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Pencils of CGA for Voronoi and Power Diagrams

Clément Chomicki1 , Stéphane Breuils2 , Venceslas Biri1 , and Vincent
Nozick1

1 LIGM, Univ Gustave Eiffel, CNRS, France
2 LAMA, Univ Savoie Mont-Blanc, CNRS, France

Abstract. Geometric Algebra can be considered as a very useful lan-
guage for dealing with mathematics, physics and computer science. Among
the various algebras commonly used by practitioners of GA, Conformal
Geometric Algebra (CGA) is of special interest for its powerful trans-
formations and its ability to represent any hypersphere or hyperplane.
Moreover, CGA is an algebra capable of representing pencils of hyper-
spheres. This paper presents an approach for constructing Voronoi di-
agrams by using pencils of CGA to build cell interfaces from centroid
positions. Power, multiplicatively weighted Voronoi and multiplicatively
weighted power diagrams are also supported by the presented method.
This allows the use of circles as centroids to add control to the weights
of the cells and to the curvatures of their borders.

Keywords: Voronoi Diagrams, Geometric Algebra, Projective Geome-
try, Clifford Algebra, Pencil, Conformal Geometric Algebra (CGA)

1 Introduction

Clifford Algebras, also known as Geometric Algebras (GA), provide a robust
and adaptable mathematical structure, particularly well-suited for exploring ge-
ometry and related fields. Many geometric algebras enable the creation of their
objects using some of their points or through intersections [15,3,10]. This shared
characteristic stems from their ability to handle pencils of objects, as confirmed
by prior research [16,8,5]. On the other hand, Voronoi diagrams are a powerful
tool for splitting space into cells. Voronoi diagrams have been invented in 1908
by Georgy Voronoi [17], and have since then been heavily used in fields such as
physics, geology, meteorology, mathematics and many others. They are also a
very important tool in computer graphics where they are used for texture gen-
erations [18] or image segmentation [12]. Other diagrams can be derived from
Voronoi diagrams, such as the power diagram [1] and the multiplicatively and
additively weighted Voronoi diagrams [7].

This paper presents new formulations of Voronoi, power, multiplicatively
weighted Voronoi and multiplicatively weighted power diagrams based on CGA
and pencils of circles, with a focus on the computation of the interface of two
cells. This paper starts with some notations in Sec. 1.1, followed by a short intro-
duction to the various kinds of diagrams in Sec. 2 and to CGA and its pencils in
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Sec 3. Sec. 4 then presents a new way to compute the distance function and inter-
faces of Voronoi, power, multiplicatively weighted Voronoi and multiplicatively
weighted power diagrams based on CGA and its pencils.

1.1 Notations

Most of the notations in this paper are based on [9] and [13]. In addition, the
followings are specified:

A∗ dual [9] of A with A∗ = AI−1

∧ ,∨ , · outer, anti-outer and inner products [13]

A ≡ B A equals B up to a non-zero scalar factor

Dist(p1,p2) the Euclidean distance between two points p1 and p2

2 Dividing space into cells

This paper presents various diagrams, tiling the plane into cells using a set of
centroids and a given distance function.

Definition 1. Let E be a Euclidean space and D : (E,E) → R a distance
function. Consider a finite subset A of E. The couple (A,D) is called a
diagram in the scope of this paper, and defines a tiling of the space into
cells. Consider one of the centroids pc ∈ A. The cell of pc is the set of
point in the form:

Cell(pc) =
{
p ∈ E | ∀p′c ∈ A \ {pc}, D(pc,p) < D(p′c,p)

}
(1)

This paper puts a focus on how to compute the interface of two cells of various
diagrams.

Definition 2. Consider two centroids pc,1 and pc,2 of a diagram associated
with a distance function D. The interface of the cells of pc,1 and pc,2,
denoted Interface(pc,1,pc,2) is the curve of the form:

Interface(pc,1,pc,2) =
{
p | D(pc,1,p) = D(pc,2,p)

}
(2)

The following four distance functions can be encountered, describing four
common diagrams.

DistV oronoi(pc,p) = Dist(pc,p) Voronoi Diagram (3)

DistPower(pc, r,p) = Dist(pc,p)
2 − r2 Power Diagram (4)

DistV orWgt×(pc, w,p) =
Dist(pc,p)

w

Multiplicatively Weighted
Voronoi Diagram

(5)

DistV orWgt+(pc, w,p) = Dist(pc,p)− w
Additively Weighted
Voronoi Diagram

(6)
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Voronoi diagrams are quite simple, as the distance used is the standard Eu-
clidean distance. It results in polygonal cells whose interfaces are then straight
lines.

Power diagrams are very much alike with the difference that the centroids
are circles instead of points. The radius of the centroids increases the area of
their cells while keeping their interfaces straight.

Multiplicatively Weighted Voronoi diagrams are a bit different. The weights
have for effect of curving the interfaces of the cells toward the less important
one. The interfaces then become circles.

Additively Weighted Voronoi Diagram, similarly to the multiplicative ones,
have their interfaces curved by their weights. However the curvature is different,
as they can now be any conic, such as ellipses or hyperbolas, which are not
supported by this paper. Additively Weighted Voronoi diagrams are therefore
out of this paper’s scope.

What interfaces are to be computed and how to split them into segments
and arcs to form a mesh is a known problem. An elegant CGA-powered method
for Voronoi diagrams only has been proposed by Romero et al. [14]. This paper
does not go as far as presenting a full algorithm for diagram construction, but
presents a general method for computing interfaces of several kinds of additional
diagrams on R2.

3 CGA and its pencils

C2GA (Conformal two-dimensional Geometric Algebra) objects can be under-
stood as pencil of circles (or hyperspheres for CGA of dimension n, but this
paper is about 2D CGA), i.e. vector spaces of circles. When drawing a pencil,
only their intersection appears. For instance a pair of points can be understood
as the set of all circles passing through it. This representation has been developed
in previous work, such as [4] or [16].

Definition 3. Consider n ∈ [0, 4]. The dual blades P of grade 4 − n are
called n-pencils, and represents the pencils generated by n linearly indepen-
dent circles C1, . . . , Cn. The pencils can be computed as the meet product
of their circles:

P = C1 ∨ · · · ∨ Cn (7)

Studying the squared radius of the circles of a 2-pencil P containing at least
one non-flat circle (ie at least one circle of finite radius) shows that it is possible
to find exactly one circle of infinite radius Flat(P ) = P ∧ e∞ and exactly one
circle of minimal squared radius Small(P ) = P ∧ Flat(P )∗, with Flat(P )∗ the
dual of Flat(P ) as introduced in Sec. 1.1. Moreover, if Small(P ) is an imaginary
circle (a circle of the form C = (p+ r2

2 e∞)∗, i.e. a circle of imaginary radius ir),
two circles of null radius p∗1 and p∗2 can also be found.

As an imaginary 2-pencil is a space of dimension 2 containing two dual points
p∗1 and p∗1, we can describe its circles under the form λp∗1+µp∗2. Because linearly
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(a)

(b)

Fig. 1: An imaginary pencil of circles P = (p1∧p2)∗ with p1 and p2 two points. P
is represented by some sampled circles in (a) and as a trigonometric circle in (b),
representing the exploration of P with the formula C(t) = p∗1 cos(t) + p∗2 sin(t).
The real or imaginary nature of the radii of C(t) is also indicated, outlining
the structure of the pencil P and the characteristics of its circles. Each object
appears twice as their signs does not matter within this projective framework.



Pencils of CGA for Voronoi and Power Diagrams 5

dependent circles represent the same object, it is possible to only consider the
unit circle cos(t)p∗1 + sin(t)p∗2.

Definition 4. The Flat and Small operator on round pencils are defined
by [4] as follows:

Flat(P ) = P ∧ e∞ (8)
Small(P ) = P ∧ Flat(P )∗ (9)

With P a round pencil. A normalized version of these operators can also be
defined:

F̂lat(P ) =
Flat(P )√
Flat(P )2

(10)

Ŝmall(P ) =
Small(P )

Flat(P )2
(11)

Theorem 1. Consider an imaginary 2-pencil P . P contains exactly two
circles of radius 0, p∗1 and p∗2, and the following relationships are verified:

Flat(P ) = −(p̂1 − p̂2)
∗ =

√
−2 (p̂1 · p̂2) F̂lat(P ) (12)

Small(P ) = − (p̂1 · p̂2)
(
p̂1 + p̂2

)∗
= −2 (p̂1 · p̂2) Ŝmall(P ) (13)

With p̂ =
p

−p · e∞
the normalization of points used in this paper.

Proof. P is imaginary, hence it is a point pair of finite imaginary radius.
The dual of P is then a point pair of finite real radius, hence two points p1
and p2 can be found in P ∗. Now that P can be written as (p1 ∧ p2)

∗, the
relationships (12) and (13) are proven by simply computing:

P = (p̂1 ∧ p̂2)
∗ (14)

=
1

2

(
(p̂1 − p̂2) ∧ (p̂1 + p̂2)

)∗ (15)

Flat(P ) = P ∧ e∞ = (P ∗ · e∞)∗ = (−p̂1 + p̂2)
∗ (16)

Small(P ) = P ∧ Flat(P )∗ (17)

=
(1
2

(
(p̂1 − p̂2) ∧ (p̂1 + p̂2)

)
· (−p̂1 + p̂2)

)∗
(18)

=
1

2

(
(p̂1 − p̂2) · (p̂1 − p̂2)

)
(p̂1 + p̂2)

∗ (19)

= −(p̂1 · p̂2)(p̂1 + p̂2)
∗ (20)

Flat(P )2 = −2 (p̂1 · p̂2) (21)

□

Th. 1 shows that it is entirely possible to work with dual points to produce easily
various interesting circles of an imaginary 2-pencil. Such a case is illustrated by
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Fig. 1. However, this is not true for every 2-pencil. For instance, it is not possible
to find the line of a pencil with the formula (12) for a real pencil. Hence the use
of the Flat and Small operators to produce representative elements of a pencil
is in general more appropriate than trying to find points when working with a
non-flat pencil.

4 CGA diagrams

This section presents how to compute the interfaces of Voronoi, power, multi-
plicatively weighted Voronoi and multiplicatively weighted power diagrams using
pencils of circles.

4.1 Voronoi Diagram

Voronoi diagrams are built with the standard Euclidean distance, and the cen-
troids are points.

Lemma 1. Consider a centroid pc and a point p.

DistV oronoi(pc,p) =
√

−2 p̂c · p̂ (22)

Proof.

p̂c · p̂ = − (x− xc)
2 + (y − yc)

2

2
(23)

=− 1

2
Dist(pc,p)

2 = −1

2
DistV oronoi(pc,p)

2 (24)

□

Theorem 2. Consider two points p1 and p2, that will be used as centroids
of two adjacent cells of a Voronoi diagram. The interface of the cells of
these centroids is a line l.

l = Interface(p1,p2) = Flat((p1 ∧ p2)
∗) (25)

Proof. The resulting line is perpendicular to p1 ∧ p2 and passes through
the center of that point pair. □

4.2 Power Diagram

A power diagram is simply a Voronoi diagram whose centroids can be circles.
At this point, it is possible for two circles to intersect each other, which results
in a real pencil (case mentioned in Sec. 3).

The distance function is naturally handled by CGA:
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Lemma 2. Consider a point p and a circle C of center pc and radius r.

DistPower(pc, r,p) = −2Ĉ∗ · p̂ (26)

Proof.

C∗ · p = (pc −
r2

2
e∞) · p = −1

2
Dist(pc,p)

2 +
r2

2
(27)

□

Theorem 3. The interface of the two adjacent power diagram cells whose
respective centroids are some circles C1 and C2 is a line l of the form:

l = Interface(C1, C2) = Flat(C1 ∨ C2) (28)

Proof. Consider C1 and C2 to be two circles of respective center p1 and p2
and radii r1 and r2. This proof relies on the fact that we can chose p1 and
p2 to be e0 − xe1 +

x2

2 e∞ and e0 + xe1 +
x2

2 e∞, as any other configuration
can be derived from these position with rigid transformations, which won’t
affect distances. We can compute the line l as the straight object of the
2-pencil generated by C1 and C2:

l = (C1 ∨ C2) ∧ e∞ ≡ e1 +
r21 − r22

4x
e∞ (29)

Let’s look at a point p on l. Its coordinates are (
r21−r22
4x , y) with y ∈ R.

One can observe that

DistPower(p1, r1,p) = DistPower(p2, r2,p) (30)

Hence points on l are equidistant from p1 and p2 for DistPower. Therefore l
is the interface of the cells of the power diagram of centroids C1 and C2. □

4.3 Multiplicatively weighted Voronoi diagram

The centroids are points paired with a scalar which contributes multiplicatively
to the distance function.

Lemma 3. Consider a centroid pc associated with a weight w ∈ R+. Con-
sider a point p.

DistV orWgt×(pc, w,p) =

√
−2 p̂c · p̂

w
(31)

Proof.
Dist(pc,p)

w
=

√
−2 p̂c · p̂

w
(32)

□
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Theorem 4. Consider a multiplicatively weighted Voronoi diagram with
p1 and p2 two of its centroids of respective weights w1 and w2 in R+. The
interface of the cells of p1 and p2 is a circle C of the form:

C = Interface ((p1, w1), (p2, w2)) = (w2
2p̂1 − w2

1p̂2)
∗ (33)

Proof. Consider a multiplicatively weighted Voronoi diagram with p1 and
p2 two of its centroids of respective weights w1 and w2 in R+. The interface
C of the cells of p1 and p2 is the set of the points p satisfying

DistV orWgt×(p1, w1,p) = DistV orWgt×(p2, w2,p) (34)

Which can be directly rewritten

Dist(p1,p)w2 −Dist(p2,p)w1 = 0 (35)

This implies the sum of two square roots, which is quite unpleasant to
manipulate. The keen eye of the reader might have noticed that a similar
equation Dist(p1,p)w2+Dist(p2,p)w1 = 0 is only true for some points that
are already a solution of Eq. 35. Multiplying both equations then produces
a new one that describes the same set of points as Eq. 35.(

Dist(p1,p)w2 +Dist(p2,p)w1

)(
Dist(p1,p)w2 −Dist(p2,p)w1

)
= 0
(36)

⇐⇒ Dist(p1,p)
2w2

2 −Dist(p2,p)
2w2

1 = 0 (37)

⇐⇒ w2
2p̂1 · p− w2

1p̂2 · p = 0 (38)

⇐⇒
(
w2

2p̂1 − w2
1p̂2

)
· p = 0 (39)

⇐⇒
(
w2

2p̂1 − w2
1p̂2

)∗ ∧ p = 0 (40)

Hence the Eq. 33. □

Theorem 5. Consider a multiplicatively weighted Voronoi diagram with
p1 and p2 two of its centroids of respective weights w1 and w2 in R+. The
interface C of the cells of p1 and p2 is of the form:

C = (p̂1 · p̂2) Flat(P)−
w2

1 − w2
2

w2
1 + w2

2

Small(P) with P = (p̂1 ∧ p̂2)
∗ (41)

≡ 1

2
Flat(P) +

w2
1 − w2

2

w2
1 + w2

2

Ŝmall(P) (42)
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Proof.

P = (p̂1 ∧ p̂2)
∗ (43)

Flat(P) = P ∧ e∞ (44)
= −(p̂1 − p̂2)

∗ (45)
Small(P) = P ∧ Flat(P)∗ (46)

= −(p̂1 · p̂2)(p̂1 + p̂2)
∗ (47)

w2
2p̂1 − w2

1p̂2 =
1

2

(
(w2

1 + w2
2)(p̂1 − p̂2)− (w2

1 − w2
2)(p̂1 + p̂2)

)
(48)

= −
1

2

((
w2

1 + w2
2

)
Flat(P)− w2

1 − w2
2

p̂1 · p̂2
Small(P)

)
(49)

≡ (41) (50)

□

4.4 Multiplicatively weighted Power diagram

Sec. 4.2 shows that using circles instead of points as centroids can be used to
compute the power diagram interface of two cells. On the other hand Sec. 4.3
shows that it is possible to pitch a Voronoi diagram interface with multiplicative
weights to displace it within the pencil and make it rounder. One could then
be tempted to combine both approaches: using both circles and weights to both
increase the area of a cell and curve the interfaces. This kind of diagram, called
multiplicatively weighted power diagram, can be found in some papers dealing
with power and weighted Voronoi diagrams [6].

Definition 5. Consider a non-flat circle C with a weight w ∈ R+ and a
point p. In the scope of this paper, the distance function for the weighted
power diagram between C and p is the following:

DistPowWgt×(pc, r, w, p) = −2
Ĉ∗ · p̂
w2

(51)

With Ĉ =
C

−C∗ · e∞
the normalization of non-flat circles used in this paper.
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Theorem 6. Consider a multiplicatively weighted power diagram with C1

and C2 two of its centroids of respective weights w1 and w2 in R+. The
interface Ci of the cells of C1 and C2 is a circle of the form:

Ci = Interface ((C1, w1), (C2, w2)) (52)

= w2
2Ĉ1 − w2

1Ĉ2 (53)

=
(
Ĉ1 · Ĉ2

)
Flat(P )− w2

1 − w2
2

w2
1 + w2

2

Small(P ) with P = Ĉ1 ∨ Ĉ2 (54)

≡ 1

2
Flat(P ) +

w2
1 − w2

2

w2
1 + w2

2

Ŝmall(P ) (55)

Proof. Let C1 and C2 be two circles of respective centers pc,1 and pc,2 and
respective radii r1, r2. Consider a point p and the pencil P = Ĉ1 ∨ Ĉ2.

DistPowWgt×(pc,1, r1, w1,p) = DistPowWgt×(pc,2, r2, w2,p) (56)

⇐⇒ − 2
Ĉ1

∗
· p

w2
1

= −2
Ĉ2

∗
· p

w2
2

(57)

⇐⇒
(
w2

2Ĉ1

∗
− w2

1Ĉ2

∗)
· p = 0 (58)

And w2
2Ĉ1 − w2

1Ĉ2 =
(
Ĉ1 · Ĉ2

)
Flat(P )− w2

1 − w2
2

w2
1 + w2

2

Small(P ) (59)

□

5 Conclusion

This paper presents an elegant way to compute the distances functions and inter-
face of two cells of Voronoi diagrams, power diagrams, multiplicatively weighted
Voronoi diagrams and multiplicatively weighted power diagrams. These inter-
faces are shown to be lines in the case of Voronoi and power diagrams, and
circles or lines in the case of the multiplicatively weighted diagrams. The pen-
cils of CGA were shown to be an elegant manner of computing the interfaces
of theses diagrams, by exploiting the fact that the pencil generated by the cen-
troids of two cells contains their interface. The interface relative to two centroids
can be located within their pencil from a convenient basis made from the line
of the pencil and its circle of smallest squared radius. It is then possible to
consider the interface as a small displacement from the straight line toward
the smallest circle within the space of the pencil. This method has been im-
plemented in C++ with Garamon [2] (see https://github.com/technolapin/
voronoi-engage24). Fig. 1 shows the (split) interfaces generated by that code.
In practice, it is convenient to be able to split the interfaces of two cells into
the relevant arc for the diagram. Hence further work is needed to adapt existing
algorithms - such as the one proposed by Romero et al. [14] - to construct the
actual mesh of the various diagrams. Also, more complex algebras could be used

https://github.com/technolapin/voronoi-engage24
https://github.com/technolapin/voronoi-engage24
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(a) Voronoi (b) Power

(c) Multiplicatively weighted Voronoi (d) Multiplicatively weighted power

Fig. 2: Comparison of the various kind of diagrams produced by our code. The
interfaces have been split into their relevant arc by hand for clarity.

to permit more interfaces shapes, such as GAC/QC2GA [11,5] for additively
weighted Voronoi diagrams.
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