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Abstract. Topological Principal Component Analysis (TPCA) is a multidimensional
descriptive method witch studies a homogeneous set of continuous variables defined
on the same set of individuals. Its a topological method of data analysis that consists
of comparing and classifying proximity measures from among some of the most widely
used measures for continuous data. Its proposes an adjacency matrix associated to
a proximity measure according to the data under consideration, then analyzes and
visualizes, with graphic representations, the relationship structure of the variables
relating to, the known problem of Principal Component Analysis (PCA). Based on
the notion of neighborhood graphs, some of these proximity measures are more-or-less
equivalent. A topological equivalence index between two measures is defined and sta-
tistically tested according to the topological correlation between the variables. The
principle of the proposed TPCA is illustrated using a real data set.

Keywords: Proximity measure, neighborhood graph, adjacency matrix, topologi-
cal equivalence, correlation matrix, MDS graphical representations.

1 Introduction

Similarity measures play an important role in many areas of data analysis. The
results of any operation involving structuring, clustering or classifying objects
are strongly dependent on the proximity measure chosen. The user has to
select one measure among many existing ones. Yet, according to the notion of
topological equivalence chosen, some measures are more-or-less equivalent. The
concept of topological equivalence uses the basic notion of local neighborhood.
We define the topological equivalence between two proximity measures, in the
context of correlation observed between the continuous variables considered,
through the topological structure induced by each measure.

Principal Component Analysis (PCA) [16,10,5,18] is an important method-
ology among factorial techniques due to the extent of its field of application.
It allows us, among others things, to describe continuous data tables.

This method concerns the relations between or within a set of quantitative
variables simultaneously observed on a sample of individuals. Generally the
variables are homogeneous in the sense that they revolve around a particular
theme.
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PCA is statistically considered as a widely used multivariate method for
dimension reduction and as a technique of representing data. It aims is to find
common factors, the socalled principal components, in form of linear combi-
nations of the variables under investigation. It allows to have an idea of the
correlations structure of the set of variables, as well as possible similarities of
behavior between individuals.

In order to understand and act on situations that are represented by a
set of objects, very often we are required to compare them. Humans perform
this comparison subconsciously using the brain. In the context of artificial
intelligence, however, we should be able to describe how the machine might
perform this comparison. In this context, one of the basic elements that must
be specified is the proximity measure between objects.

Certainly, application context, prior knowledge, data type and many other
factors can help in identifying the appropriate measure. For instance, if the
objects to be compared are described by Boolean vectors, we can restrict our
comparisons to a class of measures specifically devoted to this type of data.
However, the number of candidate measures may still remain quite large. Can
we consider that all those measures remaining are equivalent and just pick one
of them at random? Or are there some that are equivalent and, if so, to what
extent? This information might interest a user when seeking a specific measure.
For instance, in information retrieval, choosing a given proximity measure is
an important issue. We effectively know that the result of a query depends
on the measure used. For this reason, users may wonder which one is more
useful? Very often, users try many of them, randomly or sequentially, seeking
a ”suitable” measure. If we could provide a framework that allows the user to
compare proximity measures in order to identify those that are similar, they
would no longer need to try out all measures.

The present study proposes a new framework for comparing proximity mea-
sures in order to choose the best one in the context of association between a
set of quantitative variables. The aim is to establish a PCA.

We deliberately ignore the issue of the appropriateness of the proximity
measure, as it is still an open and challenging question currently being studied.
The comparison of proximity measures can be analyzed from various angles.

The comparison of objects, situations or ideas is an essential task in or-
der to assess a situation, to rank preferences, to structure a set of tangible or
abstract elements, and so on. In a word, to understand and act, we have to
compare. These comparisons that the brain naturally performs, however, must
be clarified if we want them to be done by a machine. For this purpose, we use
proximity measures. A proximity measure is a function which measures the
similarity or dissimilarity between two objects within a set. These proximity
measures have mathematical properties and specific axioms. But are such mea-
sures equivalent? Can they be used in practice in an undifferentiated way? Do
they produce the same learning database that will serve to find the membership
class of a new object? If we know that the answer is negative, then how do we
decide which one to use? Of course, the context of the study and the type of
data being considered can help in selecting a few possible proximity measures,



but which one should we choose from this selection as the best measure for
summarizing the correlation structure of the variables?

The topological correlation structure of the variables partly depends on the
data being used. The results of TPCA are different according to the selected
proximity measure.

Several studies on the topological equivalence of proximity measures have
been proposed, [4,17,13,24], also in contexts of discrimination [3] and correspon-
dences [2,1], but none of these propositions has an objective of the correlations
synthesis of a set of quantitative variables.

Therefore, this article focuses on how to construct the best adjacency matrix
induced by a proximity measure, taking into account the association between
all the modalities of the qualitative variables.

In this paper we compare different proximity measures in an aim to synthe-
size the relationships of a set of continuous variables in the topological context.
Comparison of these measures show that the results are different and depend-
ing on the proximity measure chosen. The rest of the paper is organized as
follows. In section 2, we discuss topological equivalence between two proximity
measures and show how to build an adjacency matrix associated with a prox-
imity measure, how to compare and statistically test the degree of topological
equivalence between proximity measures and how to select the best measure to
describe topologically the structure of the correlations of the variables. Section
3 presents an illustrative example and surveys existing proximity measures on
continuous data and presents a comparison between them. This comparison
helps the researchers to take quick decision about which measure to use for
considered data. A conclusion of this work is given in section 4.

Table 7 in Appendix summarizes some classic proximity measures used for
continuous data [23], we give on Rn the definition of 15 of them.

We assume that we have at our disposal {xk; k = 1, .., p} a set of p homo-
geneous quantitative variables measured on n individuals. The interest is to
analyze the topological structure of all these variables.

2 Topological Correlation

Topological equivalence is based on the concept of the topological graph also
referred to as the neighborhood graph. The basic idea is actually quite sim-
ple: two proximity measures are equivalent if the corresponding topological
graphs induced on the set of objects remain identical. Measuring the similarity
between proximity measures involves comparing the neighborhood graphs and
measuring their similarity. We will first define more precisely what a topolog-
ical graph is and how to build it. Then, we propose a measure of proximity
between topological graphs that will subsequently be used to compare the prox-
imity measures.

Consider a set E = {x1, x2, . . . , xk, . . . , xp} of p objects in Rn, associated
with the p variables. We can, by means of a proximity measure u, define a



neighborhood relationship Vu to be a binary relationship on E ×E. There are
many possibilities for building this neighborhood binary relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph
on a set of objects-variables, where the vertices are the variables and the edges
are defined by a property of the neighborhood relationship.

Many definitions are possible to build this binary neighborhood relationship.
One can choose the Minimal Spanning Tree (MST) [11], the Gabriel Graph
(GG) [15] or, as is the case here, the Relative Neighborhood Graph (RNG) [21].

For any given proximity measure u, we construct the associated adjacency
binary symmetric matrix Vu of order p, where, all pairs of neighboring variables
(xk, xl), where k, l = 1, p, satisfy the following RNG definition.

Definition 1: Relative Neighborhood Graph (RNG)
Vu(xk, xl) = 1 if u(xk, xl) ≤ max[u(xk, xr), u(xr, xl)] ; ∀xk, xl, xr ∈ E,

xr 6= xk and xr 6= xl

Vu(xk, xl) = 0 otherwise

Fig. 1. RNG example with eight variables - Associated adjacency matrix

This means that if two variables xk and xl which verify the RNG property
are connected by an edge, the vertices xk and xl are neighbors.

Thus, for any proximity measure given, u, we can associate an adjacency
matrix Vu, of binary and symmetrical order p. Figure 1 illustrates an example
of RNG in R2 of a set of p = 8 objects-variables.

For example, for the first and four variables, Vu(x1, x4) = 1, it means
that on the geometrical plane, the hyper-Lunula (intersection between the two
hyperspheres centered on the two variables x1 and x4) is empty.

For a given neighborhood property (MST, GG or RNG), each measure u
generates a topological structure on the objects in E which are totally described
by the adjacency binary matrix Vu. In this paper, we chose to use the Relative
Neighbors Graph (GNR).



2.1 Comparison and selection of proximity measures

First we compare different proximity measures according to their topological
similarity in order to regroup them and to better visualize their resemblances.

To measure the topological equivalence between two proximity measures ui
and uj , we propose to test if the associated adjacency matrices Vui and Vuj are
different or not. The degree of topological equivalence between two proximity
measures is measured by the following definition of concordance.

Definition 2: Topological equivalence between two adjacency matrices

S(Vui , Vuj ) = 1
p2

∑p
k=1

∑p
l=1 δk l(x

k, xl)

with δk l(x
k, xl) =

{
1 if Vui(x

k, xl) = Vuj (x
k, xl)

0 otherwise.

Then, in our case, we want to compare these different proximity measures
according to their topological equivalence in a context of correlation. So we
define a criterion for measuring the deviation from the position of independence.

The data can arise from several different sampling frameworks, and the
interpretation of the hypothesis of no association depends on the framework.
The question of interest is whether there is a correlation between the two
variables.

We construct the adjacency matrix denoted by Vu? , which corresponds to
the correlation matrix. Thus, to examine the correlation structure between
the variables, we examine the significance of their linear correlation coefficient.
This adjacency matrix can be written as follows using the t-test of the linear
correlation coefficient ρ of Bravais-Pearson:

Definition 3: Adjacency matrix Vu? associated to reference measure u?{
Vu?(xk, xl) = 1 if p-value = P[ | Tn−2 |>t-value] ≤ α ; ∀k, l = 1, p

Vu?(xk, xl) = 0 otherwise

Where p-value is the significance test of the correlation coefficient for the
two-sided test of the null and alternative hypotheses, H0 : ρ(xk , xl) = 0 vs.
H1 : ρ(xk , xl) 6= 0.

The p-value is the evidence against a null hypothesis. The smaller the
p-value, the stronger the evidence that you should reject the null hypothesis
which means that there is no correlation between xk and xl variables in the
population.

Formula for the Student t-test for significance of correlation: t = r
√

n−2
1−r2

with ν = n − 2 degrees of freedom (d.f.) and r = r(xk , xl) is the linear
correlation coefficient observed between the variables xk and xl.

Let Tn−2 be a t-distributed random variable of Student with ν = n− 2 d.f.
In this case, the null hypothesis is rejected with a p-value less or equal a chosen
α significance level, for example α = 5%. Using linear correlation test, if the
p-value be very small, it means that there is very small opportunity that null
hypothesis is correct, and consequently we can reject it. Statistical significance
in statistics is achieved when a p-value is less than the significance level of α.



The p-value is the probability of obtaining results which acknowledge that the
null hypothesis is true.

The robustness according to the α error risk chosen for the null hypothesis:
no linear correlation, can be studied by setting a minimum threshold in order
to analyze the sensitivity of the results. Certainly the numerical results will
change, but probably not their interpretation.

The binary and symmetric adjacency matrix build Vu? , is associated with
an unknown proximity measure denoted u? and called a reference measure.
Thus, with this reference proximity measure we can establish S(Vui , Vu?), the
topological equivalence between the two proximity measures ui and u?, by
measuring the percentage of similarity between the adjacency matrix Vui and
the reference adjacency matrix Vu? .

In order to graphically describe the similarities between proximity measures,
we can for example apply the notion of themascope [12], which is a method-
ological sequence of a clustering method on the results of a factorial method.
In this case, a Principal Component Analysis (PCA) followed by a Hierarchical
Ascendant Classification (HAC) were performed upon the 15 component dis-
similarity matrix defined by: [D]ij = D(Vui , Vuj ) = 1−S(Vui , Vuj ) to partition
them into homogeneous groups and to view their similarities in order to see
which measures are close to one another.

We can use any classic visualization techniques to achieve this. For ex-
ample, we can build a dendrogram of hierarchical clustering of the proximity
measures. We can also use multidimensional scaling or any other technique,
such as Laplacian projection, to map the 15 proximity measures into a two
dimensional space.

Finally, in order to evaluate and determine the closest class of proximity
measures to the reference measure u?, we project the latter as a supplementary
element into the two data analysis methods, positioned by the dissimilarity
vector with 15 components [D]∗i = 1− S(Vu? , Vui).

2.2 Statistical comparisons between two proximity measures

In this section, we use the Fisher’s Exact Test [9] which is an alternative to
the Chi-square test when the samples are small. The principle of this test is to
determine if the configuration observed in the contingency table is an extreme
situation compared to the possible situations taking into account the marginal
distributions. Fisher’s exact test is an exact statistical test used for the analysis
of contingency tables. It is a test qualified as exact because the probabilities can
be calculated exactly rather than relying on an approximation which becomes
correct only asymptotically as for the chi-square test used in the contingency
tables. It is not based on a test statistic whose law is known when n is large
enough but it calculates, as its name suggests, the exact p-value directly. To
test statistically the topological equivalence between two proximity measures.
This non parametric test compares these measures based on their associated
adjacency matrices. Two proximity measures are statistically in topological
equivalence if the null hypothesis H0 of independence is rejected.



The comparison between indices of proximity measures has also been stud-
ied by [19], [20] and [7] from a statistical perspective. The authors proposed an
approach that compares similarity matrices obtained by each proximity mea-
sure, using Mantel’s test [14], in a pairwise manner.

Fisher’s exact test is the statistical test best suited to compare matched
binary data, the Cohen’s Kappa test [6] also but it is in general an asymptotic
test. The Kendall or Spearman coefficient compares matched continuous data.

It makes it possible in this context to measure the agreement or the con-
cordance of the binary values of two adjacency matrices associated with two
proximity measures. The Fisher’s exact test between two adjacency matrices
evaluates the topological equivalence between their proximity measures.

Let Vui and Vuj be adjacency matrices associated with two proximity mea-
sures ui and uj . To compare the degree of topological equivalence between
these two measures, we propose to test if the associated adjacency matrices are
statistically different or not, using a non-parametric test of paired data. These
binary and symmetric matrices of order p, are unfolded in two vector-matched

components, consisting of p(p+1)
2 values: the p diagonal values and the p(p−1)

2
values above or below the diagonal.

The degree of topological equivalence between two proximity measures is
evaluated from the Fisher’s exact test, computed on the 2×2 contingency table

formed by the two binary vectors of order p(p+1)
2 .

We also test the topological equivalence between each proximity measure
ui=1,15 and the reference measure u? by comparing the adjacency matrices Vui
and Vu? .

2.3 Graphical representations - Variables and Individuals

In order to represent graphically the possible topological links between the p
quantitative variables, we use MultiDimensional Scaling (MDS) which makes
it possible to find, for any distance matrix (similarity or dissimilarity) of size
p×p, a set of p points identified by their Euclidean coordinates whose distance
matrix is equal to or very close to the given distance matrix. We propose to
carry out the classical MDS [5], namely factorial analysis on similarity Vu? or
dissimilarity Du? = U − Vu? table, where U = 1p

t1p is the p× p matrix of 1s
and 1p denotes the p indicator vector of 1s.

Definition 4:

TPCA consist to perform the standardized PCA of the triple {Vu? ; M ; Dp},
where, Vu? is the adjacency matrix associated with the proximity measure u?,
the most appropriate measure for the considered data, M = Ip is the identity
matrix of order p and Dp = 1

pIp is the weighted diagonal matrix of variable
weights.

The TPCA can be performed from any adjacency matrix Vui associated
with each of the 15 proximity measures ui considered.



Aid for the interpretation of TPCA results are those of PCA. Graphical
representations on factorial plans allow to visualize and identify the topological
structure of the variables. As in PCA, for representations of variables, we
consider the most significant variables on the axes, that is the variables highly
correlated with factors, having a strong contribution and a good quality of
representation, measured by the square cosine of the angle between main axes
and initial axes.

For representations of active individuals, these are projected as illustrative
elements. The quality of representation of these individuals on the factorial
axes is measured by their squared cosine.

3 Illustrative example and Empirical results

To illustrate the TPCA, we use Eurostat data [8] on government finance of the
28 European Union (EU) countries in 2017. We examine how key government
finance statistics have developed in the EU-28. Specifically, it considers general
government gross debt, deficit/surplus, total revenue and total expenditure.
Simple statistics of the considered variables are displayed in Table 1.

Table 1. Summary statistics of public finances

Standart Coefficient of
Variable Frequency Mean Deviation (N) variation (%) Min Max

Debt 28 68.043 36.539 53.70 8.70 176.10
Deficit 28 -0.264 1.692 640.07 -3.10 3.50

Revenues 28 42.579 6.654 15.63 26.00 53.80
Expenditures 28 42.850 6.793 15.85 26.30 56.50

In a metric and classical context, we simply have to apply a standardised
PCA on the homogeneous set of the 4 characteristics of the government finance
of the EU-28.

In a topological context, the main results of the proposed method are pre-
sented in the following tables and graphs, which allow us to visualize proximity
measures close to each other and to select the one that best describes and
synthesis, the government finance of the EU-28.

The objective here is to give a topological synthesis of the public finances
of the EU countries in 2017.

An HAC algorithm based on the Ward criterion [22] was used in order to
characterize classes of proximity measure relative to their similarities. The
reference measure u? is projected as a supplementary element. The dendro-
gram of Figure 2 represents the hierarchical tree of the 15 proximity measures
considered. Table 2 describes the final composition of each class of proximity
measures, the results of the chosen partition into three homogeneous classes,
obtained from the cut of the hierarchical tree of Figure 2.

Aggregation based on the criterion of the loss of minimal inertia.



Fig. 2. Hierarchical tree of the proximity measures

Moreover, in view of the results in Table 2, the reference measure u? is closer
to the third class consisting of Normalized Euclidean, Canberra and Weighted
Euclidean measures for which there is a strong topological association between
the variables of government finance of EU-28 among the 15 proximity measures
considered.

Table 2. Clusters composition - Assignment of the reference measure

Cluster number Cluster 1 Cluster 2 Cluster 3
Frequency 11 1 3

Euclidean Tchebytchev Canberra
Manhattan NormalizedEuclidean

Minkovski− 3 WeightedEuclidean
CosineDissimilarity

Proximity PearsonCorrelation
measure SquaredChord

Doverlap, Gower
Shape, Size, Lpower

Reference measure u?

It was shown in [24], by means of a series of experiments, that the choice of
proximity measure has an impact on the results of a supervised or unsupervised
classification.

In a topological framework, Table 3 summarizes all the results of Table 8
given in the Appendix, the similarities and Fisher’s Exact p-values between



Table 3. Similarities and Fisher’s Exact Test

ui uj S(ui , uj) p− value
Cluster 1 Cluster 1 1.0000 0.0083**
Cluster 1 Cluster 2 0.7500 0.1833
Cluster 1 Cluster 3 0.7500 0.1833
Cluster 2 Cluster 2 1.0000 0.0083**
Cluster 2 Cluster 3 0.5000 1.0000
Cluster 3 Cluster 3 1.0000 0.0083**

u? Cluster 1 0.7500 0.1833
u? Cluster 2 0.6250 0.5000
u? Cluster 3 0.8750 0.0333*

Significance level α ; ∗∗α ≤ 1% ; ∗α ∈]1%; 5%]

Table 4. 2× 2 Contingency Table - Similarity - Fisher’s Exact Test

Cluster 2 Cluster 1 : Euclidean
Tchebytchev Vu2 = 0 Vu2 = 1

Vu1 = 0 2 1
Vu1 = 1 1 6

S(Vu2 , Vu1 ) = 75% ; p-value = 0.1833

Mesure Cluster 1 : Euclidean
Reference Vu2 = 0 Vu2 = 1

Vu? = 0 3 1
Vu? = 1 0 6
S(Vu? , Vu1 ) = 75% ; p-value = 0.183

Cluster 3 Cluster 2 : Tchebytchev
Canberra Vu2 = 0 Vu2 = 1

Vu1 = 0 1 2
Vu1 = 1 2 5
S(Vu3 , Vu2 ) = 50% ; p-value = 1.000

Mesure Cluster 2 : Tchebytchev
Reference Vu2 = 0 Vu2 = 1

Vu? = 0 2 2
Vu? = 1 1 5
S(Vu? , Vu2 ) = 62.50% ; p-value = 0.500

Cluster 1 Cluster 3 : Canberra
Euclidean Vu2 = 0 Vu2 = 1

Vu1 = 0 2 1
Vu1 = 1 1 6

S(Vu1 , Vu3 ) = 75% ; p-value = 0.1833

Mesure Cluster 3 : Canberra
Reference Vu2 = 0 Vu2 = 1

Vu? = 0 3 1
Vu? = 1 0 6
S(Vu? , Vu3 ) = 87.50% ; p-value = 0.0333∗

Significance level α ; ∗∗α ≤ 1% ; ∗α ∈]1%; 5%]

all the C2
15 = 105 pairs of proximity measures formed with the 15 measures

considered and the 15 pairs formed with the unknown reference measure u?.
The values below the diagonal correspond to the similarities S(Vui , Vuj ) and
the values above the diagonal are the Fisher’s Exact test p-values.

The similarities in pairs between the 15 proximity measures differ some-
what: some are closer than others. Some measures are in perfect topological
equivalence S(Vui , Vuj ) = 1 with a significant Fisher’s exact test p-value < 5%;
these are therefore identical for the data considered, as is the case with the
measures in each class of the partition presented in Table 2.

The Table 4 illustrates the contingency tables 2× 2 between the measures
of each class: Euclidean, Tchebytchev, Canberra and reference measure u? for
the calculation of Fisher’s exact test.



Only the topological equivalence between the reference measure and the
Canberra measure is significant, p-value = 0.0034 < α = 5%, the null hypoth-
esis H0 of independence is rejected.

Table 5. Pearson correlation matrix (p-value)

Variables Debt Deficit Revenues Expenditures

Debt 1.000

Deficit -0.3403 1.000
(0.076)

Revenues 0.3071 0.0393 1.000
(0.112) (0.8428)

Expenditures 0.3845 -0.2092 0.9689 1.000
(0.0434*) (0.2853) (0.0001**)

Significance level α ; ∗∗α ≤ 1% ; ∗α ∈]1%; 5%]

Vu∗ =


1 0 0 1
0 1 0 0
0 0 1 1
1 0 1 1



Fig. 3. TPCA - Adjacency matrix - The public finance variables on the first principal
plane

The adjacency matrix Vu? associated to the adapted proximity measure u?
to the considered data, is build from the correlation matrix Table 5 according



Fig. 4. TPCA - The EU-28 countries on the first principal plane

to definition 3. Figure 3 shows on the main first TPCA plane, the topological
correlation between the Government finance variables.

The corresponding representation for individuals is given in Figure 4. It
is thus possible to suggest which are the variables - government finance are
responsible for the proximities between the individuals - the 28 EU countries.

The main numerical and graphical results of the proposed TPCA are given
in the following Tables and Figures, and are compared to those of the classical
PCA.

Figure 5 presents, for comparison on the first factorial plane, the correlations
between principal components - Factors and the original variables. We can
see that these graphical representations of the variables are slightly different.
Effectivelly, the percentage of inertia explained on the first principal plane of
the Topological PCA is greater than that of Classical PCA and the significant
correlations variables-factors are also different.

Table 6 shows that the two first factors of TPCA explain 68.96% and
25.00%, respectively, they account for 93.96% of the total variation in the
dataset, while the two first factors of classical PCA sum up that 84.88%. Thus,
the first two factors provide an adequate summary of the data, i.e. of govern-
ment finance of EU-28 countries, we restrict the comparison of the graphical
representations to the first factorial plane.

The correlation tables show that the original variables are strongly corre-
lated with the factors, those that contribute the most to the achievement of
this principal component.

While the first PCA factor (55.61%) is strongly correlated with three of
the original variables, expenditures, revenues and debt, the first TPCA factor
(68.96%) opposes these three variables to the deficit. As for the second PCA
(29.27%) and TPCA (25.00%) factors, they oppose the debt to revenues.



Fig. 5. PCA: The public finance variables on the first principal plane

Fig. 6. PCA - The EU countries on the first principal plane

The representations of the countries presented in Figures 4 and 6 are of
course slightly different, indeed, for example, for France which contributes to
the realization of the first TPCA axis, it is characterized by high Debts, high
Expenditures, high Revenues and a low Deficit. France also contributes on the
first PCA axis, its characterized by high Debts, high Expenditures and high
Revenues, but the Deficit does not characterize the first factorial axis of the
PCA.



Table 6. TPCA and PCA - Eigenvalues and Correlations Variables & Factors

TPCA - Eigenvalue Proportion Cumulative

2.758 68.96% 68.96%
1.000 25.00% 93.96%
0.242 6.04% 100.00%
0.000 0.00% 100.00%

4 100.00% 100.00%

Correlations Factors
Variables F1 F2

Debt 0.645 0.707
Deficit 0.982 0.000

Revenues 0.645 -0.707
Expenditures 0.982 0.000

PCA - Eigenvalue Proportion Cumulative

2.224 55.61% 55.61%
1.171 29.27% 84.88%
0.605 15.12% 100.00%
0.000 0.00% 100.00%

4 100.00% 100.00%

Correlations Factors
Variables F1 F2

Debt -0.615 0.497
Deficit 0.307 -0.845

Revenues -0.907 -0.414
Expenditures -0.964 -0.196

VuEuclidean =


1 0 0 1
0 1 1 0
0 1 1 1
1 0 1 1



Fig. 7. Euclidean TPCA - Adjacency matrix - The public finance variables on the
first principal plane

We can represent the topological analysis of each of the 15 proximity mea-
sures considered, for example see the Euclidean TPCA in Figure 3. One can
moreover give Figure 8, the graphical representation associated with a perfect
no correlation between variables, from the identity adjacency matrix.

4 Conclusion

This research work proposes a new approach that allows to synthesize and
describe a set of quantitative variables in a topological context. Like PCA, the
proposed TPCA is a multidimensional topological exploratory method that can
be useful for dimension reduction, it enriches the conventional quantitative data
analysis methods. Future work involves extending this topological approach
to synthesize the relations existing between a set of mixed (quantitatives &
qualitatives) variables - Topological Mixed Principal Component Analysis -



Vu◦ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Fig. 8. Adjacency identity matrix - Total absence of correlation between variables

TMPCA, between two groups of continuous variables - Topological Canonical
Analysis - TCA and between several multidimensional data tables - Topological
Analysis of Evolutionary Data - TAED.



5 Appendix

Table 7. Some proximity measures for continuous data

Measures Formula : Distance - Dissimilarity

Euclidean uEuc(x, y) =
√∑p

j=1(xj − yj)2

Manhattan uMan(x, y) =
∑p
j=1 |xj − yj |

Minkowski uMinγ (x, y) = (
∑p
j=1 |xj − yj |

γ)
1
γ

Tchebychev uTch(x, y) = max1≤j≤p |xj − yj |

Normalized Euclidean uNE(x, y) =
√∑p

j=1
1
σ2
j

[(xj − xj)− (yj − yj)]2

Cosine dissimilarity uCos(x, y) = 1−
∑p
j=1 xjyj√∑p

j=1 x
2
j

√∑p
j=1 y

2
j

= 1− <x,y>
‖x‖‖y‖

Canberra uCan(x, y) =
∑p
j=1

|xj−yj |
|xj |+|yj |

Pearson Correlation uCor(x, y) = 1−
(
∑p
j=1(xj−x)(yj−y))

2∑p
j=1(xj−x)

2
∑p
j=1(yj−y)

2 = 1− (<x−x,y−y>)2

‖x−x‖2‖y−y‖2

Squared Chord uCho(x, y) =
∑p
j=1(
√
xj −

√
yj)

2

Doverlap measure uDev(x, y) = max(
∑p
j=1 xj ,

∑p
j=1 yj)−

∑p
j=1min(xj , yj)

Weighted Euclidean uWEu(x, y) =
√∑p

j=1 αj(xj − yj)2

Gower’s Dissimilarity uGow(x, y) = 1
p

∑p
j=1 | xj − yj |

Shape Distance uSha(x, y) =
√∑p

j=1[(xj − xj)− (yj − yj)]2

Size Distance uSiz(x, y) =|
∑p
j=1(xj − yj) |

Lpower uLpoγ (x, y) =
∑p
j=1 |xj − yj |

γ

Where, p is the dimension of space, x = (xj)j=1,...,p and y = (yj)j=1,...,p two points in Rp, xj

the mean, σj the Standard deviation, αj = 1

σ2
j

and γ > 0.



Table 8. Similarities S(Vui , Vuj ) & Fisher’s Exact Test p-values
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Similarity: S(uTchebytchev , uEuclidean) = 75%.
Fisher’s Exact Test: p− value(uEuclidean , uTchebytchev) = 0.1833 > α = 5%: not significant.
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