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Abstract. Amorphous materials are also distinguished from crystals by their thermal properties. The struc-
tural disorder seems to be responsible both for a significant increase in heat capacity compared to crystals of
the same composition, but also for a significant decrease in thermal conductivity. The temperature depen-
dence of thermal conductivity, unusual for common interpretations of solid-state physics, gave rise to a lot
of debates. We review in this article different interpretations of thermal conductivity in amorphous materi-
als. We show finally that the temperature dependence of thermal conductivity in dielectric materials can be
understood by relating it to the disorder-dependent harmonic vibrational eigenmodes.

Résumé. Les matériaux amorphes se distinguent aussi des cristaux par leurs propriétés thermiques. Le
désordre structural semble être responsable à la fois d’une augmentation importante de la capacité calori-
fique par rapport aux cristaux de même composition, mais aussi d’une diminution importante de la conduc-
tivité thermique. La dépendance en température de la conductivité thermique, inhabituelle pour les inter-
prétations usuelles de la physique du solide, a fait couler beaucoup d’encre. Nous passons en revue dans
cet article différentes interprétations de la conductivité thermique dans les matériaux amorphes. Nous mon-
trons que la dépendance en température dans les matériaux diélectriques peut aussi être comprise à l’aide
de l’effet du désordre structural sur les modes propres de vibration.
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1. Introduction

Thermal properties of glasses are important to take into account, when they are used as building
materials for energy saving and comfort for example. But the use of glasses as dielectric compo-
nents in electrical circuits, makes heat management crucial as well to prevent the melting of the
circuit submitted to high power fluxes (∝ kW /cm2) [1]. In the case of dielectric materials like sil-
icate glasses, and also for semi-conductors like amorphous silicon, the heat is mainly supported
by the atomic vibrations [2, 3]. This is why the current paper is focused on these two aspects: the
thermal and the vibrational properties of glasses, or more generally of amorphous materials.

Amorphous materials are characterized by a fully disordered structure, with a lack of clear
structural lengthscale, apart from the mean interatomic distance acting as a lower scale cutoff. In
general, no structuration is visible at long lengthscales [4, 5], but nanometric lengthscales have a
signature, that can be measured mainly through the high frequency vibrational properties [5–8].
The existence and the possible role of medium-range order is also regularly discussed in relation
to the ring structure in silica glasses [9] or to highly symetrical clusters [10] eventually with a frac-
tal shape [11] or even to nanostrings [12, 13]. Medium Range order has recently been identified
in the dynamical structure factor [14], thanks to its temperature sensitivity when approaching
the glass transition temperature. When submitted to mechanical loads, glasses undergo plastic
(dissipative) rearrangements at a sub-nanometric lengthscale [15, 16] corresponding to the core
size of Eshelby inclusions [17] also called shear transformation zones [18, 19]. This last name
is not the best, since these transformation zones combine indeed shear with hydrostatic com-
pression [17]. The plastic deformation is an anharmonic irreversible response refering as well to
the free-volume theory [20, 21] based on the nucleation and diffusion of localized defects. How-
ever, a structural signature of such defects is very hard to find, in many glasses [22, 23]. Only in
silicate glasses in the plastic flow regime, plastic rearrangements in a sufficiently large number
with a permanent structural signature has been evidenced thanks to their vibrational properties,
using Raman spectroscopy [24]. It has been interpreted with the help of Molecular Dynamics
simulations as an irreversible modification of the ring structure giving rise to enhanced strech-
ing vibrations of the Si-O-Si bonds [25]. However, it is important to distinguish anharmonic pro-
cesses (giving rise to irreversible structural changes with energy dissipation – we do not consider
here the reversible non-linear mechanical behaviour) and harmonic vibrations in the presence of
structural disorder. The last one gives rise to reversible strain heterogeneities that are sufficient to
induce “anomalous” (non-Debye) vibrational density of states in the harmonic regime [6, 26–28].
The two processes (harmonic and anharmonic) are combined due to the fact that the lowest
energy barriers in amorphous materials may be very small [29–31], and Eshelby inclusions could
be traced and anticipated from the reversible soft modes, thanks to extended non-linear analy-
sis [15, 17, 31–33]. But the dynamics of these two processes is conceptually very different and af-
fect the thermal properties in different frequency ranges. In the litterature, anharmonicity refers
either to the shear transformation zones induced by mechanical instability (whose position can
be anticipated by inhomogeneous harmonic properties, like local elastic moduli [34–36]), either
to double well potentials and two-level systems related to the metastability of amorphous mate-
rials and the proximity to many different equilibrium states [37, 38]. In both cases, anharmonic-
ity manifests itself through some amount of temperature dependent dissipated energy having a
specific signature in the mechanical constitutive laws [17], or in the acoustic attenuation [27].

Thermal sensitivity of the mechanical properties of glasses is not obvious, because it com-
bines various origins. Some of them are related to the heterogeneous structure of glasses at the
nanometer scale, some other involve anharmonicity and energy barriers distribution. In the high
temperature regime for example, even in the supercooled liquid state above the glass transition
temperature, viscosity does not follow a simple Arrhenius law [39] and this has been interpreted
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in terms of heterogeneous elastic couplings [40] taking place at high frequency in the supercooled
liquid [41], but also in terms of heterogeneous dynamics [42]. Temporal correlations infered from
the measurements of the dynamical structure factors in the supercooled liquid (above the glass
transition and below the melting temperature) highlighted two kinds of high-temperature relax-
ation processes: a fast β-relaxation and a slower streched exponential α-relaxation that could be
related to a hierarchy or at least to a large distribution of relaxation times [43]. In the glassy state,
below the glass transition temperature, acoustic attenuation follows different frequency laws, in-
terpreted as weak to strong acoustic scattering on the elastic heterogeneities [6, 26, 44–49], com-
pleted by thermal sensitive anharmonic processes that may become dominants in the low fre-
quency regime [27,50–53]. The temperature dependence of the thermal conductivity is an exam-
ple of the anomalous thermal behaviour of glasses compared to crystals. In addition to leading
to very low thermal conductivity values, this specific behaviour is remarkable because it is shared
by glasses with very diverse compositions, and it gave rise to a lot of different interpretations [37].
Indeed, in all amorphous materials investigated so far, the low temperature dependence of ther-
mal conductivity shows an unusual power-law with an exponent lower than that of the crystal [2],
followed by a saturation at 10 to 50K , and a then a monotonous increase up to the glass transi-
tion temperature [54–56]. In parallel, the low frequency acoustic attenuation in glasses, at a given
frequency, shows two peaks in the very low temperature regime (below 50 K) [37]. Many differ-
ent interpretations of this unusual behaviour have already been proposed [37, 51, 57–59], but up
to now they have not been clearly supported by a microscopic interpretation. As already men-
tioned, heat carriers in dielectric and semi-conductor materials are mainly supported by atomic
vibrations, refered to as phonons in crystals [2]. However, how defining phonons in amorphous
materials is still a matter of debate [60–62], and the theoretical tools have to be completely re-
newed, especially to distinguish efficiently harmonic from anharmonic processes.

In this paper, we will first describe the harmonic vibrations in glasses and discuss the role they
play in carrying the energy among the samples (Section 2). We will then focus on a comparison
between different dissipation processes taking place in glasses (Section 3). In the next part
(Section 4), we will discuss the temperature dependence of the thermal conductivity in glasses,
after having discussed its atomistic foundations. We will conclude (Section 5) by a discussion and
perspectives for future studies.

2. Vibrational Eigenmodes vs. Phonons in glasses

2.1. Eigenvibrations in glasses

In the harmonic approximation, the vibrations, in 3D glasses containing N atoms, are obtained
by diagonalizing the 3N ×3N Dynamical Matrix {Dαβ

i j } with

Dαβ

i j = 1p
mi m j

∂E

∂rαi ∂rβj

(1)

defined from the second order derivatives of the interatomic potential energy E as a function
of the positions r⃗i and r⃗ j of atoms i and j with mass mi and m j respectively, α and β being
the components of the vectors. The eigenvectors (also called Normal modes) e⃗n = {eαi (n)} of the
Dynamical Matrix are orthogonal in the harmonic limit, thus acting as a well defined basis to
perform the modal decomposition of any given motion. In the harmonic approximation, the
eigenvectors do not interact with each other. According to the equations of motion, the atomic
displacements related to mode n are uα

i (n) = eαi (n)/
p

mi , and the eigenfrequency ωn of mode
n is given by the square-root of the corresponding eigenvalue of the Dynamical Matrix. This
one is positive, since the interactions are computed around a stable mechanical equilibrium.
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The eigenmodes are thus obtained by diagonalizing a very large 3N ×3N positive-definite matrix
and result, by construction, of collective motion.

In crystals, these eigenmodes are called “phonons”. They all are identified by a wave vector q⃗
related to their periodicity along the crystal, and given by 2π/λα(n) in each direction α, where
λα(n) is the wavelength of the mode. There are always three acoustic modes in crystals (two
transverse and one longitudinal) and 3R −3 optical modes (with R the number of atoms in the
primitive cell). The wave vector q⃗ corresponds to the momentum (related to the kinetic energy
Ec =ħ2q2/2m) in the quantum description of motion. The related quantum of energy is given by
ħωn . At wavelengths in the nanometer-subnanometer range, the phonon frequency is typically
of the order of a few terahertz (T H z), corresponding to the “hypersonic regime” with phonon
energies of a few meV (1T H z ≈ 4.18meV ≈ 33.7cm−1). At macroscopic wavelengths, acoustic
phonons are also identified with the elastic waves, as described by the continuum elasticity
theory. In crystals, phonons are thus responsible for sound propagation, but also for heat (or
energy) transport.

In disordered materials, the definition of phonons is more intricate. In this case indeed, the
normal modes are in general not characterized by a single wave vector. There are thus different
perspectives: either considering phonons as quasi-particles with wave-like characteristics that
can be strongly scattered in the material [63], either relating phonons to vibrational eigenmodes.
In the last case, many of them cannot be characterized by a wavelength [64]. In amorphous
materials, normal modes are grouped indeed into three categories [65]: the propagons (including
harmonic soft modes) wich have a dominant wavelength, the diffusons which look like a random
superposition of plane waves, and the locons with a multifractal shape similar to Anderson’s
localized modes induced by disorder [62, 66–69]. In general, propagons dominate the low
frequency regime, but propagons with longitudinal dominant polarization may also appear
at frequencies larger than that of some diffusons, for example in cases similar to amorphous
silicon (see Figure 2-top), where there is a large frequency gap between dominantly transverse
and dominantly longitudinal vibrations [8]. Locons form in general at a frequency where the
vibrational density of states decreases abruptly (transition to a gap), at the so-called mobility
edge. Typical examples of these modes obtained in a numerical description of amorphous
silica are shown in Figure 1. As shown in the figure and confirmed in a deepened numerical
analysis [6, 8], diffusons and locons cannot be characterized by a single wavelength but by a large
set of wavelengths. The two definitions of phonons (with or without wavevector) are thus not
equivalent. Actually, the reference to experimental wave-like excitation, for example using X-Ray
scattering, is in favor of the definition of phonons involving a wavevector. It can then be noticed
that phonons defined in this way naturally interact with each other in the harmonic regime, even
at very low temperature, since they are not normal modes. Most confusions due to references to
“hybridization” or to “anhamornic coupling between phonons” results certainly in glasses from
the fact that harmonic vibrations do not refer to phonons ideally defined only in perfect crystals,
and in the same way from the fact that the ideal phonons appears as “coupled” on nanometric
wavelength scales, since they are certainly not independent normal modes, in this range. In the
following, we will thus identify phonons as wave-packets with well defined central frequency and
wave fronts, that corresponds to classical descriptions of quantum quasi-particles with energy
ħω and wavevector q⃗ .

Concerning the energy transportation by wave-packets, it has been confirmed recently [62],
that the enveloppe of a wave-packets excitation in the frequency range of propagons is smoothly
attenuated, following a spatial exponential decay that allows defining properly a mean-free path
as a function of the frequency (see Figure 1b-right first image from the top). The exponential
decay is due to the small amount of energy going back due to the local impedance mismatch
resulting from the structural disorder. In the frequency range of diffusons, the enveloppe of a
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(a) (b)

(c) (d)

(e) (f )

Figure 1
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(g) (h)

Figure 1. Left column: Normal modes in a numerical model of a silica glass [30]. The
arrows are the instantaneous displacement vectors of the atom located at the basis of
the arrow. From top to bottom: propagon, soft mode, diffuson, locon. Right column:
Enveloppe of wave packets propagation for different excitation frequencies [62]. The blue
curve is the instantaneous and smoothed kinetic energy at the time indicated in the inset as
a function of the position x to the central excitation. The colored region corresponds to the
enveloppe of the kinetic energies for the previous times. From top to bottom: exponential
attenuation of the enveloppe in the frequency range of propagons, mixed regime, gaussian
enveloppe with diffusive transport in the frequency range of diffusons, and localized regime
(no energy transfer).

wave-packets excitation is enlarged and attenuated diffusively, thus preventing the identification
of a group velocity, but allowing instead the identification of a diffusivity coefficient (see Figure 1f-
right third image from the top). It has to be noted that the transition from propagons to diffusons
involves a mixed regime with coexistence of a ballistic attenuation of the wavefront (thus with
a characteristic mean-free path) and a diffusive part contributing to the aftershocks already
evidenced in geophysics [70]. In the frequency range of thermal phonons that will be discussed in
Section 4, the diffusive part corresponds strictly to diffusive heat transfer. The relative amplitude
of the diffusive part with respect to the propagative one increases with the frequency, or with
the distance to the excitation since the diffusive contribution is less attenuated with time. The
diffusive part thus overcomes progressively the ballistic part of the excitation. Finally, in the
tiny frequency range of locons, in general in the frequency ranges corresponding to energy gaps
in the crystals, wavepackets do not propagate anymore, thus preventing the transportation of
energy. Only the locons are relevant for the localization, as predicted by Anderson [66, 67, 71, 72].
Their shape has the multifractal characteristics of the wavefunctions at the mobility edge of the
Anderson’s transition [8, 72], and the numerical simulations confirm that they keep the energy
where it is deposited, thus preventing completely its propagation along the system [62]. Note that
the situation is not the same in the case of low frequency soft modes, because soft modes do not
prevent the propagation of energy by the large wavelength elastic component of the vibration,
except in the extreme case when the system approaches its instability threshold and behaves
strongly anharmonicly. This is for example the case in granular solids close to the jamming
transition.
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(a)

(b)

(c)

Figure 2. Top: Effect of amorphization on the vibrational density of states of silicon sam-
ples obtained with Stillinger–Weber (SW) potential [73]. In the different regimes, the re-
lated types of vibrations for the amorphous samples is specified in accordance with [8].
Middle: role on the Boson Peak of the relative weight of the three-body term in the SW po-
tential, for silicon-like amorphous samples [8]. Bottom: Thermal conductivity as a function
of themperature in crystals and in amorphous materials with various compositions [74].
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2.2. Vibrational Density of States

Another characteristics of amorphous materials having consequences on their thermal proper-
ties is the “anomalous” shape of their density of vibrational states (VDOS), as compared to the
crystals. As seen in Figure 2a, the amorphisation of the structure induces an enlargment of the
different peaks in the vibrational density of states, and especially an increase in the density of
low frequency modes. The ratio between the low frequency VDOS and the Debye prediction valid
in crystals (Debye VDOS g (ω) ∝ ω2), gives rise to a “Boson Peak” in the low frequency regime
(≈ 0.5T H z) having a marqued effect on the heat capacity for temperatures above 20 K (when
frequencies at Boson Peak start to matter - see Figure 3). This Boson peak deserves different
explanations. It is located at a characteristic frequency close to the Ioffe–Regel frequency (ωI R

where the mean-free path of phonons becomes smaller than their wavelength) and the related
characteristic length ξ = cT /ωI R changes with the nature of the bonds inside the glass, jump-
ing from 5 to 25Å when the bending rigidity is decreased [8]. At smaller frequencies, or more
precisely for wavelengths above this mesoscopic lengthscale, stable glasses are mechanically ho-
mogeneous and isotropic [34], and the Boson Peak is located at a cross-over frequency separat-
ing the weak scattering regime from the strong scattering regime of acoustic waves on elastic
heterogeneities [8, 35]. In terms of eigenmodes, the Boson Peak is located at the transition be-
tween phonons and propagons. This means that the Boson Peak is already visible in the har-
monic limit [8, 13], thus the existence of such a peak does need neither anharmonicity neither
stability loss, but additionnal anharmonic effects can increase its amplitude even more [75]. One
possible explanation is to relate it to elastic heterogeneities [6, 7, 45, 76–78]. The decay of the
effective sound velocity as compared to crystals results directly from the large distribution of
strain heterogeneities [6, 79] at the scale contributing to the vibrations. The consequence is the
decay of the related eigenfrequencies. In the harmonic limit and when the bending rigidity of
bonds is decayed, its maximum amplitude is strongly amplified and shifted to lower frequencies
(see Figure 2b), implying that larger scales are involved. This peak can be used as a suitable size
independent indicator for the intrinsic nanometer lengthscales characteristic ξ of collective me-
chanical heterogeneities taking place in amorphous solids [6–8,35]. Interestingly, such an intrin-
sic lengthscale is not directly related to the size of a structural defect, but results from a collective
motion induced by a combination of elastic bonding and geometrical frustration.

Various articles focused as well on the density of “soft spots” in the very low frequency regime,
maybe taking place in the gap between successive plane waves [28]. In all the amorphous systems
we have studied [8,30,35,80,81], we have observed “soft spots” whose frequency decreases when
the system becomes closer to a mechanical instability as already observed by A. Lemaitre et
al. [15, 35, 82]. But in our case, these vibrations were always coupled to elastic plane waves [8].
The ω4 dependence of the density of soft spots mentioned in [28] can be reproduced only when
averaging over a very large number of samples, thus corresponding indeed to the distribution
of the lowest elastic moduli at the soft spot (since it is related to its eigenfrequency). In the
frequency range of soft spots, we want to stress here the elasticity plays certainly its usual role
for energy transfer of wavepackets excitations, as long as the systems is mechanically stable,
and since it is homogeneous on the large scale corresponding to the wavelength of the incident
excitation [34]. It is not the case in the frequency range of locons where elastic excitations
are strongly scattered, preventing elasticity to play its long-range coupling role anymore. In
the frequency range of locons, the energy stays at the place where it has been deposited, it
is decoupled from the rest of the solid, and is not transfered across it (localization of energy).
Note that, contrary to usual meaning, the frequency range of locons is not the low frequency
regime, but it is system dependent. In the very low frequency regime, anharmonicity can play
an important role, due to the possibility to generate a mechanical instability having a signature
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(a) (b)

Figure 3. Debye Model of the Heat capacity: (left) frequency dependence of the modal
contribution to the Debye heat capacity at different temperatures. (right) cumulated heat
capacity for a model of amorphous (blue) and crystalline (red) silicon at T = 300K . The
gap between the two curves hangs from the frequency of the boson peak, and is attenuated
when taking into account high density high frequency optical modes (that are involved at
sufficiently high temperature).

at zero frequency. When the energy barrier becomes smaller, the system becomes easily able to
transit from one mechanical equilibrium to another. This situation is related to the progressive
decay of a positive eigenfrequency upon a destabilizing mechanical load. But the low frequency
modes are also the modes having the most important contribution to the heat capacity in the
low temperature regime (see Figure 3a). In the litterature, these modes also refer to the two-
level systems [50, 51] at very low temperature (below 20K ). Two-level systems are related to a
“resonant absorption” of energy induced by a tunneling transition between two different energy
states thanks to phononic interactions. At slightly higher temperatures (≈ 20− 50K ) they refer
to thermally activated relaxations in a double-well potential [37]. Both descriptions are related
to anharmonic transitions from one equilibrium to another, with different kinds of activations,
and different amplitudes of energy barriers (higher in the double-well potential model than in the
two-level systems) as discussed in Ref. [37]. Up to now however, no definite experimental proof of
such models nor identification of the related equilibrium positions have been given at the atomic
scale, but they clearly allow an efficient formal description of the low temperature ultrasonic and
thermal properties of glasses. In the next part of this paper, we will discuss these models in the
context of the temperature dependence of the thermal conductivity.

3. A variety of dissipation processes in glasses

In glasses, dissipative processes are unlikely related to well identified defects. New kinds of
dissipative processes occur, that can be independent on the specific chemistry of the material.
Let’s first consider the energy transfer supported by a wave packet in the purely harmonic regime.

3.1. Harmonic processes of acoustic attenuation

In the harmonic regime, in the absence of microscopic dissipation, the global energy is con-
served. But due to impedance mismatch resulting from elastic heterogeneities at the atomic
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Figure 4. Top: Wave packet excitation in an amorphous Si sample via Molecular Dynamics
simulations, in the mixed regime (t = 1.5ps,ω= 2.2T H z), black arrows indicate the instan-
taneous atomic displacements [62]. Middle: Wavepacket excitation in silicon nanowires
with amorphous matrix forω= 2T H z (left) andω= 11T H z (right). Bottom: Idem in silicon
whiskers with amorphous matrix forω= 2T H z (left) andω= 11T H z (right), colors indicate
the local kinetic energy.

level, part of the moving energy is repelled in the direction opposite to the direction of propa-
gation. In the ballistic regime at low frequencies (frequency range of propagons - Figure 1b, first
image from the top), due to the small amount of energy repelled at each step

dE =−aE d x,

the enveloppe of energy is attenuated following an exponential Beer–Lambert Law

E = E(0)exp(−ax)

This allows defining properly a mean-free path

ℓMF P = 1

a
that depends on the frequency ω of the excitation (that is of the exciting wave-packet). From this
mean-free path, an acoustic attenuation Γ may be defined in analogy with damped harmonic
oscillators Γ= vg /ℓMF P with vg the group velocity of that wave, or equivalently Γ= 1/τwith τ the
effective relaxation time. There are different explanations for the origin of the temperature and
frequency dependence of ℓMF P . We will review some of them here, starting from those involving
only harmonic couplings between atoms.
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(a) (b)

Figure 5. Illustrations of harmonic dissipation mechanisms: (left) structural heteroge-
neous force links (see [47] for more details) in a numerical model of SiO2 submitted to os-
cillatory compression, represented in two-dimensional projection for an 8Å slab in a SiO2

sample. Black arrows are for Si atoms, red arrows for oxygen atoms. (right) internal fric-
tion vs. longitudinal acoustic attenuation in the harmonic model of dissipation in the same
SiO2 sample [47].

When weak scattering is the source of energy deviation [27, 46, 49, 70], then

ℓMF P ∝ω−4

The energy repelled is mainly contained in rotational non-affine motion [6, 13, 49, 62] visible in
Figure 4a, that will generate the after-shock in the mixed regime – where part of the energy is kept
in plane waves, and a similar part is stored into rotational motion (as illustrated in Figure 1d-right
second line for the enveloppe of energy). Above the Ioffe–Regel frequency, the mean-free path
of the wavepackets becomes smaller than their wavelength: this corresponds to the frequency
range of diffusons. In this range, wave-fronts are destroyed as soon as they are projected on the
eigenmodes of the system, and the plane wave looses its coherence. The resulting propagation
of energy follows a diffusive equation due to concurrent directions of propagation [62]. The
diffusive motion of the wave-packets that represent units of energy carriers, or phonons, must
of course be distinguished from the usual dynamical motion of diffusons, that correspond to
the harmonic relaxation-free eigenvibrations. This distinction has been clarified in our Ref. [62]
as it was a little confused in earlier litterature [58, 83]. In this diffusive regime, it is impossible
to identify a group velocity for phonons, and the notion of mean-free path is meaningless as
clearly seen in Figure 1f -right (third image from the top). It is only possible to identify a
diffusivity coefficient for the kinetic energy, strictly analogous to thermal diffusivity as will be
discussed later. Finally, in the frequency ranges of locons (Figure 1h, right last image from the
top), the energy is kept where it has been deposited, phonons are pinned in the material and
completely decoupled from the rest of the solid. In this frequency range, the system is an acoustic
insulator [62, 67–69].

Another approach to dissipation in the amorphous materials is related to the application of
mechanical oscillatory excitation, in analogy with rheological analysis. The global dissipation is
then highlighted due to the projection of the atomic displacements on the eigenmodes (modal
decomposition), as soon as some microscopic dissipative process is taken into account [47].
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The microscopic process is always present in solids: it may be due to local electronic excita-
tion/desexcitation and Fermi rule [84], to local heating or noise emission [85], or to the intrinsic
fluctuation-dissipation theorem for isothermal loading [86]. The characteristic relaxation time
for these excitations is always of the order of 10−13s, that corresponds as well to the inverse maxi-
mum bonds vibration frequency. In the case of oscillatory imposed relative volume change ϵ, the
equations of motion written in terms of the non-affine displacements on the atom i give

mi ẍαi =−
(∑

jβ

√
mi m j Dαβ

i j Rβ

i j

)
ϵ−∑

jβ

√
mi m j Dαβ

i j xβj −miγẋαi +Fth (2)

with Dαβ

i j the matrix of the second order derivatives of the potential energy, mi the mass, Rβ

i j the
equilibrium separation between atoms i and j in direction β in the underformed initial cell, Fth

the thermal noise and γ the massic viscosity, or Langevin friction. This equation may be solved
using the projection coefficients sn on the eigenmodes {eαi (n)}. Using√

m j xβj =∑
n

sneβj (n) (3)

the equations of motion (2) are rewritten [47]

s̈n =Cnϵ−ω2
n sn −γṡn +Fn (4)

with

Cn = ∑
iα jβ

√
mi m j Dαβ

i j Rα
i j

eβj (n)
p

m j
(5)

is the pressure induced by the forces supported by the bonds upon incrementing the atomic
displacements along the eigenmode n (see Figure 5a). That quantity Cn is unlikely to be predicted
in amorphous materials, but it is zero in case of a cubic crystal with only two-body forces. It
controls however the internal friction quantifying the amount of dissipated energy related to the
amount of energy stored during one temporal period Tp

tanδ= 1

2ω

∫ Tp /2
0 〈P〉(t )ϵ̇(t )d t∫ Tp /2
0 〈P〉(t )ϵ(t )d t

=
∑

n C 2
n

ωγ

(ω2
n−ω2)2+(γω)2

9V0
2 K ∞−∑

n C 2
n

ω2
n−ω2

(ω2
n−ω2)2+(γω)2

∝ Γ

ω
= cL

ωℓMF P

(6)

where Γ is also the acoustic attenuation of longitudinal waves in the ballistic regime (see Fig-
ure 6b) and cL the longitudinal sound velocity [47]. The local Langevin damping γ contributes
here mainly to the smooting the data as function of the frequency. The mentioned relation of
the internal friction to the acoustic attenuation Γ in Eq. (6) results directly from the resolution of
continuous waves equations in the Fourier space, using the real and imaginary parts of the fre-
quency dependent shear moduli. The imaginary part yields to spatial attenuation on a distance
cL/Γ = 2cL/(ω. tanδ) as shown in textbooks [87]. The calculation made in [47] shows that the
non regular shape of vibration modes described in Section 2 (Figure 1) coupled to usual atomic
dissipative processes is sufficient to induce apparent viscosity and internal friction, even in the
harmonic limit of interatomic interactions, i.e. without the need of anharmonic effects such as
local instabilities, plasticity, or other kinds of irreversible structural changes (Figure 5b). The in-
teratomic bonds here remain unchanged. This kind of harmonic dissipative process is dominant
at very high frequencies, and it is not very sensitive to the temperature.
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(a) (b) (c)

Figure 6. Illustrations of thermal sensitive dissipation mechanisms in the low temperature-
low frequency regime: (a) two-level systems (TLS) with tunneling [88] (b) double-well po-
tential with thermal activation and thermally activated relaxation (TAR) [37] (c) contribu-
tion of TAR and of TLS to the dissipation measured with Brillouin spectroscopy in silica
glass [52].

3.2. Anharmonic processes for acoustic attenuation

Other kinds of dissipative effects have however been reported in the litterature, that are sensitive
to the temperature. It is the case of double well potential effects, and two-level systems that seems
to play an important role in the low-frequency / low temperature cases. They already have been
reviewed in details in [37], and there are now new attemps to identify them in real systems at the
microscopic level from numerical simulations [89–92] as well as from experimental devices [88].
They are related to a transition from one stable configuration to another one, separated by
some energy barrier. The general observation is that, for M H z excitations (ultrasonic regime),
the inverse mean-free path, or acoustic attenuation, shows two peaks as a function of the
temperature: one is located around 50K and the other around 5K . Two categories of related
processes have been identified depending on how the system overcomes the energy barrier.

The mean-free path resulting from a relaxation process is expressed as [93]

ℓ−1
MF P = A

T

∫ ∞

0
f (V )

ω2τ(V )

1+ω2τ2(V )
,dV (7)

with ω the frequency, T the temperature, and f (V ) the distribution of the activation energies V .
This expression results simply from the rate equation in the occupation number of the two
equilibrium states, taking into account the frequency dependent elastic field in the free energy of
the system. The mean-free path then results from the imaginary part of the resulting effective
elastic modulus as detailed in [93] and remined in Eq. (6). For ωτ ≪ 1 the attenuation is
proportional to ω2, and it is constant ∝ 1/τ in the opposite limit. Such a relaxation process is
acting in double well potentials (see Figure 6a), and is related to the crossing of the energy barrier
V with thermal activation and acoustic excitation, and the subsequent thermal relaxation at a
time scale equal to τ in the new equilibrium position. It is also refered to as “Thermally activated
Relaxation” (TAR).

In the very low temperature regime, another process in involved, because in this temperature
range the transition from one equilibrium state to another may be due to quantum tunneling
effect. In this case (Figure 6b), the quantities that matter are the energy splitting between the
two levels E =

p
ϵ2 +∆2 with ∆/ħ the tunneling frequency depending on the barrier height, the

distance, and the mass of the structure involved in the transition, compared to the incident
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energy ħω of the vibration. This process is called “Resonant absorption” or “Two-level system”
(TLS). The difference with the previous case (Eq. (7)), is that now the relaxation time τ is given
by the quantum Golden rule [93], including the coupling to the elastic wave in the context of
phonon-assisted tunneling. In this case, the resulting mean-free path is written [37, 51]

ℓ−1
MF P = Bω

tanh(ħω/2kB T )

(1+ J/Jc )1/2
(8)

with J the acoustic intensity, yielding to ℓ−1 ∝ω for thermal phonons (when ħω≫ 2kB T ).
These two phenomena (TAR and TLS) are not sufficient to explain the large dissipation ob-

served thanks to Brillouin scattering in the G H z to T H z range (hypersonic regime) as seen in
the Figure 6c. The fit, shown in this figure, has been obtained by combining relative velocity
change measurements to get the parameters charaterizing the distribution of double-well poten-
tials, and Brillouin broadening [52]. To explain the discrepancy between Brillouin measurements
and theoretical predictions in this frequency range, R. Vacher et al. refered to “relaxation due to
anharmonic interactions between thermal phonons perturbed by the acoustic excitation” [52]. It
is however not clear wether this mechanism is not mainly due to the one detailed in the previ-
ous part in the harmonic regime. Finally, additional anharmonic effects (with crossing of larger
energy barriers) involving a large set of competing equilibrium positions could also contribute
and show a temperature dependence of the acoustic attenuation at higher temperatures. Note
however, that no anharmonic effect has been observed in the very high frequency range (above
the Ioffe–Regel frequency) as discussed in [47].

4. Temperature dependence of the Thermal conductivity

In amorphous materials, the thermal conductivity is very low compared to crystals (see for
example the case of silicon in Figure 2c-Bottom). Moreover, it seems, that the temperature
sensitivity of the thermal conductivity behaviour of every amorphous materials share common
features like a sub-T 3 dependence in the low temperature limit, followed by a plateau near 10K
and then a monotonous increase up to the melting temperature. To understand this behaviour,
we review in this part different microscopic interpretation of the thermal conductivity. In general
heat carriers are electrons and phonons. The eletronic contribution to the thermal conductivity
refers usually to the Wiedemann-Franz law [2]

κ= L0Tσ (9)

withσ the electrical conductivity and L0 the Lorenz constant. In insulators (vs. semi-conductors)
like dielectric glasses, this contribution is negligible (vs. comparable) with respect to the
phononic contribution. We focus in the next parts only on the phononic contribution to the
thermal conductivity.

4.1. Kinetic Theory of Thermal Conductivity

The most used theory for the thermal conductivity is the kinetic theory [2]. This theory is based
on the existence of a mean-free path ℓMF P for the heat carriers. The Fourier law postulates the
existence of a linear relation between the temperature gradient and the heat flux (heat transfer
per unit surface and unit time). For example in the x-direction:

jq = δQx

dSd t
=−κx

∂T

∂x
(10)

Considering that the heat variation is directly related to the internal energy δQx = dU = Cv dT ,
the heat flux can be rewritten

jq =−N

Ω
〈vxCv dT 〉 (11)
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with N /Ω the number of heat carriers per unit volume,Ω is the volume of the sample. Replacing

dT = dT

d x
ℓMF P (12)

and assuming the isotropy in the velocity of phonons, the expression for the heat flux becomes

jq ≈−1

3

N

Ω
Cv∥vg ∥ℓMF P

dT

d x
(13)

that gives the usual description

κ= 1

3

N

Ω
Cv∥vg ∥ℓMF P

However, each frequency ω contributes to the heat conductivity. The general formula, restricted
to the propagative phonons characterized by a well defined mean-free path ℓMF P , that is below
the Ioffe–Regel frequency ωI R is thus

κpr op = 1

3

∫ ωI R

0
Cv (T,ω)vg (T,ω)ℓMF P (T,ω)g (ω)dω (14)

where g (ω) is the density of vibrational states. Above the Ioffe–Regel frequency, the mean-free
path is ill-defined, but the transportation of energy is ensured by the diffusivity. The diffusivity D
appears as well in the Heat equation

∂T

∂t
= D∆T + Ω

Cv
qsour ce (15)

where qsour ce are heat sources per unit volume. Diffusivity can be defined as D = κΩ/Cv but
mainly appears as the diffusion coefficient for the spreading of temperature, that is of the atomic
kinetic energy – or velocity fluctuations – inside the system. Indeed, the kinetic definition of the
temperature is 〈

1

2
m∥v −〈v〉∥2

〉
= 3

2
kB T (16)

The diffusivity in the heat equation is thus strictly equivalent to the diffusivity infered from the
spreading of the kinetic energy of the wave-packets shown in Figure 1f third-right. Considering
the diffusive spreading of thermal changes in the system, the equation defining the heat conduc-
tivity must obviously be changed in

κdi f f =
∫ ωmax

ωI R

Cv (T,ω)D(ω)g (ω)dω (17)

Note that this expression has already been used in atomistic simulations [83], but is unfortunately
rarely mentioned in the litterature, given the weight – which seems to us exaggerated – attributed
to the mean free path in the interpretation of the energy dissipation.

4.2. Dedicated theories for thermal conductivity in amorphous materials

Vibrations in solids result from an extended collective motion, and the Phonon Gas Model is
generally a poor approximation of the dynamics of the underlying waves. In the Phonon Gas
Model [2], the density of phonons is low and phonons – which are defined by their wavevector-
are supposed to interact punctually through short time collisions [94]. In amorphous materials,
an additional obstacle comes from the difficulty already discussed of associating a vibrational ex-
citation with a single wave vector [8]. In the description of energy transport based on the dynam-
ics of phonons with well-defined wave-vector, the interactions between phonons are thus essen-
tial. There are two methods used to take account of these interactions: the Bogolioubov–Born–
Green–Kirkwood–Yvon (BBGKY) hierarchy to go beyond the Boltzmann Transport Equation [94],
and the Allen and Feldman method based on the Kubo approximation for the heat conductivity
that takes into account the non-diagonal terms of the heat current operator [58].
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The BBGKY hierarchy is based on the general equations for the n-particles distribution func-
tion and their use in energy conservation equations. The n-particles distribution function
f (r1, p1, . . . , rN , pN , t ) satisfies the Liouville equations [94]

∂ f

∂t
+

N∑
i=1

(
∂ f

∂ri
.
dri

d t
+ ∂ f

∂pi
.
d pi

d t

)
= 0 = ∂ f

∂t
+{

f , H
}

(18)

with the Hamiltonian H including the kinetic and the potential energy of the interacting particles

H =
N∑

i=1

p2
i

2m
+Upot (ri )+ ∑

i < j
u

(
ri − r j

)
(19)

For the one-particle distribution f1(r1, p1, t ), the Boltzmann equation is replaced by the exact
relation:[

∂

∂t
+ p1

m

∂

∂r1
+F (r1)

∂

∂p1

]
f1

(
r1, p1, t

)= ∫
dr2d p2

∂u(r1 − r2)

∂r1

∂

∂p1
f2

(
r1, p1,r2, p2, t

)
(20)

where the right-hand side replaces the collision term of the Boltzmann equation. This yields to
the energy conservation equation

∂utot

∂t
+∇.

(
utot v+ jq

)=−
(
P ci n +P d yn

)
: (∇v) (21)

with the kinetic and dynamic pressures P ci n and P d yn , the first one being related to the ve-
locity fluctuations and the last one being related to the interparticle interactions including the
2-particles distribution function (see Ref. [94] for more details), and with the heat flux

jq = j ci n
q + j pot

q (22)

combining two contributions to the heat flux: the usual j ci n
q corresponding to the kinetic single-

phonon contribution to the heat flux, or thermal motion of the phonons, together with the j pot
q

term corresponding to heat conduction via the two-body interaction of the molecules. After
a linear expansion of the one-particle distribution function around its equilibrium value, this
last term yields a contribution to the thermal conductivity that is related to the stiffness of the
interatomic interactions [94], highlighting the important role of thermo-mechanical couplings in
condensed matter.

On another side, the Allen and Feldman theory of Thermal Conductivity [58] shows the crucial
role of “diffusons” on the thermal conductivity in amorphous solids. Their calculation is based
on the Green–Kubo formula for the thermal conductivity as a function of the Heat flux operator,
written in the normal modes basis. In this formalism, the heat current is obtained as tr (ρS),
with ρ the density matrix and S the Heat current operator. In classical mechanics, the main
contribution to the heat current operator in solids [58, 63] is due to atomic oscillations around
equilibrium positions. It can be rewritten as

S = 1

2Ω

∑
l ,n

∑
α,γ

(Rl −Rn)
pα

l

ml

∂2E

∂uα
l ∂uγ

n

uγ
n (23)

that is a function of the dynamical matrix components, with l and n standing for the atoms, u
the displacements,Ω the volume,α and γ the spatial directions. The Green–Kubo relation results
from the departure from equilibrium of the local temperature T(x). The average temperature
being noted T with β= 1/kB T , it gives the following expression for the heat conductivity

κµν = Ω
T

∫ β

0
dλ

∫ 0

−∞
d t

〈
eλH Sµ(t )e−λH Sν(0)

〉
(24)
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or, with the quantum notations allowing an easier calculation [58]:

κµν(ω) =
Ω

T

∫ β

0
dλ

∫ 0

−∞
d te i (ω+iη)t

∑
m,n

e−βEn

Z

〈
n

∣∣∣eλH Sµ(t )e−λH
∣∣∣m

〉〈
m

∣∣∣e i H t/ħSν(t )e−i H t/ħ
∣∣∣n

〉
(25)

Considering for example the diagonal term κ= Re(κxx ) and setting Sx = S =∑
i , j Si j a+

i a j , it gives
two contributions within the harmonic approximation:

κI (ω) = π

ΩT

∑
i ̸= j

[〈
n j

〉−〈ni 〉
ħ(
ωi −ω j

) ]∣∣Si j
∣∣2
δ

(
ωi −ω j −ω

)
(26)

and

κI I (ω) = β

ΩT
Re

[
i

ω+ iη

]∑
i , j

〈
ni n j

〉
Si i S j j ≈ 1

ħTΩ
Re

[
i

ω+ iη

]∑
i

[
−∂〈ni 〉
∂ωi

]
S2

i i (27)

The second contribution κI I is the “intraband” conductivity. It is equivalent to the Drude model
for electrons in metals, and gives at ω= 0 the well known relation

κI I
µν =

∑
i

vµi vνi τi Ci or κI I
µν = 1/3C vℓδµν

when a cubic symmetry holds, with Ci = ħω2
i

ΩT [− ∂〈ni 〉
∂ωi

] being the specific heat, and τi = 1/η (η→ 0)

being an empirical broadening parameter due to collisions or finite mean-free path. κI I is
the only term contributing to the thermal conductivity in pure crystals in the quasi-harmonic
approximation, and it is zero when the phonons are not ballistic (Si i = 0). On the contrary,
the first contribution κI is the “interband” conductivity. It is related to out-of-diagonal terms
in the Heat current operator, that are transport terms involving the coupling between different
phonons (wave packets) associated to different wave vectors. In the low frequency limit (ω→ 0),
it is written

κI = 1

Ω

∑
i

Ci (T )Di (28)

with Di the diffusivity of the mode i ,

Di = πΩ2

3ħ2ω2
i

∑
j ̸= i

|Si j |2δ
(
ωi −ω j

)
.

This expression is fully in agreement with the kinetic theory in the diffusive regime. A non-zero
value of Si j implies that the vibrations are extended and not localized. This expression confirms
that localized non-propagating vibrations will not contribute to the thermal conductivity. The
contribution of the diffusivity Di to the thermal conductivity is in general absent in crystals,
but it appears here as the contribution of non ballistic but extended vibrations to the thermal
conductivity. As shown before, these vibrations, excited in the frequency range of “diffusons”,
are present on a large set of frequencies in amorphous materials. It is very important to
underline here the non-local character of diffusons, that are defined as extended and harmonic
vibrations, but without plane wave character [58] due to disorder. This non-local character is
the condition to contribute to the thermal conductivity. These methods have been implented in
recent numerical calculations of the thermal conductivity of amorphous materials compared to
crystals [95, 96].

4.3. Harmonic Wave-Packets contribution to the thermal conductivity in glasses

In this part, we will discuss the temperature dependence of the thermal conductivity given by the
kinetic theory in the propagative, and in the diffusive regimes. In general, the contribution of the
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different eigenfrequencies to the heat capacity is given by the Statistical Physics derivation from
the partition function

Cv (ω,T ) = N

kBΩ

( ħω
kB T

)2 exp
(

ħω
kB T

)
(
exp

(
ħω

kB T

)
−1

)2 (29)

In the Debye model with the approximation g (ω) ∝ω2 used up to the Debye frequency ωD , the
global heat capacity Cv resulting from the integration over all the frequencies ω of Cv (ω)g (ω)
gives Cv ∝ T 3 when kB T ≪ħωD and Cv ∝ 3N kB when kB T ≫ħωD .

We have seen in the previous parts, that there are two characteristics of amorphous materials
compared to crystals: first the existence of “diffusons” that are normal modes giving rise to
diffusive propagation of plane waves at the same frequency, and secondly the unusual frequency
dependence of the mean-free path of phonons. Specifically, the “anomalous” temperature
dependence of the heat conductivity in amorphous materials is explained in the low frequency
regime by the frequency dependence of the mean-free path. There are different explanations
and different frequency dependences for the mean-free path of phonons. The most famous one
is the “Tunneling Two-level Systems” (TLS) [51] already discussed before. In this case, we have
seen that, in the low acoustic intensity regime, the mean-free-path scales like ∝ 1/ω∝ 1/T as
a result of the Fermi Golden-rule for the attenuation related to the transition between energy
states separated by an energy ħω. This ω-dependence of ℓMF P thus lowers the exponent in the
temperature dependence of the thermal conductivity compared to the constant-ℓMF P case, as
a result of the kinetic expression of the heat conductivity in the propagative (ballistic) regime.
Specific temperature dependence of the heat capacity may also play a role [97]. Another well-
known dependence of the mean-free path results from the Rayleigh scattering on structural
disorder in the low-frequency regime [46]. In this case, the mean-free path scales as ∝ 1/ω4

with possible logarithmic corrections if the anisotropic quenched stresses resulting from the
quenching process matter [46]. The resonant interaction between vibrational soft modes and
sound waves [98] has been calculated as giving rise to another frequency dependence of the
mean-free path scaling like ∝ 1/ω3. At finite temperature, Molecular Dynamics simulations [27,
83] have also measured an inverse acoustic attenuation (proportional to the mean-free path)
scaling like ∝ 1/ω(3/2) [27] and also ∝ 1/ω2 [83] in the sonic to ultrasonic frequency range. This
scaling is sensitive to the temperature.

We have performed classical Molecular Dynamics simulations of amorphous silicon described
with harmonic interactions at very low temperature [8, 99, 100]. In these simulations, we have
computed the thermal conductivity from the kinetic theory (equation (14) in the ballistic regime)
using the expression (29) for the frequency dependent Heat capacity Cv (ω,T ). We have also com-
puted the mean-free path in the very low temperature regime by considering either the attenua-
tion of the enveloppe of a wave-packets excitation, either the broadening of the dynamical struc-
ture factor that is shown to give similar results. We have not considered the effect of tempera-
ture on the mean-free path, since we have chosen to focus only on the harmonic behaviour. In
our case, the measured mean-free path is thus independent on the temperature, but frequency
dependent. We have shown interestingly that the resulting low temperature dependence of the
thermal conductivity follows an approximate power-law behaviour that could be fitted as ∝ T 2

below 40K , in agreement with the experiments [37]. In this model calculation, this anomalous
behaviour results only from the non-trivial ω-dependence of the mean-free path obtained either
from the dynamical structure factor, or from the apparent attenuation of the enveloppe of the
kinetic energy of the wave-packets at sufficient low frequencies [62].

In the high frequency regime (above the Ioffe–Regel frequency), a scaling of the mean-free path
∝ 1/ω2 is reported in the experimental litterature [48, 89, 101], but in this regime the Damped
Harmonic Oscillator fits used to identify the mean-free path and the acoustic attenuation are no
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longer valid [47, 62, 101]. As shown before, the mean-free path indeed becomes ill-defined in
this frequency range. The ballistic contribution to the heat conductivity thus saturates above the
Ioffe-regel frequency, that is for temperatures larger than ħωI R /kB ≈ 50K . This saturation could
be at the origin of the plateau in the temperature dependence of the thermal conductivity.

Finally, the diffusivity and the Allen and Feldman model for the thermal conductivity – Eq. (17)
– allows explaining the monotonous increase of the thermal conductivity in the high temperature
regime. This is due to the cumulated contribution of diffusons to the thermal conductivity
up to the melting temperature regime in glasses [99]. In amorphous silicon, interestingly, the
global contribution of diffusons dominates the calculation of heat conductivity in amorphous
silicon [99]. The diffusive effect seems enhanced by the temperature increase simply due to the
cumulative contribution of the higher frequencies, that is not opposed by the thermal decay of
the mean-free path, since this one is ill-defined here.

(a)

(b)

Figure 7. Ballistic and Diffusive contributions to the thermal conductivity in: (a) amor-
phous Si sample (b) amorphous Si sample with spherical crystalline inclusions with radius
25Å (from Ref. [99]).
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Figure 8. top: Different sets of crystalline nanoinclusions: Pores, Amorphous (Am), Spher-
ical (S), Conical touching at the edge (SC), Conical with overlap (STC), nanowires with
amorhpous matrix (NW-M) bottom: Ballistic and Diffusive contributions to the thermal
conductivity for the nanostuctured samples. See [100] for more details.

It is interesting to compare now pure amorphous materials and glass-ceramics or glasses
nanostructured with crystalline inclusions (see Figures 4, 7 and 8 for a comparison between dif-
ferent kinds of nanostructurations). In the case of spherical crystalline inclusions, the presence
of interfaces diminishes the Ioffe–Regel frequency and thus the ballistic contribution to the ther-
mal conductivity, especially when the acoustic mismatch between the matrix and the inclusions
is higher. But for the same reasons, the diffusive contribution to the thermal conductivity starts
at smaller ωI R frequencies, and becomes consequently more important than in pure crystals.
The additional contribution of the ballisc and diffusive parts gives rise to equivalent values for
the thermal conductivity, with a small increase of the thermal conductivity for stiffer inclusions
due to a its ballistic contribution (higher sound velocity). The ballistic contribution is in general
negligible compared to the diffusive one in all these cases.

A more significant variation of the thermal conductivity can however be obtained in two
limiting cases. The first one is when the nanostructure is made of voids. It is the only case
where the diffusive contribution to the thermal conductivity is decayed compared to the pure
amorphous sample. The resulting global conductivity of the porous medium is smaller than
the amorphous one (see Figure 8c). The second case results from the percolation of inclusions
in the system. In this opposite case, the ballistic contribution to the thermal conductivity is
strongly enhanced and even clearly dominates the diffusive one [100]. In this last case, the
thermal conductivity is controlled by the ballistic transport of heat taking place inside the
crystalline percolating path. Playing with the geometrical arrangement of the amorphous phase
on the crystalline wiskers, anisotropic and even single-way heat transport may be infered in the
nanodesigned materials [100].
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5. Conclusion

To conclude, we have shown in this paper that there are different possible interpretations for
the temperature dependence of the Thermal conductivity in glasses. We focused here on the
phononic contribution. The difficulty in converging towards a common interpretation at the
microscopic scale, is linked to the difficulty of agreeing on the notion of “phonon” in a medium
where the acoustic waves are not uniquely defined by a wave vector, and by the variety of
dissipation mechanisms in a varied energy landscape with a wide distribution of energy barriers.
We have proposed here a short review of these processes. One source of confusion is related
to the fact that harmonic vibrations in glasses cannot be described by a single wave-vector.
The discrepancy with single wave-vectors excitations yields to apparent dissipation of phonons,
mainly related to local redirection of acoustic excitations in the harmonic approximation. The
main message for the harmonic processes, is that the description of the apparent acoustic
attenuation and heat transfer with a mean-free path is not valid in the hypersonic range (THz) of
diffusons. In this frequency range, the concept of mean-free path must be replaced by the notion
of diffusivity, that cannot be related seriously to a mean-free path since the velocity of sound
and of acoustic excitations (wave-packets) is ill-defined in this frequency range. This specific
behaviour results from strong scattering of acoustic waves on the mechanical heterogeneities
of amorphous materials at the nanometer scale. The two harmonic contributions, in the low
scattering - ballistic or propagative regime (for ω<ωI R ) and in the strong scattering regime (for
ω > ωI R ) contribute separately to the thermal conductivity. The later is sufficient to explain the
anomalous temperature dependence in the low temperature regime (due to the disorder-induced
frequency dependence of the mean-free path) and the plateau of the thermal conductivity
when its contribution saturates, while the last one explains the monotonous increase of the
thermal conductivity up to the melting temperature. The combination of both contributions
is sufficient to understand the role of structural design at the nano-scale, especially why a
percolation of crystalline inclusions allows increasing the thermal conductivity by boosting its
ballistic contribution, and why the use of voids allows decreasing it by decreasing strongly the
acoustic diffusivity.

Another contribution to the thermal conductivity is due to anharmonic effects like thermal
relaxation phenomena in two-level systems, or equivalently hysteretic behaviour due to crossing
of energy barriers. This contribution yields a new dependence of the thermal conductivity on the
frequency and on the temperature. This contribution may dominate the low frequency regime
when the temperature is sufficiently high [27], but it becomes also sensitive to the dissipation
processes [47]. Anharmonic effects are visible mainly in the low frequency regime, because
they are related to low energy barriers. Note that in the solid state, the temperature activates
irreversible dissipative rarrangements whose density may affect the frequency dependence of the
acoustic attenuation and thus of the mean-free path. But below the glass transition temperature,
thanks to the elastic couplings, it is not able to decrease sufficiently the mean-free path to prevent
the propagation of acoustic waves.

Finally, the nanostructuration of the glasses with crystalline inclusions can help controlling
the heat flux by enhancing its ballistic contribution, while a nanostructuration with pores (voids)
helps decreasing its diffusive contribution. In the ballistic regime, the mean-free path of phonons
is a non monotonous function of the size of the nanocristalline inclusions, due to complex
vibrations taking place in nano-composites, like resonant vibrations of inclusions or gallery
waves. Anderson’s localization due to disorder would be the only way to strictly stop heat transfer,
but it is restricted to few and tiny frequency ranges at which the glass is also an acoustic insulator,
in such a way that heat transfer will be supported by neighbouring frequencies.
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The wave nature of heat transfer [102], but also the difference in the behaviour of wave packets
in the crystals and in the amorphous materials for nanometer wavelengths helps however man-
aging heat in materials. For example, it is possible to induce rectification (one-way heat transfer)
by playing with the thickness of amorphous layers [103]. It is also possible to imprint Young slits
and thus to produce wave interferences and local heating in a crystal using amorphous inclu-
sions [104]. Possibilities offered by nanoscale design of thermal circuits [105] are vast.
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