
ad−
√
bc√

ad+
√
bc

u18 = 1−s18
2

Sokal and Sneath 4 s19 = 1
4
( a
a+b

+ a
a+c

+ d
d+b

+ d
d+c

) u19 = 1− s19
Sokal and Sneath 3 u20 = b+c

a+d

Gower and Legendre s21 = a+d

a+
(b+c)

2
+d

u21 = 1− s21

Sokal and Sneath 1 s22 = 2(a+d)
2(a+d)+b+c

u22 = 1− s22



Table 8. Similarities S(Vui , Vuj ) & Kappa coefficient κ̂(Vui , Vuj )
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Examples:
S(uKulczynski , uJaccard) = 0.96

κ̂(uJaccard , uKulczynski) = 0.92 ; p− value < 0.01%
All Kappa statistical tests are significant with α ≤ 5% level of Significance.



Table 9. Eigenvalues associated with the topological and classical multiple corre-
spondence analyses

TMCA Axis Eigenvalue Proportion Cumulative

1 1.609 56.35% 56.35%
2 0.914 32.01% 88.36%
3 0.159 5.56% 93.91%
4 0.087 3.06% 96.97%
5 0.032 1.12% 98.10%
6 0.027 0.95% 99.05%
7 0.015 0.53% 99.59%

m− p− 1→ 8 0.012 0.41% 100.00%

Total 2.855 100.00% 100.00%

MCA Axis Eigenvalue Proportion Cumulative

1 0.585 26.01% 26.01%
2 0.462 20.52% 46.53%
3 0.285 12.67% 59.20%
4 0.222 9.85% 69.05%
5 0.212 9.40% 78.45%
6 0.166 7.39% 85.84%
7 0.126 5.60% 91.44%
8 0.101 4.48% 95.92%

m− p→ 9 0.092 4.08% 100.00%

Total 2.250 100.00% 100.00%
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Paris, 1976.

7. Cohen, J.: A coefficient of agreement for nominal scales. Educ Psychol Meas, Vol
20, 27–46, 1960.

8. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. The jour-
nal of Machine Learning Research, Vol. 7, 1–30, 2006.

9. Escofier, B.: Une représentation des variables dans l’analyse des correspondances
multiples. Revue de statistique Appliquées, 27, 37–47, 1979.

10. Kim, J.H. and Lee, S.: Tail bound for the minimal spanning tree of a complete
graph. In Statistics & Probability Letters, 4, 64, 425–430, 2003.

11. Lebart, L.: Stratégies du traitement des données d’enquêtes. La Revue de MOD-
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