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Technical Note

1. INTRODUCTION

1.1. Introduction of the VEP

Epilepsy is a common neurological disorder characterized 
by recurrent seizures ( Fisher  et al.,  2014;  Noebels  et al., 

 2012). Epileptic seizures very often involve networks of 
connected brain regions ( Bartolomei  et al.,  2017;  Besson 
 et al.,  2017) and present complex spatiotemporal brain 
dynamics ( da  Silva  et  al.,  2003;  Kalitzin  et  al.,  2019; 
 Saggio  et al.,  2020). For patients with pharmaco- resistant 
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resistant epilepsy. We built the personalized digital brain twins of 14 patients and a series of synthetic dataset by 
considering different spatial configurations of the epileptogenic and/or propagation zone networks (EZN and PZN, respec-
tively). Brain source signals were simulated with a high spatial resolution neural field model (NFM) composed of 81942 
nodes, embedding both long- range (between brain regions) and short- range (within brain regions) coupling. Brain signals 
were then projected to stereotactic electroencephalographic (SEEG) contacts with an accurate forward solution. An inver-
sion procedure based on a low spatial resolution neural mass model (NMM) composed of 162 nodes was applied to 
estimate the excitability of each region in each simulation. The ensuing estimated EZN/PZN was compared to the simu-
lated ground truth by means of classification metrics. Overall, we observed correct but degraded performance when using 
an NMM to estimate the EZN from data simulated with an NFM, which was significant for the simplest spatial configura-
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mation of the excitability, representing a significant clinical impact when using this procedure in the context of presurgical 
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focal epilepsy, resective surgery is one invasive solution 
to become seizure free. The goal of this strategy is to 
remove a sufficient and minimal set of epileptognic 
regions which are responsible for seizure initiation ( Jehi, 
 2018;  Lüders  et  al.,  2006;  Rosenow  &  Lüders,  2001). 
Stereotactic electroencephalographic (SEEG) is one of 
the tools used during presurgical planning in order to 
identify those early recruited regions ( Bartolomei  et al., 
 2018;  Bernabei  et  al.,  2023;  Cardinale  et  al.,  2019; 
 Mercier  et al.,  2022). This procedure consists in implant-
ing a series of electrodes in the brain of one patient. The 
location of these electrodes is chosen to test and vali-
date a clinical hypothesis derived from other diagnostic 
techniques (imaging, EEG, clinical tests). Brain activity is 
recorded continuously at the milliseconds time scale 
along the contacts of the depth electrodes separated 
from a few millimeters. These very high spatiotemporal 
resolved signals may record different kinds of typical 
epileptic activity (interictal epileptiform discharges, 
spontaneous or induced seizures), which are then used 
to infer the location of the targeted regions for the surgery 
( Lagarde  et al.,  2019). To better estimate the localization 
of the seizure onset zone based on SEEG recordings, 
many data- driven approaches based on the analysis of 
functional connectivity have been developed to identify 
and characterize the dynamics of interictal and ictal brain 
activity, as well as transitions between them ( Wendling 
 et  al.,  2010), such as the epileptogenicity index 
( Bartolomei  et al.,  2008). To complement and extend this 
approach, a series of computational models have been 
developed in order to capture specific dynamic features 
( Wendling  et al.,  2016). These models, either biophysical 
or more phenomenological, usually reduce these complex 
and non- linear dynamics to a set of coupled differential 
equations which are solved numerically to form solutions. 
Importantly, they represent an efficient tool to integrate 
multimodal data (structural, functional, pathophysiologi-
cal) of one patient to obtain a personalized model ( V. 
 Jirsa  et al.,  2023). Moreover, when considering empirical 
data of one specific patient, the parameters of these 
models can be estimated based on inference tech-
niques, such that the predictions of the model best fit the 
observations of the patient.

In this context, the Virtual Epileptic Patient (VEP) has 
been introduced as a personalized generative whole 
brain model of epilepsy spread ( V.  K.  Jirsa  et al.,  2017; 
 Wang  et  al.,  2023). The VEP integrates the individual 
structural data of the patient (brain geometry, structural 
connectivity, location of SEEG electrodes) with a phe-
nomenological model of epileptic activity ( V.  K.  Jirsa 
 et  al.,  2014). In particular, it implements a straightfor-
ward and efficient way of parameterizing the virtual 
 epileptogenic network ( Bartolomei  et  al.,  2017) of the 

patient in terms of an epileptogenic zone network (EZN), 
a propagation zone network (PZN), and non- involved 
zones (NIZ). The distinction between these three net-
works follows the actual concept of a hierarchical orga-
nization taking place during a focal seizure within the 
brain of a patient with epilepsy. The EZN gathers brain 
regions with high epileptogenicity which are able to trig-
ger seizures. After the initiation of a seizure, abnormal 
ictal activity may propagate to regions with lower epi-
leptogenicity, the PZN. Finally, brain regions which do 
not show any significant change of their activity during a 
seizure are considered as NIZ. One major application of 
the VEP is the estimation of the EZN based on empirical 
SEEG recordings of spontaneous or stimulation- induced 
seizures (model inversion). Once the EZN has been 
accurately identified, the VEP can also reliably predict 
the spatiotemporal pattern of propagation ( Proix  et al., 
 2017;  Wang  et  al.,  2023). Notably, this specific VEP 
approach falls within a broader context of computa-
tional modeling methods ( Bernabei  et al.,  2023;  Lytton, 
 2008) that have been developed to estimate EZN and 
predict effect of therapy ( Goodfellow  et al.,  2016;  Kini 
 et al.,  2019;  Olmi  et al.,  2019;  Sinha  et al.,  2017). Given 
that currently, surgery does not systematically cure the 
patients ( Cardinale  et  al.,  2019), these studies show 
how modeling can bring significant contribution in plan-
ning therapeutic strategies tailored to the specificity of 
each patient and that collective efforts are still needed 
for a better clinical translation of these computational 
techniques ( Litt,  2022).

1.2. Distinction between NMM and NFM

In this study, we focus the attention on two essential attri-
butes of a VEP: the spatial model and the neuronal model.

The spatial model is either a Neural Mass Model 
(NMM) or a Neural Field Model (NFM) ( Deco  et al.,  2008). 
In brief, the key difference between NMM and NFM is 
their spatial resolution. On the one hand, NMM is a brain 
model specified as a finite number of regions corre-
sponding to macroscopic parts of the brain (a few cm2 or 
cm3) and usually defined by a specific parcellation. In this 
study, we considered the VEP atlas ( Wang  et al.,  2021) 
comprising 162 regions (73 cortical and 8 subcortical 
regions per hemisphere). These regions are represented 
as point sources interacting with each other through 
long- range connections (order of cm). On the other hand, 
NFM overcomes the spatial limitation of NMM by consid-
ering the brain as a spatially continuous network ( V.  K. 
 Jirsa,  2009). This has at least two significant implications 
for NFM. First, in addition to a long- range (cm) coupling 
between distant macroscopic brain regions, that is, global 
connectivity, a short- range (mm) coupling, that is, local 
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connectivity, can be modeled. This property is crucial for 
modeling seizure spread along cortical or subcortical sur-
faces ( Liou  et  al.,  2020;  Martinet  et  al.,  2017;  Schlafly 
 et al.,  2022). And second, the projection of the simulated 
brain activity to the SEEG signals recorded at the elec-
trode level, that is, the forward solution, can be modeled 
with better accuracy. Indeed, it allows to model brain 
sources as electrical dipoles and to consider their relative 
position and orientation with respect to the SEEG con-
tacts, which is essential when computing electromag-
netic propagation of electrical activity. In practical 
implementations, NFM is typically discretized on brain 
surfaces rather than being discretized point- wise, as is 
done in the NMM approach. In this study, we use 81924 
vertices for the cortical surface. Necessarily, such very 
high spatial resolution of NFM, compared to the 162 
nodes of NMM, comes with a significant additional com-
putational cost.

In the present context, the neuronal model used at 
each node of the network is either the full Epileptor with 
5 state variables (5D) in its original implementation ( V.  K. 
 Jirsa  et al.,  2014) or its two- dimensional (2D) reduction 
( Proix  et al.,  2014).

1.3. Development of the VEP

Since the introduction of the VEP ( Proix  et al.,  2017;  V.  K. 
 Jirsa  et  al.,  2017), many studies have developed, 
improved, and validated the approach. From a method-
ological point of view, the VEP has been specified as a 
fully Bayesian probabilistic generative model ( Hashemi 
 et al.,  2020), in which the importance of informative a pri-
ori knowledge has been highlighted ( Hashemi  et  al., 
 2021). VEP has been validated with synthetic data and 
applied to empirical SEEG recordings for the estimation 
of the EZN with different inference techniques: maximum 
a posteriori ( Vattikonda  et al.,  2021), Hamiltonian Monte 
Carlo ( Jha  et al.,  2022), and simulation- based inference 
( Hashemi  et  al.,  2023). From a clinical perspective, the 
performance of the VEP has been recently assessed ret-
rospectively in a cohort of 53 patients by comparing the 
predictions of the VEP with the predictions of clinical 
experts, with respect to the surgical outcome of the 
patients ( Makhalova  et al.,  2022;  Wang  et al.,  2023). One 
essential conclusion was that the concordance of the 
predictions was better for seizure- free compared to non- 
seizure- free patients. In addition, it is worth mentioning 
that the VEP methodology we are considering in the 
present study to identify EZN is currently at the heart of 
an ongoing large prospective multi- centric clinical trial 
(EPINOV, NCT03643016;  V.  Jirsa  et al.,  2023), with more 
than 300 patients, in order to evaluate its abilities to help 
plan surgery strategies.

1.4. Objective of the study

All the previously mentioned studies have used NMM to 
estimate the EZN from empirical observations. Indeed, 
considering the high spatial resolution of NFM, using 
NFM for model inversion is still a very difficult task 
( Vattikonda  et al.,  2023). For validation, that is, comparing 
the parameters estimated from synthetic data to the 
parameters used to simulate the same synthetic data 
(ground truth), all these studies have simulated synthetic 
observations with NMM. In other words, these studies 
have used only NMM for both simulation and estimation.

As emphasized previously, the repertoire of spatio-
temporal dynamics generated with NFM is significantly 
more extended than that of NMM. Indeed, some specific 
patterns observed in empirical data, such as traveling 
waves, cannot be explained with NMM.

To push further the validation process of NMM for the 
estimation of the EZN, and demonstrate the relevance of its 
usage in a clinical context, it is therefore necessary to sim-
ulate synthetic observations with high spatial resolution 
NFM. This procedure has already been proposed in  Wang 
 et al.  (2023) and the authors demonstrated its proof of con-
cept for one dataset. In the present study, we carried out an 
extensive and systematic evaluation of this approach in 
order to address two fundamental questions: what is the 
performance of the neural mass- based VEP pipeline when 
the ground truth simulated with NFM is known? And under 
which conditions would it succeed or fail?

1.5. Scheme of the study

In this study, we evaluated the performances of VEP with 
14 patients with epilepsy. For each patient, we created a 
series of spatial configurations (ground truth), each defined 
with different EZN and PZN. We also varied the regions 
involved in these networks in terms of their size and their 
number. To disentangle the effects of using a simplified 
forward solution from the effects of absence of local cou-
pling, two modeling features that an NMM inversion is 
intrinsically lacking, we simulated data in different condi-
tions: with an NMM (control condition), with an NFM with 
local coupling equal to 0 (to evaluate the effects of forward 
model only), and with an NFM with local coupling equal to 
2 and 4 (to evaluate the effects of local coupling only). 
Then, for each simulation, the EZN was systematically 
estimated with an NMM equipped with the reduced 2D 
Epileptor. Predictions were evaluated at the individual and 
group level in terms of goodness of fit and classification 
metrics. Finally, we separately demonstrated the effects of 
the two key limitations of the NMM- based estimation, 
namely the simplified forward solution and the absence of 
local propagation, with two specific examples.
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2. MATERIALS AND METHODS

2.1. Selection of patients and data acquisition

We selected fourteen patients suffering from drug- resistant 
focal epilepsy who underwent a standard presurgical pro-
tocol at La Timone Hospital in Marseille. Informed written 
consent was obtained for all patients, and the study was 
approved by the local ethics committee (Comité de Pro-
tection des Personnes sud Méditerranée 1).

The evaluation included non- invasive T1- weighted 
(T1W) MRI (magnetization prepared rapid acquisition gra-
dient echo sequence, either with repetition time = 1.9 s, 
echo time = 2.21 ms (1 patient, id010 in Supplementary 
Table 1) or repetition time = 2.3 s, echo time = 2.98 ms (13 
patients), voxel size 1.0 ×  1.0 ×  1.0  mm) and diffusion- 
weighted (DW) MRI (diffusion tensor imaging- MR 
sequence, either with angular gradient set of 64 directions, 
repetition time  =  10.7  s, echo time  =  95  ms, voxel size 
1.95  ×  1.95  ×  2.0  mm, b- weighting of 1000  s/mm2 (2 
patients, id010 and id022 in Supplementary Table 1), or 
with angular gradient set of 200 directions, repetition 
time = 3 s, echo time = 88 ms, voxel size 2.0 × 2.0 × 2.0 mm, 
b- weighting of 1800  s/mm2 (12 patients)). Images were 
acquired using a Siemens Magnetom Verio 3T scanner.

SEEG electrodes (10– 18 contacts 2  mm long and 
separated by 1.5  mm for all patients) were implanted 
individually for each patient as part of the clinical routine 
and according to the hypotheses about the EZN. A post- 
implantation computed tomography (CT) scan was per-
formed to obtain the location of the implanted electrodes.

These patients were selected so as a majority of 
regions from each of the four cortical lobes of the brain 
(frontal, parietal, occipital, and temporal) could be repre-
sented. We considered that it was unnecessary to include 
more patients, especially if the clinical hypothesis about 
the localization of their EZN (and the related implantation) 
was similar to the ones already present in the study.

2.2. General workflow

This section summarizes the pipeline used in the present 
study (Fig. 1). Specific details regarding the modeling, the 
creation of the synthetic dataset, and the estimation of 
the EZN with NMM and its evaluation are provided in 
subsequent sections.

First, a common procedure was applied to build an 
individualized VEP for each patient (Fig. 1A). A brain seg-
mentation was computed from the T1W MRI with the Free-
surfer software package (http://surfer . nmr . mgh . harvard 
. edu) and parcellated with respect to the VEP atlas ( Wang 
 et al.,  2021). We used the ico6 spatial resolution, providing 
a cortical surface composed of 81924 vertices (~1.5 mm 

between the vertices). The structural connectome was 
derived from the DW MRI with the MRtrix software pack-
age (https://www . mrtrix . org) and the structural connec-
tivity matrix (SC), corresponding to long- range (or global) 
coupling, was computed by counting the streamlines 
connecting the parcels of the VEP atlas ( Vattikonda  et al., 
 2021;  Wang  et al.,  2023). The location of each contact of 
the SEEG electrodes was obtained from the CT scan 
using GARDEL ( Medina  Villalon  et al.,  2018) and coregis-
tered to the MRI space. Together with the brain surfaces 
and the SC, these elements constitute the anatomical 
structure of an individualized VEP and constrain the spa-
tiotemporal dynamics of the neuronal activity generated 
within the brain of the patient and measured with the 
SEEG electrodes. Second, we built a series of {EZN, PZN} 
spatial configurations based on individual clinical hypoth-
eses. Clinical hypotheses (Supplementary Table 1) contain 
the list of regions suspected to be part of EZN or PZN. 
They were provided by the clinicians of La Timone Hospi-
tal in Marseille based on the presurgical evaluation of 
each patient, including the computation of an epileptoge-
nicity index for each brain region ( Bartolomei  et al.,  2008).

Then, we simulated each configuration in 4 different 
conditions (Fig. 1B): with an NMM and with an NFM for 
increasing strengths of the local coupling (lc): 0, 2, and 4. 
The 4 conditions were simulated using the full 5D Epilep-
tor and labeled respectively lc_none, lc_0, lc_2, and lc_4. 
Increasing the strength of local coupling increases the 
speed of propagation of brain activity ( Proix  et al.,  2018). 
It makes regions seize earlier (Fig. 3B, C and D, first col-
umn: the onset time of contact GC6- 7 in simulated data), 
but may also change the number of recruited regions. 
This range of local coupling strengths also needs to 
maintain a balance with the other parameters, such as 
structural connectivity or global coupling ( Spiegler  & 
 Jirsa,  2013). Indeed, for higher values of local coupling 
strength, the propagation of activity gets dominated by 
local coupling (fast propagation) and regions in PZN seize 
immediately after regions in EZN: it becomes almost 
impossible to distinguish EZN from PZN. Finally, simu-
lated brain signals were multiplied by a gain matrix to 
form the measurements at the SEEG contacts, that is, the 
forward solution. Then, for each synthetic SEEG dataset 
(the observations), we used a probabilistic inversion 
scheme based on an NMM equipped with the reduced 
2D Epileptor (Fig. 1C). This automatic procedure consists 
in finding the most plausible values (maximum a posteri-
ori, Section 2.5.2) for each of the free parameters of the 
NMM of the patient such that the predictions of the model 
best fit the observations.

The quality of the estimation was evaluated by two ways 
(Fig. 1D). We computed a goodness of fit to evaluate how 

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
https://www.mrtrix.org
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well the SEEG signals predicted by the statistical model 
fitted the observations. Based on the estimated parame-
ters of the model, we also derived an estimation of the 
{EZN, PZN} that we compared to the ground truth {EZN, 
PZN} used to simulate the data by means of classification 
metrics (precision, recall, F1 score).

2.3. Modeling brain activity

2.3.1. Neural field model

In this section, we describe the NFM brain network model 
used to simulate synthetic data for the conditions lc_0, 
lc_2 and lc_4.

Fig. 1. General workflow of the study. (A) Structural neuroimaging data of the patient are used to build a personalized 
brain network model: the Virtual Epileptic Patient (VEP). In particular, the T1- MRI, the DW- MRI, and the CT scan specify 
the brain space, the long- range connectome, and the position of the SEEG contacts respectively, which are essential 
attributes of a personalized VEP. (B) Using a specific spatial configuration of the Epileptogenic and Propagation Zone 
Networks (EZN and PZN respectively) and a high spatial resolution Neural Field Model (NFM) composed of 81924 cortical 
and subcortical nodes, synthetic data are simulated at the brain level for all the nodes (top panel: EZN and PZN nodes are 
shown on the first and second row respectively) and at the SEEG level (bottom panel). (C) Data features are extracted from 
the SEEG time series, and a low spatial resolution Neural Mass Model (NMM) composed of 162 nodes is used to predict 
the epileptogenicity (or excitability) of each node. (D) The estimation of the EZN and PZN is evaluated by comparing the 
ground truth excitabilities used to simulate the data, with the predicted ones (NIZ: Non- Involved Zones).
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with I1 = 3.1, I2 = 0.8, γ11 = 0.17, γ 22 = 0.32, γ12 = 0.03, 
θ11 = −1, θGC = −1, θ22 = −0.5, θ12 = −1, τ0 = 2857/2, τ2 = 10,  
τ12 = 100, a12 = 3. Here, all parameters and variables have 
arbitrary units. Briefly, this phenomenological model cou-
ples together three populations, ui, vi and qi, evolving at 
different time scales. With a slow time scale, the popula-
tion vi, usually referred as the slow permittivity variable, 
controls when the system enters and leaves the ictal 
state, which crucially depends on the fixed excitability 
u0 xi( ) of nodei , that is, its aptitude to autonomously gen-
erate seizure without any input from other nodes of the 
network. The popations with fast and intermediate time 
scales, ui and qi, account respectively for the presence of 
(low- voltage) fast oscillations and spike- wave discharges 

2.3.1.1. Simulating brain activity. We used a mixed 
approach to represent the brain space, namely an NFM 
for the cortical structures and an NMM for the subcortical 
structures.

One reason to justify the importance of using NFM 
when modeling SEEG signals is the possibility to com-
pute an accurate forward solution when the orientation of 
each source (with respect to the SEEG electrodes) is well 
defined. This is indeed the case in cortical structures 
where neuronal populations are oriented perpendicular to 
the surface and each node (vertex) can express its own 
orientation. However, there is so far no consensus in the 
literature about such a systematic orientation property in 
the subcortical structures, and therefore, no proper way 

to implement an accurate forward solution. Because of 
this limitation, subcortical structures were modeled with 
NMM and their associated forward solution (Sec-
tion 2.3.2). Nevertheless, the fact that in this study, we 
restricted the location of EZN and PZN to cortical struc-
tures mitigates the effects of this simplification.

In this context, the brain space was defined with a 
high spatial resolution for the cortical surface (81924 
nodes) and a low spatial resolution for the subcortical 
structures (18 nodes).

The full five- dimensional Epileptor neuronal model 
was assigned to each node and activity of nodei  located 
at xi, with 1≤ i ≤ 81924 +18, was given by the following 
equations ( Proix  et al.,  2018):

 

!u1,i = u2,1− f1(u1,i,q1,i ) − νi + I1+ LCscalingγ11w1 * S(u1,i, θ11)

+GCscaling Ci, jS( "u1, j, θGC )
j=1

162

∑
!u2,i = 1− 5u1,i

2 − u2,i

!vi =
1
τ0

(4(u1,i − u0(xi )) − vi )

!q1,i = −q2,i + q1,i − q1,i
3 + I2 + 0.002g(u1,i )

− 0.3(vi − 3.5) + LCscalingγ 22w2 * S(q1,i,θ22 )

!q2,i =
1
τ2

(−q2,i + f2(q1,i ))

with

g(u1,i ) = e−(t−s)/τ12
t0

t

∫ (a12u1,i + LCscalingγ12w12 * S(u1,i,θ12 ))ds

f1(u1,i,q1,i ) =
u1,i
3 − 3u1,i

2 ifu1,i < 0

(q1,i − 0.6(vi − 4)2 )u1,i ifu1,i ≥ 0

⎧
⎨
⎪

⎩⎪

f2(q1,i ) =
0 if q1,i < −0.25

6(q1,i + 0.25) ifq1,i ≥ −0.25

⎧
⎨
⎪

⎩⎪

during the ictal state. Default values of the parameters 
have been chosen to best mimic characteristic features of 
spontaneous seizures recorded in patients with epilepsy 
(and particularly the presence of fast oscillations and 
spike- wave discharges;  V.  K.  Jirsa  et al.,  2014), as well as 
the transitions between interictal and ictal activity (direct 
current shift at seizure onset, slowing down of activity at 
seizure offset). The observable activity of one Epileptor 
nodei is the quantity q1,i − u1,i which represents the cooc-
curence of spike- wave discharges with fast oscillations.

LCscaling and GCscaling are the coefficients used to 
scale local and global coupling at the whole network 
level, respectively. The local coupling terms w * S u,θ( ) 
correspond to the spatial convolution at position xi of a 
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Laplacian kernel w (cutoff: 10 mm) with the local firing 
rate implemented with the Heaviside step function: 
S u,θ( ) = 0 if u < θ and 1 otherwise. Ci, j is the connection 
strength between the region nodei is belonging to and 
region j and u!1, j  is the averaged activity of region j across 
all nodes belonging to the region. For more details regard-
ing the general mechanic of the neuronal model, the 
technical implementation of the coupled oscillators ui 
and qi, the value taken by each parameter, or the use of 
the model in the context of NFM, we refer the interested 
reader to  V.  K.  Jirsa  et al.  (2014) and  Proix  et al.  (2018).

For subcortical nodes modeled as point sources NMM, 
the equations read the same except that the local con-
nectivity is not considered (γ11 = γ 22 = γ12 = 0).

Whole- brain dynamics was integrated with a fourth- 
order Runge- Kutta deterministic integration scheme (step 
size: 0.1) for 20000 samples. In this study, we chose the 
millisecond as the unit of time and each simulation was 
therefore 2000 ms long. Initial conditions were set so that 
the simulated network could start in the interictal state 
and far away from seizure onset.

2.3.1.1.1. Dynamics of the Epileptor model. Linear stabil-
ity analysis of the Epileptor (a complete bifurcation anal-
ysis is proposed in  El  Houssaini  et al.,  2020) has shown 
that depending on its excitability u0, the system could 
exhibit different stability regimes, as described in previ-
ous studies ( Proix  et al.,  2014;  V.  K.  Jirsa  et al.,  2017) and 
used in previous simulation and inference investigations 
( Hashemi  et al.,  2020,  2021;  Jha  et al.,  2022;  Vattikonda 
 et  al.,  2021). For an excitability u0 lower than a critical 
value - 2.05, and without any external input from other 
nodes of the network (no coupling), an isolated Epileptor 
has a single stable fixed point and does not seize auton-
omously. When the excitability equals the critical value, a 
saddle- node bifurcation occurs and an unstable fixed 
point appears. Then, seizures happen spontaneously and 
the node is part of the Epileptogenic Zone Network (EZN). 
When excitability is lower but still sufficiently close to the 
critical value, a relatively small external input from the 
network may destabilize the system and trigger a seizure 
in the recruited node: the node is part of the Propagation 
Zone Network (PZN). Otherwise, if the excitability is lower 
and far enough from the critical value, the external input 
cannot trigger a seizure and the node is in the Non- 
Involved Zone (NIZ).

Importantly, this means that one single threshold to 
distinguish PZN nodes from NIZ nodes across the 
whole network does not exist in general. Instead, this 
threshold depends on the intrinsic properties of the 
node under consideration, the configuration of the net-
work activity, and the coupling parameters (SC, GCscaling 
and LCscaling).

2.3.1.2. Mapping brain activity to SEEG measure-
ments. For cortical nodes, the gain from nodei  to SEEG 
contact k  located respectively at positions xi  (vertex i ) 
and rk was computed by considering the brain as an 
infinite homogeneous volume conductor with the follow-
ing equation ( Sarvas,  1987):

 
gk,i =

ai
4πσ

Q *
rk − xi

| rk − xi |
3

 

where ai is the area of vertex i (one- third of the sum of 
surrounding triangles areas) and counterbalances the (rel-
atively small) spatial inhomogeneities due to the surface 
discretization, σ is the homogeneous electrical conductiv-
ity, Q is the unitary dipolar moment (the unit vector normal 
to the surface at vertex i), and Q * rk − xi( ) is the dot prod-
uct of Q  and the vector rk − xi( ), going from vertex i to 
SEEG contact k. For subcortical nodes, the gain was 
computed using the NMM equation (Section 2.3.2).

SEEG measurements were computed with the follow-
ing equation:

 
SEEGk t( ) =

i=1

81924+18

∑ gk,i q1, i (t) − u1, i (t)( )
 

where q1, i − u1, i  is the instantaneous observable activity of 
Epileptor nodei (Section 2.3.1.1).

2.3.2. Neural mass model

In this section, we describe the NMM brain network 
model used to simulate synthetic data for the condition 
lc_none.

2.3.2.1. Simulating brain activity. The point source net-
work model was composed of 162 nodes (cortical: 146, 
subcortical: 18). The equations read the same as the 
equations of NFM (Section 2.3.1.1) except that 1≤ i ≤ 162, 
no local connectivity is considered (LCscaling = 0) and the 
averaged activity u!1, j  of region j is the activity of its single 
node u1, j : u!1, j = u1, j.

2.3.2.2. Mapping brain activity to SEEG measure-
ments. The gain from nodei to SEEG contact k located 
respectively at positions xi (vertex i ) and rk was com-
puted with the following equation:

gk, i =
1

4πσ
j=1

Ni

∑ aj
| rk − x j |

2

where σ is the homogeneous electrical conductivity, and 
j identifies one of the Ni vertices belonging to region i 
and aj is its area (Section 2.3.1.2).
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Unlike NFM nodes, NMM regions cannot be properly 
represented by electrical dipoles with well- defined fixed 
position and orientation, due to their macroscopic sizes 
(Section 1.2). Instead, NMM systematically assumes ori-
entations which maximize the gain values. Indeed, in the 
previous NFM gain equation (Section  2.3.1.2), if we 
assume that the dipolar moment Q  of nodei  is system-
atically pointing into the direction of SEEG contact k 
(thus completely ignoring the curvature of the cortex and 
the normal to the surface at vertex i ), then gain gk,i  is 
maximal, dot product Q * rk − xi( ) reads rk − xi , and we 
obtain the NMM gain equation.

SEEG measurements were computed with the follow-
ing equation:

 
SEEGk (t) =

i=1

162

∑gk, i q1,i (t) − u1,i (t)( )
 

2.4. Configurations

For each of the 14 patients, we defined a series of {EZN/
PZN} spatial configurations following the same procedure. 
Each configuration defined the set of regions belonging to 
the EZN and to the PZN, based on the clinical hypothesis 
related to their specific EZN (Supplementary Table  1). 
Here, regions refer to the parcels of the VEP anatomical 
atlas ( Wang  et  al.,  2021), as stated in Section  1.2. We 
introduced 3 types of spatial configurations with increas-
ing level of complexity. For the first type, only one region 
was included in the EZN. This resulted in a total of 62 
configurations (corresponding to the 62 anatomical regions 
listed in Supplementary Table 1). In addition, to test the 
sensitivity of the estimation of the EZN with respect to the 
size of the region, we also considered a second series of 
configurations for which the size of each region was 
reduced to half. For this purpose, we computed the bary-
center of each region. Starting from this cortical vertex, 
we used a region growing approach, successively adding 
surrounding vertices until the surface of the growing 
region reached half size of the surface of the full region. 
This procedure was followed by visual inspection. For the 
second type, one configuration was created for each 
patient in which all the regions from the hypothesis were 
included in the EZN (11 configurations, with at least 2 
regions in the EZN, average number of regions in the EZN 
is 5.3 and maximum is 8). For the third type, one configu-
ration was created for each patient for which the EZN 
contained one region and the PZN contained at least one 
region. Regions from the PZN were adjacent to the region 
of the EZN (11 configurations: 8 configurations with one 
region in PZN and 3 configurations with 2 regions in PZN). 
For each configuration, an excitability u0 xi( ) was set at 
each node xi of the network to reflect the epileptogenicity 

of the node, that is, its ability to trigger a seizure. In this 
study, considering the dynamics of the Epileptor model 
(Section 2.3.1.1), we set the following excitability values: 
- 1.6 for the EZN (the node can seize in an autonomous 
way), - 2.1 for the PZN (the node needs input from the net-
work to be recruited and to seize), and - 3.6 for the NIZ 
(the node does not seize). These values have been deter-
mined from the analysis of the Epileptor model dynamics 
(Section 2.3.1.1).

Each spatial configuration was then simulated in 4 
conditions: with an NMM and with an NFM using 3 differ-
ent scalings of the local coupling LCscaling (0, 2, and 4). 
These 4 conditions were simulated with the full five- 
dimensional Epileptor and in the following, they are iden-
tified as lc_none, lc_0, lc_2, and lc_4. The first condition 
lc_none corresponds to the best- case scenario, that is, a 
control condition in which an NMM is used for both the 
simulation and the estimation of the EZN. To dissociate 
the effects of the forward solution from the effects of the 
local coupling, we introduced the 2nd condition lc_0 which 
differs from NMM only by the way the forward solution is 
computed. Indeed, without local coupling, all the nodes 
belonging to the same region share the same dynamics 
(because of common initial conditions and a determinis-
tic integration) which is also the same as the correspond-
ing node from the 1st condition. And 3rd and 4th conditions 
added the effects of the local coupling.

For all configurations with empty PZN, the global cou-
pling GCscaling was set to 1 whereas for configurations 
with non- empty PZN, the global coupling was adjusted 
such that the propagation was sufficient to trigger a seizure 
in the PZN. Importantly, for each simulation, we checked 
that parameters, and especially the excitabilities, were 
consistent with the expected behavior (EZN, PZN, or NIZ) 
of each node (Section 2.3.1.1). Specifically, we verified 
that without any coupling, only EZN nodes seized and 
with coupling, only EZN and PZN nodes seized. Table 1 
summarizes the ensemble of simulated dataset, and 
Figure  2 illustrates one simulation with an NFM using 
EZN = {Right- T2- Anterior}, PZN = {Right- T2- posterior}, 
GCscaling = 6 and LCscaling = 2.

2.5. Estimation of the EZN

2.5.1. Extraction of data features

The estimation of the EZN was not performed directly 
from the SEEG raw time series (Fig. 2C) but from their 
envelopes (Fig.  2E), which capture the amount of fast 
oscillations present in the signal simulated with a full five- 
dimensional Epileptor ( Proix  et al.,  2017;  V.  K.  Jirsa  et al., 
 2017). This data feature extraction resulted in a set of 
observations matching the kind of predictions expected 
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from an NMM equipped with a reduced 2D Epileptor. 
Indeed, with 2 state variables acting on different time 
scales, such a neuronal model cannot generate fast 
oscillations. The data features were computed separately 
for each SEEG bipolar contact similarly to previous stud-
ies ( Hashemi  et  al.,  2021;  Vattikonda  et  al.,  2021). The 
bipolar signal was high pass filtered at 50 Hz and squared. 
The envelope was computed with a moving average (win-
dow length = 50 ms), log- transformed, low pass filtered 

at 5 Hz, and normalized between 0 and 1. For the analy-
sis, we only considered the time period during which 
ictal activity was present. Even if all simulated datasets 
were of same duration (2000 ms), the ictal period varied 
across dataset and we implemented a simple automatic 
procedure to detect the onset and the offset of each 
simulated seizure separately. It detected the 2 samples 
corresponding to the first up- crossing and last down- 
crossing (tup and tdown) of a given threshold (here, 0.1). 

Table 1. Description of the synthetic dataset.

Spatial configurations Count Neuronal model and local coupling (lc) Global coupling

EZN = {1 region}, PZN = {} 62 • NMM (lc_none) 
• NFM with lc = 0 (lc_0) 
• NFM with lc = 2 (lc_2) 
• NFM with lc = 4 (lc_4)

1.0
EZN = {1 half size region}, PZN = {} 62
EZN = {multiple regions}, PZN = {} 11
EZN = {1 region}, PZN = {1 or 2 regions} 11 adjusted

We defined 4 types of spatial configurations (1st column) to generate a set of spatial configurations across patients (2nd column).  
Each configuration was simulated in 4 conditions (3rd column) associated with different values for the local (3rd column) and global  
(4th column) coupling.

Fig. 2. Synthetic data for patient id003. In this spatial configuration, EZN = {Right- T2- Anterior}, PZN = {Right- T2- 
posterior}. Local coupling strength is equal to 2. (A) Time courses of all vertices belonging to EZN (above) and PZN 
(below). (B) Spatial mapping of the onset latencies of the seizure. (C) Time courses of bipolar SEEG contacts. (D) SEEG 
implantation of the patient. (E) Data features (envelopes of high- frequency activity) computed from the SEEG bipolar 
contacts. The 4 bipolar contacts (1: A14- 15, 2: TB14- 15, 3: B15- 16, 4: GC6- 7) for which data features have the highest 
amplitude are highlighted in (C) and (D).
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!u1,i = 1− u1,i
3 − 2u1,i

2 − vi + I1+GCscaling
j=1

162

∑Ci, jS u1, j,θGC( )

!vi =
1
τ0

4 u1,i − u0(xi )( )− vi( )

Note that to be consistent with the implementation of 
NFM and NMM equipped with full 5D Epileptor described 
in previous Section 2.3, we used a global fast synaptic 
coupling acting on population u1,i rather than a slow per-
mittivity coupling acting on population vi.

In this study, weakly informative priors were assig-
ned to all free parameters of the model. In particular, 
u0 xi( )~ N −3.6, 1( ) for each node and GCscaling ~ N 1, 1( ). 
To reduce the dimensionality of the parameter space and 
limit the complexity of the inference, initial conditions were 
not inferred and fixed to the values used for simulation.

2.6. Evaluation of performances

The estimation of the EZN was evaluated for each SEEG 
simulation with one measure of goodness of fit (GOF) and 
classification metrics. All these measures range from 0 to 
1 (1 corresponds to a perfect fit).

The GOF measured the similarity between the observed 
and the predicted SEEG signals and was evaluated for 
each seed as the ratio of the explained variance (predic-
tions) to the observed variance (equations in Supplemen-
tary Material). One GOF was computed for each of the 50 
seeds, and only the optimizations for which the GOF was 
superior to the 3rd quartile of the 50 GOF were selected. 
From the selected optimizations, the GOF of the simula-
tion was defined as the median of the GOF and the pos-
terior distributions of each parameter were obtained from 
the normalized histogram of posterior modes (the area 
under a normalized histogram integrates to 1).

Classification aimed at attributing one class (either EZ 
or PZ or NIZ) to each node, given an estimation of its 
excitability (here, the median of the posterior marginal 
distribution). However, in the present context, there is  
no direct way to attribute a class to each node because 
no fixed boundary threshold based on excitability exists 
to differentiate PZ from NIZ nodes (Section 2.3.1.1). To cir-
cumvent this problem, we reduced the classification from 
3 classes to 2 classes, either EZ_PZ or NIZ, and proposed 
a simple heuristic threshold to differentiate EZ_PZ from 
NIZ. Given such a heuristic classification threshold (explic-
itely defined thereafter), the general procedure to derive 
classification metrics followed three steps: 1) a class was 
assigned to each node: EZ_PZ if its estimated excitability 
was larger than the classification threshold, and NIZ oth-
erwise; 2) considering NIZ as the null hypothesis, we 
compared for each node the estimated class with the true 

From the duration of this ictal interval, dictal = tdown− tup, 
we only considered the extracted data features within the 
time interval tup − dictal /2,tdown + dictal /2⎡⎣ ⎤⎦. The extracted 
signal was visually checked and downsampled to 512 
time samples in order to avoid an potential bias during 
the fitting due to different length of the signal across 
conditions.

2.5.2. Estimation

The probabilistic approach of the estimation procedure 
has already been extensively detailed in previous studies 
( Hashemi  et  al.,  2020,  2021,  2023;  Jha  et  al.,  2022; 
 Vattikonda  et al.,  2021;  Wang  et al.,  2023). Given a set of 
observations x (the data features described in previous 
Section 2.5.1) and using Bayes’ theorem, the posterior 
density of parameters θ is given by:

 p θ | x( ) = p θ( )p x | θ( ) /p x( )  

where p θ( )  is the prior distribution of θ, p x | θ( ) is the 
likelihood function, and p x( ) is the marginal likelihood 
(independent of θ). In this study, the parameters were 
inferred with a maximum a posteriori (MAP) approach 
which estimates the mode of the posterior density:

 
θMAP x( ) = argmax

θ
p θ | x( )

 

The computation of θMAP x( ) was performed in Stan’s 
probabilistic programming language (https://mc - stan . org) 
based on the iterative quasi- Newton optimization algo-
rithm L- BFGS ( Nocedal  &  Wright,  2006). At the first step, 
the parameters are initialized from their prior distribution 
using a random seed. Then at each step, the gradient of 
the posterior density is evaluated for the current parame-
ters and used to update the parameters for the next step. 
Convergence is controlled by a set of tolerance values 
(sufficiently small norm of the gradient or sufficiently 
small change in posterior density or in parameter values). 
Because the estimation of MAP depends on the initial 
seed, L- BFGS algorithm was run 50 times, each time with 
a different seed. This procedure ended up with a set of 
θMAP x( ) which was then used to build the posterior mar-
ginal distributions of each of the parameters (described in 
the next Section 2.6).

In order to evaluate the likelihood function (and its 
gradient), the inference process requires a generative 
model of brain activity, here a low spatial resolution NMM 
brain network model equipped with the 2D reduction of 
the Epileptor ( Proix  et  al.,  2014,  2017). With the same 
notations as before, the equations read:

https://mc-stan.org
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class and assigned either a type of error (false positive or 
false negative) or the kind of correct result (true positive or 
true negative); 3) we computed three classification met-
rics: precision (the fraction of nodes truly identified EZ_PZ 
among all nodes identified EZ_PZ), recall (the fraction of 
nodes truly identified EZ_PZ among all EZ_PZ nodes), 
and F1 score (harmonic mean of precision and recall). 
This general procedure was repeated for a series of clas-
sification thresholds spanning an extended range of values 
(from - 5 to - 1 with a step of 0.01). Finally, the classification 
threshold for which precision was maximal was selected, 
and the associated precision, recall, and F1 score were 
reported. This technique was applied independently for 
each simulation.

From a clinical perspective, the maximization of preci-
sion, equivalent to the minimization of false discovery rate, 
corresponds to a conservative choice if we consider esti-
mated EZ_PZ regions as candidates for surgical resection.

Other classification approaches, particularly relevant in 
clinical context when ground truth is not known, have 
been proposed based on estimated excitabilities ( Hashemi 
 et al.,  2020,  2021,  2023;  Jha  et al.,  2022) or onset times 
extracted from predicted data features ( Vattikonda  et al., 
 2021,  2023;  Wang  et  al.,  2023). Yet, these approaches 
eventually suffer from the choice of arbitrary thresholds to 
classify PZN. Here, because we are in a simulation study 
and the ground truth is known, we sidestep this problem 
by computing a threshold maximizing the precision. This 
classification bias in favor of precision but at the expense 
of recall is counterbalanced in the reported F1 score.

Also, for clarity and simplicity, we did not systemati-
cally distinguish EZ from PZ (NIZ is the null hypothesis) 
because we assumed that both EZ and PZ estimations 
would be globally affected the same way by the factors 
under consideration (forward model and local coupling). 
Of course, the situation would be different in a clinical 
context, where the distinction between EZN and PZN is 
essential, for instance to plan optimal surgical strategies 
based on seizure propagation control ( Olmi  et al.,  2019).

3. RESULTS

3.1. Examples

In this section, we illustrate key aspects of our results 
with two different spatial configurations of the EZN. 
These two didactic examples are illustrative of common 
phenomena observed repeatedly across simulations. For 
each configuration, and across the 4 simulated condi-
tions (lc_none: NMM without local coupling, lc_0: NFM 
with no local coupling, lc_2 and lc_4: NFM with local cou-
pling scaling equal to 2 and 4 respectively), we present 
the data features of the SEEG simulated observations, 

the predictions of the NMM (equipped with the reduced 
2D Epileptor) with highest GOF, the GOF for the 50 opti-
mizations (corresponding to 50 different random seeds of 
the optimization procedure, Section 2.5.2), and the pos-
terior distributions of the excitability of the regions along 
with the ground truth of the configuration.

The first example (Fig. 3) corresponds to patient id003 
and EZN = {Right- T2- Anterior}, PZN = {Right- T2- posterior}. 
The synthetic raw data for the condition lc_2 are illus-
trated on Figure 2. Observed and predicted SEEG time 
courses are presented respectively on the first two col-
umns (Fig. 3). In NMM simulated data (Fig. 3A, first col-
umn), we clearly see around time sample 100 the initiation 
of the seizure triggered in EZN (Fig. 3A, last column, node 
45) and best captured by contact B15- 16, followed 
around time sample 200 by the propagation of the sei-
zure in PZN (Fig. 3A, last column, node 46), this time very 
well captured by contact FCA13- 14. Considering now 
classification metrics (Fig.  3, last column), they can be 
measured visually by comparing across nodes the true 
excitability (represented as a dot) and the median of the 
posterior distribution (represented by the intermediate 
horizontal bar of each violin plot): the closer they are, the 
better the classification metrics. Once the classification 
threshold (represented as a pink horizontal dotted line) 
has been estimated (Section 2.6), all nodes for which the 
median of posterior distribution is higher than the thresh-
old are positive: either true positives if they belong to EZN 
or PZN or false positives for those in NIZ. Precision is 
then the ratio of true positives among all positives, and 
recall is the ratio of true positives among all EZN or PZN 
nodes (sum of true positives and false negatives). In this 
example, the estimation of the EZN is very good in all 4 
conditions with precision = 1 and recall = 1 except for the 
condition lc_0 (Fig. 3B, last column) for which recall = 0.5 
(the posterior median excitability is higher in region 51 
(NIZ) compared to region 46 (PZN)). However, consider-
ing the NFM simulations, two points are noteworthy. First, 
the underestimation of the excitability in PZN (region 46) 
is related to the data features themselves, which show a 
much higher quantity of signal (energy) recorded from 
EZN (Fig.  3B, first column: contacts A14- 15, TB14- 15, 
and B15- 16) compared to PZN (Fig.  3B, first column: 
contact GC6- 7). And second, excitability has been sys-
tematically overestimated in regions 39 (Right- T1- lateral- 
anterior) and 51 (Right- Collateral- sulcus), close to EZN 
but belonging to NIZ.

The second example (Fig.  4) corresponds to patient 
id013 with EZN = {Left- F1- lateral- prefrontal}, PZN = {}. 
While the estimation of the EZN is correct (region 16) in 
the control condition lc_none (Fig.  4A, last column), 
region 10 (Left- Middle- frontal- sulcus), which is spatially 
very close to region 16, is identified as being the EZN in 
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data simulated with the NFM (Fig. 4B, C and D, last col-
umn). As in the previous example, this false positive can 
be explained by the characteristics of the data features 
which in this condition are particularly different between 
NMM and NFM, highlighting the important role of the 
gain matrix when computing a forward solution. Here, no 
significant difference is observed in the estimated param-
eters between conditions lc_0, lc_2, and lc_4 (Fig. 4B, C 
and D, last column), meaning that the effect of local 
coupling is limited.

We detailed these two didactic examples to present 
the main steps of our methodology and also to illustrate 
two phenomena observed recurrently across simulations. 
First, estimations from data simulated with NMM were 
good (Figs.  3A and 4A). And second, the differences 
observed between NMM and NFM simulated data, mostly 
due to the different forward models at work, could result 
in poor estimations of PZN (Fig.  3B) but also of EZN 
(Fig. 4B, C and D), depending on the spatial configuration.

3.2. Group results

Distributions of GOF, precision, recall, and F1 score 
were computed across all simulations grouped by the 4 
types of spatial configuration of the EZN and by the 
specific brain network model used to simulate the data: 
lc_none, lc_0, lc_2, and lc_4 (Fig. 5). Overall, regardless 
of the type of spatial configuration, the medians of the 4 
evaluation metrics were systematically higher (or equal) 
for the control condition lc_none, compared to the 3 
other conditions. The first type of spatial configuration 
(EZN = {1 region}, PZN = {}, Fig. 5A) disclosed the most 
significant differences across the 4 conditions (Kruskal- 
Wallis H tests with p- value < 1e- 06 for each metric). In 
particular, GOF was significantly higher for lc_none 
(median = 0.85) compared to the other conditions 
(median = 0.50, 0.48, and 0.49 for conditions lc_0, lc_2, 
and lc_4 respectively; Wilcoxon signed- rank tests with 
p- value < 1e- 10 for each condition). Importantly, even if 
the difference was also significant for F1 score (Wil-
coxon signed- rank tests with p- value  <  2e- 4 for each 
condition), the reproducible median value of 1 indicated 
a good estimation of the EZN for all conditions. Please 
note that for this configuration, because there is only 
one region to identify and precision is maximized, recall 
has to be 1 (this also applies to the next spatial configu-
ration). For the second type of spatial configuration 
(EZN = {1 half size region}, PZN = {}, Fig. 5B), perfor-
mances were very similar and only slightly decreased 
(median GOF = 0.45, 0.43, and 0.43 for conditions lc_0, 
lc_2, and lc_4 respectively). For the third spatial config-
uration (EZN = {multiple regions}, PZN = {}, Fig. 5C), the 
estimation of the EZN was degraded in all conditions as 

illustrated by the F1 score (median = 0.55, 0.29, 0.29, 
and 0.40 for each condition respectively). For the last 
configuration (EZN = {1 region}, PZN = {1 or 2 regions}, 
Fig. 5D), the F1 scores indicated a better estimation of 
the EZN/PZN, compared to the previous configuration 
(median = 1.00, 0.67, 0.67, and 0.67 for each condition 
respectively). For the 3rd and 4th types of spatial config-
urations (Fig.  5C, D), the tendency of having a global 
decrease of performance for conditions lc_0, lc_2, and 
lc_4 compared to lc_none was conserved, but no longer 
significant (Kruskal- Wallis H tests with p- value  =  0.1, 
0.4, 0.6, and 0.2 for each metric of the 3rd configuration 
and p- value = 0.01, 0.3, 0.3, and 0.1 for each metric of 
the 4th configuration).

To summarize, we first observed that overall perfor-
mances of the NMM inversion were good for data simu-
lated with NMM and NFM for the 1st, 2nd, and 4th spatial 
configurations and worse for the more complex 3rd spatial 
configuration (for which an average of 5.3 regions were 
included in EZN/PZN). And second, the estimations based 
on NFM simulated data were systematically deteriorated 
compared to the estimations based on NMM simulated 
data. This tendency was similar across configurations, sug-
gesting it was independent of the relative complexities of 
the spatial configurations. In addition, these results effec-
tively disentangled the effects of using a simplified forward 
model from the effects of absence of local coupling during 
the NMM inversion. Comparing lc_none with lc_0 showed 
that the effects of the forward model were quite pronounced 
while comparing lc_0 with lc_2 and lc_4 showed that the 
effects of local coupling were limited (Fig. 5).

3.3. Effects of differences between NMM and NFM 
gain matrices

In this section, we studied the differences between the 
two very different approaches used by the NMM and 
NFM to compute the forward solution. For the NMM, the 
activity of a point- like region is projected to each SEEG 
contact by considering only a (weighted inversed squared) 
distance between the region and the SEEG contact 
(Section 2.3.2.2). For the NFM, the activity of each vertex 
is projected to an SEEG contact by also considering the 
orientation of the dipole at that vertex, with respect to the 
SEEG contact (Section 2.3.1.2).

In the previous section, we demonstrated with simu-
lated data that the estimation of the EZN was signifi-
cantly affected by the simplified gain matrix used by the 
NMM to compute the forward solution. In fact, the effects 
due to these different gain matrices are already present 
and visible in the synthetic SEEG data and the extracted 
data features. Also, as mentioned in Section  2.4, they 
were specifically pronounced when comparing conditions 
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Fig. 5. Evaluation of the estimation of EZN and PZN based on goodness of fit and classification metrics. Each line 
corresponds to one type of spatial configuration of the EZN. (A) EZN = {1 region}, PZN = {}, 62 simulations; (B) EZN = {1 half 
size region}, PZN = {}, 62 simulations; (C) EZN = {multiple regions}, PZN = {}, 11 simulations; and (D) EZN = {1 region}, PZN 
= {1 or 2 regions}, 11 simulations. Columns represent the median goodness of fit (GOF), the precision, the recall, and the 
F1 score respectively for each of the 4 conditions lc_none (blue), lc_0 (orange), lc_2 (green), and lc_4 (red). Each violin plot 
shows the distribution of a given measure across all simulations performed for one type of spatial configuration of the EZN 
and computed with a specific brain network model.

lc_none and lc_0. This is illustrated in Figure 6A where the 
sensitivity of the SEEG contacts to the activity of EZN and 
PZN differed between NMM and NFM (different gain 
matrices applied to an identical source activity): EZN and 
PZN activities are better detected on contacts B15- 16 
and FCA13- 14 with NMM simulated data, and on con-
tacts A14- 15 and GC6- 7 with NFM simulated data. Actu-
ally, a simple inspection of the gain matrices confirmed 
these differences. In Figure 6B, we compared the gains of 
the EZ (top panel) and PZ (bottom panel) regions for NMM 
(blue) and NFM (orange). For the NFM, these gains were 
obtained by summing the gains across all vertices belong-
ing to the region of interest. This summation is justified by 

the fact that in the condition lc_0 (no local propagation 
and same initial conditions), all vertices of one region have 
the exact same activity. With this comparison, we con-
firmed the discrepancy that we observed in the data fea-
tures: for NMM, the bipolar contacts most sensitive to the 
activity of the EZ and the PZ regions were B15- 16 and 
FCA13- 14 respectively, while for NFM, these bipolar con-
tacts were A14- 15 and GC6- 7.

We extended this comparison to the first set of 62 spa-
tial configurations for which EZN = {1 region} and PZN = 
{} (Table 1) to assess whether the similarity of gain matri-
ces could affect the estimation of the EZN (Fig. 6C). For 
each simulation, we computed a Pearson correlation 
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coefficient between the NMM and NFM gains (normalized 
and rectified) for the EZ region. These coefficients ranged 
from 0.34 to 0.98 (all p- values for the test of zero correla-
tion were inferior to 1e- 5) and were pretty good predictors 
of the different evaluation measures (goodness of fit and 
classification metrics). In other words, the more similar the 
NMM and NFM gain matrices (for EZN), the better the 
estimation of the EZN (for condition lc_0). On the contrary, 
an EZN estimation located in a region where gain matrices 
really differ should be taken more cautiously.

3.4. Effects of local coupling

In this section, we analyzed one additional simulation 
which emphasized the importance of local propagation in 
seizure spread and the necessity to consider it in the 
estimation of the EZN. In this simulation, we considered 
EZN = {Left- Temporal- pole} and PZN = {Left- T2- anterior}, 
GCscaling= 3 and LCscaling = 4 (Fig. 7). The key difference 
with the previous simulations (the 11 spatial configura-
tions for which the PZN was not empty, Table 1) is the 
cause of the seizure spread from EZN to PZN. In the pre-
vious simulations, the spread was mainly due to the 
global coupling between the EZN and the PZN. Indeed, 
we adjusted GCscaling  separately for each configuration 
such that even without local coupling (condition lc_0), 
the seizure effectively propagated from EZN to PZN and 

conditions lc_2 and lc_4 corresponded to a supplementary 
contribution of the local coupling, in addition to the global 
coupling. In the present simulation, the situation is very 
different because there is no seizure spread in absence of 
local coupling (even for higher values of GCscaling= 3), 
which reflects a low coupling strength between EZN and 
PZN coming from SC, and seizure propagates to PZN 
only when local coupling is introduced. The same proce-
dure as previously described was used to infer the EZN 
and PZN in this simulation (Fig. 7). While the 2 regions 
were clearly identified among others, with a very good 
accuracy, it should still be noticed that posterior excit-
ability values u0 xi( ) were overestimated (and higher than 
the critical value - 2.05 for region 45 in PZN, Fig.  7F). 
Indeed, in the absence of global coupling between the 
EZN and the PZN, and without the possibility to propa-
gate the seizure through local coupling, one hypothesis 
could be that the NMM used for the estimation of the 
EZN had no other way to explain the seizure in the PZN 
than to consider the region part of the EZN (the region 
could seize autonomously, without the effects of the 
network). A very recent study ( Vattikonda  et al.,  2023) 
proposed a new approach for inferring the EZN using 
an NFM (instead of the NMM we used in the present 
study) which confirmed this hypothesis. By using the exact 
same simulation as the one presented in this section, 
the method demonstrated that as soon as the local 

Fig. 6. Differences between NMM and NFM gain matrices. (A) SEEG data features for patient id003 with EZN = {Right- 
T2- Anterior}, PZN = {Right- T2- posterior} in the condition lc_none (left), and lc_0 (right). (B) Normalized gains (vertical axis) 
of EZN = {Right- T2- Anterior} (top) and PZN = {Right- T2- posterior} (bottom) for SEEG bipolar contacts (horizontal axis) 
corresponding to NMM (blue) and to NFM (orange). (C) The four evaluation metrics (goodness of fit, precision, recall, and 
F1 score) plotted against the correlation between gains of NMM and gains of NFM. Each blue dot corresponds to one of 
the 62 simulations with EZN = {1 region} and PZN = {}, and for the condition lc_0. The orange curve represents the metric 
averaged over intervals of 0.1 of correlation.
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coupling was considered in the estimation procedure, 
the excitability of the region part of the PZN was no longer 
overestimated (Fig. 7G).

4. DISCUSSION

4.1. Summary

This study evaluated the estimation of an EZN in 
 synthetic data with a low spatial resolution NMM, with a 
particular focus on disentangling the effects of using a 
simplified forward solution from the effects of absence of 

local coupling, two essential modeling features that the 
NMM approach is intrinsically lacking. For this purpose, 
we designed an ensemble of spatial configurations of 
the EZN, typical of what is observed in patients with epi-
lepsy. We simulated these data with an NMM (control 
condition, lc_none) and with an NFM for increasing 
strengths of local coupling (lc_0, lc_2, and lc_4). This is 
to our knowledge the first time that data simulated with 
NFM are used for an extensive evaluation of inversion 
procedure based on NMM.

Our results indicated that, whatever the type of 
 spatial configuration, the major difference was found 

Fig. 7. Simulation of seizure spread through local coupling. (A) Time courses of the vertices belonging to the EZN = {Left- 
Temporal- pole} (top row) and to the PZN = {Left- T2- anterior} (bottom row) simulated using an NFM with GCscaling = 3 and 
LCscaling = 4. (B) Spatial mapping of the onset latencies of the seizure. The seizure starts in the blue region and propagates 
towards the red region. (C) Time courses of bipolar SEEG contacts. (D) SEEG implantation of the patient. Onset latencies 
are mapped with arbitrary units (a.u.) on bipolar contacts to show the propagation of the seizure (1: TP’9- 10, 167 a.u.; 2: 
A’13- 14, 270 a.u.; 3: B’12- 13, 296 a.u.; 4: GPH’14- 15, 320 a.u.). (E) Observed and predicted data features of the SEEG 
bipolar contacts. The 4 bipolar contacts for which observed data features show the highest amplitudes are highlighted  
in (D). (F) Estimation of the EZN. Notations are the same as for Figure 3. The EZN = {Left- Temporal- pole} and the PZN = 
{Left- T2- anterior} correspond to regions 35 and 45 respectively. Please see Supplementary Figure 3 for the estimation 
of all the nodes from the left hemisphere. (G) Estimation of the excitability of all vertices belonging to PZN with an NFM 
( Vattikonda  et al.,  2023) demonstrating a clear overestimation when local coupling is ignored.
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between condition lc_none and other conditions (lc_0, 
lc_2, and lc_4). No real effect was observed between 
the latter conditions, emphasizing the general impor-
tance of the forward problem. For the simplest spatial 
configurations (Fig. 5A, B) for which the EZN was com-
posed of one single region (full and half size), the effect 
of the forward problem was significant but still limited, 
with a median F1 score of 1 in all conditions. In such 
clearly identified clinical situations, it means that the 
estimation of EZN in empirical data using an NMM inver-
sion can be considered as an efficient option. For more 
complex spatial configurations (Fig. 5C, D), a compara-
ble tendency was present, not significant this time due 
to the lower number of configurations (11 < 62, Table 1), 
in addition to a general and non- negligible decrease of 
general performance for all conditions, especially more 
pronounced when the EZN was composed of multiple 
(not necessarily adjacent and eventually bilateral) regions 
(median F1 score = 0.55, 0.29, 0.29, and 0.40 for each 
condition respectively). For these more impacted con-
figurations, which, moreover, correspond to clinically 
very relevant and more complex cases, inversion based 
on NMM should be interpreted more cautiously and 
deeper investigation may be necessary.

4.2. Effects of forward gain matrix

The drop of inference performance due to the gain matrix, 
which was identified in all spatial configurations of the 
EZN, was also unsurprisingly noticed in the extracted 
SEEG data features (Fig.  6A). Indeed, many studies 
already demonstrated the importance of using a high 
spatial resolution brain network approach, and the ensu-
ing accurate forward gain matrix, for the modeling of 
SEEG activities. For instance in  Cosandier- Rimele  et al. 
 (2007a), the authors used a comparable model and found 
optimal parameters of two volume conductor models 
(infinite and 3- shell spherical head) to simulate a spike in 
the left middle temporal gyrus, and mimic an empirical 
one with high- fidelity. Interestingly, they characterized the 
attenuation of the electric potential with respect to the 
distance between the brain source and the SEEG contact 
and showed that for NFM, this attenuation (hyperbolic, 
1/r) was less steep compared to NMM (parabolic, 1/r2). 
From this difference, they concluded that “neocortical 
sources of epileptic interictal activity have an extended 
nature that can be hardly represented by only one equiv-
alent current dipole.” Another noteworthy consequence 
of using more realistic NFM (and associated gain matrix), 
and which needs to be considered for an accurate esti-
mation of EZN, is the fact that the SEEG signal may not 
vary monotonously with respect to the size of the acti-
vated cortical patch while a monotonic variation seems 

to be more plausible for simulated scalp- EEG signals 
( Cosandier- Rimele  et al.,  2007b). Such a very high sensi-
tivity of SEEG to the surrounding geometry of the brain 
represents a counterpart to its very high spatial specificity.

4.3. Effects of local propagation

While the absence of local coupling modeling during the 
NMM inversion did not really impact the inference perfor-
mance in general, we showed one specific example 
where it had a clear and undesired effect, namely an 
overestimation of the excitability. Very importantly, this 
may translate in the context of presurgical planning into 
the misidentification of a candidate region for resection. 
This indicates that local coupling must be considered 
very carefully during the inversion procedure. And indeed, 
preliminary results of such approaches already showed 
promising results (Fig. 7G).

4.4. Limitations

4.4.1. Simulated data

The comparison between conditions lc_none and lc_0 
was introduced to study the specific effect of the forward 
gain matrix while conditions lc_2 and lc_4 carried the 
effects of both the gain matrix and the local coupling. To 
focus on the specific effects of the local coupling, one 
option was to modify the NMM used for the inversion by 
artificially assigning the activity of each region node to 
the set of vertex nodes associated to the region, and thus 
enabling the use of an identical gain matrix for both sim-
ulation and inversion. We did not follow this option 
because results showed that the reduction of perfor-
mance was essentially imputable to the gain matrix and 
because the main purpose of the study was the evalua-
tion of the NMM per se, not its refinement.

4.4.2. Cortical and subcortical regions

In all spatial configurations, we build EZN and PZN only 
from neocortical regions and did not select subcortical 
regions, which were systematically considered as point- 
like structures (NMM) in both the simulation and the inver-
sion procedures. The reason for this is that there is no 
consensus in the community on how to compute the for-
ward solution for subcortical structures. Given that the 
effects we observed for neocortical regions should be 
comparable, but also possibly even more pronounced, 
for subcortical structures, it remains very important to 
address such question in the future, and more so as sub-
cortical structures are very often involved in EZN. Our 
team is currently working in this direction for the particular 
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case of the hippocampus which, despite its complex 
organization, allows a surfacic representation approach 
similar to that of neocortical structures. This should enable 
its short- term inclusion as a spatially extended brain 
structure and result in a more accurate NFM approach.

4.4.3. Forward model

In this study, we only considered the simple infinite 
homogeneous model (IHM) for the forward model of 
NFM because previous studies ( Caune  et  al.,  2014; 
 Cosandier- Rimele  et al.,  2006,  2007a) have shown that 
when SEEG contacts were “close to the epileptic foci and 
relatively far from the skull” ( Caune  et al.,  2014), the IHM 
and the one- sphere model provided solutions relatively 
similar to the ones of a finite element model (FEM). That 
being said, the use of more realistic and advanced SEEG 
forward models, for instance based on anisotropic FEM 
( Bangera  et al.,  2010;  Medani  et al.,  2023), needs to be 
addressed in the future, and especially in the context of 
presurgical planning (Section 4.5). At the same time, we 
also should not forget that not only the type of forward 
model (boundary element/FEM, isotropic/anisotropic) 
plays an important role but the precise localization of the 
SEEG electrodes and contacts in anatomical images is 
also essential ( Zwick  et al.,  2022).

4.4.4. Inference techniques

In this study, no particularly informative prior was set for 
regions of the EZN and PZN and we used a simple infer-
ence technique, that is, the quasi- Newton optimization 
algorithm implemented in Stan’s probabilistic program-
ming language. Because the algorithm is pretty sensitive 
to its random seed (see the multimodal distributions of 
GOF on Figs. 3 and 4), we removed the less effective opti-
mizations, probably due to local minima, with a threshold 
on the GOF. This resulted in estimates of EZN/PZN with 
high confidence, while estimates of NIZ were pretty simi-
lar to their weakly informative prior (Figs. 3 and 4). This in 
turn justified the computation of classification metrics 
based on point estimates (median of the posterior distri-
butions) rather than full posterior distributions.

It is true that more advanced techniques would defi-
nitely have provided better estimation performance, 
and in particular for the configuration EZN = {multiple 
regions}. Indeed, well- defined prior combined with 
Markov Chain Monte Carlo (MCMC) sampling have 
shown to be determinant when fitting both simulated or 
empirical data ( Hashemi  et al.,  2020,  2021,  2023;  Jha 
 et al.,  2022;  Vattikonda  et al.,  2021;  Wang  et al.,  2023). 
In particular, for such fully Bayesian techniques (MCMC, 
or Simulation Based Inference) which estimate the full 

posterior distributions, there is no additional need to 
consider the GOF which is taken into account through 
the likelihood term (Bayes theorem, Section 2.5.2). With 
that said, Posterior Predictive Check is still one com-
mon diagnostic of Bayesian techniques, similar to the 
GOF, which is important to perform to check if the fitted 
model is compatible with the observed data.

However, the purpose here was not to look for the best 
possible estimation results, but rather to have a simple 
framework in order to compare between the different con-
ditions in terms of spatial resolution and to really highlight 
the limitations due to the usage of NMM. Also, given the 
total number of estimations, the computation time related 
to MCMC sampling could have been a limiting factor.

5. CONCLUSIONS AND FUTURE DIRECTIONS

It is fundamental to evaluate the tools and their limitations 
for good research in epilepsy ( Litt,  2022) and especially 
when they are dedicated to a clinical usage. The estima-
tion of EZN using VEP based on NMM already gives very 
acceptable results. Still, even in simplest case, the F1 
score is not perfect (Fig. 5A) and according to local brain 
geometry, some regions may be misclassified. We there-
fore make the hypothesis that an estimation procedure 
fully based on NFM defined with a good spatial resolution 
(close to the mm2 and independent of any parcellation), 
embedding a realistic forward model (Section  4.4) and 
implementing local propagation, may be required to 
obtain more accurate estimations, at least in some spe-
cific configurations. Such a tool will be available in the 
near future ( Vattikonda  et  al.,  2023). It will enable the 
straightforward comparison between NMM and NFM 
inversions based on a same shared (simulated and empir-
ical) dataset and provide the ideal and rigorous framework 
to draw new conclusions about the relative benefits of 
NMM and NFM in estimating the EZN. In addition, flexible 
NFM inversion itself will of course offer the opportunity to 
compare different forward models as well as bring new 
light on the role and importance of local propagation. In 
the context of clinical translational research, it will also be 
essential in a future study to evaluate how such an NFM 
approach could extend the conclusions of previous ret-
rospective studies ( Makhalova  et al.,  2022;  Wang  et al., 
 2023), and especially, in which circumstances it could 
help to predict and achieve better surgical outcomes. 
Clearly, this step forward will find immediate applications, 
such as the development of complementary non- invasive 
diagnostic tools, for instance, based on electroencepha-
lography or magnetoencephalography for which an accu-
rate forward problem is also a required component, and 
the exploration of innovative therapeutic solutions, such 
as, for instance, non- invasive stimulation.
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