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Abstract

The aim of this contribution is to address the convergence study of a time and
space approximation scheme for an Allen-Cahn problem with constraint and per-
turbed by a multiplicative noise of Itô type. The problem is set in a bounded
domain of Rd (with d = 2 or 3) and homogeneous Neumann boundary conditions
are considered. The employed strategy consists in building a numerical scheme
on a regularized version “à la Moreau-Yosida” of the constrained problem, and
passing to the limit simultaneously with respect to the regularization parameter
and the time and space steps, denoted respectively by ε, ∆t and h. Combining a
semi-implicit Euler-Maruyama time discretization with a Two-Point Flux Approx-
imation (TPFA) scheme for the spatial variable, one is able to prove, under the
assumption ∆t = O(ε2+θ) for a positive θ, the convergence of such a “(ε,∆t, h)”
scheme towards the unique weak solution of the initial problem, a priori strongly
in L2(Ω;L2(0, T ;L2(Λ))) and a posteriori also strongly in Lp(0, T ;L2(Ω × Λ)) for
any finite p ≥ 1.

Keywords: Stochastic non-linear parabolic equation with constraint • Multiplica-
tive Lipschitz noise • Finite-volume method • Variational approach • Convergence
analysis • Multivoque maximal monotone operator • Differential inclusion • La-
grange multiplier.

Mathematics Subject Classification (2020): 60H15 • 35K05 • 65M08.

∗Aix Marseille Univ, CNRS, Centrale Med, LMA, Marseille, France, caroline.bauzet@univ-amu.fr,
cedric.sultan@univ-amu.fr

‡Univ Pau & Pays Adour, LMAP, UMR CNRS 5142, IPRA, Pau, France, guy.vallet@univ-pau.fr
§TU Clausthal, Institut für Mathematik, Clausthal-Zellerfeld, Germany, aleksandra.zimmermann@tu-

clausthal.de

1



1 Introduction
We consider Λ a bounded, open, connected, and polygonal set of Rd (with d = 2 or 3),
and (Ω,A,P) a probability space endowed with a right-continuous, complete filtration
(Ft)t≥0. For T > 0, we are interested in finding a pair (u, ψ) with ψ ∈ ∂I[0,1](u), satisfying
the following time noise-driven Allen-Cahn equation:

du+ (ψ −∆u) dt = g(u) dW (t) + (β(u) + f) dt, in Ω× (0, T )× Λ;

u(0, ·) = u0, in Ω× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

(1.1)

where (W (t))t≥0 is a standard, one-dimensional Brownian motion with respect to (Ft)t≥0

on (Ω,A,P) and n denotes the unit normal vector to ∂Λ outward to Λ. As mentioned
in [11], the sub-differential ∂I[0,1] represents a physical constraint on the solution of (1.1)
forcing it to remain bounded in (0, 1) by the presence of the Lagrange multiplier ψ ∈
∂I[0,1](u). More precisely, our equation in (1.1), can be written as a differential inclusion
in the following manner:

β(u) + f − ∂t
(
u−

∫ .

0

g(u)dW

)
+ ∆u ∈ ∂I[0,1](u)

where the stochastic integral is understood in the sense of Itô and the sub-differential of
the indicator function I[0,1] : R→ R ∪ {+∞} defined by

I[0,1](r) =

{
0 if r ∈ [0, 1]

+∞ else

is the set-valued mapping ∂I[0,1] : [0, 1]→ P(R) defined by

∂I[0,1](r) =


{0} if r ∈ (0, 1)

(−∞, 0] if r = 0

[0,∞) if r = 1.

We consider the following assumptions on the data:

A1: u0 ∈ L2(Ω;L2(Λ)) is F0-measurable and verifies 0 ≤ u0(ω, x) ≤ 1, for almost all
(ω, x) ∈ Ω× Λ.

A2: g : R→ R is a Lg-Lipschitz-continuous function (with Lg ≥ 0), such that
supp g ⊂ [0, 1].

A3: β : R → R is a Lβ-Lipschitz-continuous function (with Lβ ≥ 0) such that for
convenience β(0) = 0.

A4: f ∈ L2
PT

(
Ω× (0, T );L2(Λ)

)†.
†For a given separable Banach space X, we denote by L2

PT

(
Ω×(0, T );X

)
the space of the predictable

X-valued processes ([30] p.94 or [51] p.27). This space is the space L2
(
Ω × (0, T );X

)
for the product

measure dP ⊗ dt on the predictable σ-field PT (i.e. the σ-field generated by the sets F0 × {0} and the
rectangles A× (s, t], for any s, t ∈ [0, T ] with s ≤ t and A ∈ Fs).
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1.1 Literature review

The equation in (1.1) is known in the literature as an Allen-Cahn type equation with con-
straint. It is applicable in modeling several physical phenomena, like phase transitions.
In [11], a global existence and uniqueness result for this equation has been proposed to
model the evolution of damage in continuum media. More precisely, it has been assumed
that the solution u to (1.1) is a damage parameter, i.e. the local proportion of active co-
hesive bonds in the micro-structure of a material. Then, the function f on the right-hand
side of (1.1) denotes an external source of damage (mechanical or chemical), while the
nonlinear source term β is associated with the material’s internal cohesion. A constraint
was incorporated within the equation to restrict the values of u to the interval [0, 1]. This
constraint has a physical meaning in the way that u = 1 signifies that the material is
completely undamaged, u = 0 signifies that it is completely damaged while values of u in
(0, 1) represent varying degrees of intermediate damage. In [11], the physical constraint
was ensured by the presence of a sub-differential graph, i.e. a multivalued maximal mono-
tone operator. In addition, a stochastic force term given by an Itô integral has been added
on the right-hand side of (1.1). Since its diffusion coefficient g depends on the damage
parameter, the stochastic force is said to be multiplicative. From a physical point of view,
the presence of this random force term reflects the fact that the phenomenon of damage is
related to microscopic changes in the structure and configuration of the material lattice as
a consequence of breaking bonds and the formation of cavities and voids. These changes
are clearly related to stochastic processes occurring at a microscopic level (as introduced
in Ising materials), which we aimed to take into account in the macroscopic description.

The literature on the deterministic Allen-Cahn equation is very rich, also including the
presence of non-smooth (monotone) operators (see, among others, [1, 28, 29, 32, 60]),
and the stochastic case has been addressed by a growing number of surveys. Some recent
results are devoted to questions of existence and uniqueness of solutions for stochastic
Allen-Cahn equation [56], in [19] well posedness for stochastic Allen-Cahn type equa-
tions with p-Laplacian as well as the random separation property are studied. Others
are more interested in questions of existence and regularity of solution for stochastic
Cahn-Hilliard/Allen-Cahn problems [4] and [33]. The study of degenerate Kolmogorov
equations and questions of ergodicity for stochastic Allen-Cahn equations with logarith-
mic potential have been considered in [18, 57]. Other authors have studied a stochastic
Allen-Cahn-Navier-Stokes system with inertial effects and multiplicative noise of jump
type in a bounded domain [34, 46]. Let us mention that, in these last contributions, the
sub-differential operator is replaced by smooth nonlinearities (possibly with prescribed
growth conditions), as double-well potentials.

Furthermore, the study of stochastic partial differential inclusions in a rather general sit-
uation was carried out in [8, 16, 53], as well as questions concerning transition semigroup
and invariant measures in [7], or even obstacle problems with Lewy-Stampacchia’s in-
equality for a stochastic T -monotone obstacle problem (see [58]). According to [12], the
convergence analysis of numerical schemes for stochastic PDEs of parabolic type has been
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a very fashionable subject in recent decades and for this reason, an extensive literature
on this topic is available (see [2], [31] and [49] for a general overview). In the past the
use of finite-element methods was the preferred technique for the spatial discretisation of
parabolic evolution equations (see [10], [24] for a state of the art on this subject), and
this is particularly true for the numerical approximation of stochastic Allen-Cahn type
equations without constraint (in the chronological order let us mention the contributions
[40, 52, 27, 3, 45, 15, 25]).

The numerical analysis of differential inclusions was first carried out on multivalued dif-
ferential equations in [59, 35, 5, 47], and new studies on the subject have continued to be
published ever since [43, 9, 41, 21, 22, 55, 48]. In parallel, stochastic differential inclusions
were studied in the early 2000’s from a numerical point of view. Firstly, results of con-
vergence analysis of time-discretization schemes have been derived in [50, 17, 44, 61], and
secondly, convergence rate as long as error estimates have been investigated respectively
in [62] and [38]. More recently, the time-space discretization of deterministic elliptic and
parabolic partial differential inclusions was performed by combining Euler scheme with
finite-element methods in [54, 23, 20].

To the best of our knowledge, the numerical analysis of stochastic partial differential inclu-
sions is still an open topic. Our aim is then to fill the gap in the literature by addressing
the convergence analysis of a time and space discretization scheme for our stochastic
Allen-Cahn problem with constraint (1.1). Let us precise that the main originality of
our approach consists in the use of a finite-volume method for the spatial discretization
instead of a finite-element one.

1.2 Concept of solution and main result

Following our previous work [11], we are interested here in the following concept of solution
for Problem (1.1):

Definition 1.1. Any pair of stochastic processes (u, ψ) ∈
(
L2
PT

(
Ω× (0, T );L2(Λ)

))2 with
u belonging additionally to

L2(Ω; C ([0, T ];L2(Λ))) ∩ L2
PT

(
Ω× (0, T );H1(Λ)

)
,

is a solution to Problem (1.1) if almost everywhere in (0, T )× Λ and P-a.s in Ω,

0 ≤ u ≤ 1 and ψ ∈ ∂I[0,1](u),

and if the pair (u, ψ) satisfies

u(t) = u0 +

∫ t

0

(
∆u(s)− ψ(s) + β(u(s)) + f(s)

)
ds+

∫ t

0

g(u(s)) dW (s),

in L2(Λ) and P-a.s in Ω, where ∆ denotes the Laplace operator on H1(Λ) associated with
the formal Neumann boundary condition.
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Remark 1.2. A priori, we have the predictability of u with values in L2(Λ). It is a direct
consequence of, e.g., [42, Corollary 1.1.8] that we may a posteriori conclude that u belongs
to L2

PT

(
Ω× (0, T );H1(Λ)

)
.

Existence and uniqueness of a pair (u, ψ) solution of Problem (1.1) in the sense of Def-
inition 1.1 has been proved in [11] for a given initial condition u0 in H1(Λ) and under
Assumptions A2, A3 and A4. To do so, we used a regularization procedure on the maximal
monotone operator ∂I[0,1] by considering the following family of approximating problems
depending on a parameter ε > 0:

duε + (ψε(uε)−∆uε) dt = g(uε) dW (t) + (β(uε) + f) dt, in Ω× (0, T )× Λ;

uε(0, ·) = u0, in Ω× Λ;

∇uε · n = 0, on Ω× (0, T )× ∂Λ;

(1.2)

where ψε : R → R denotes the Moreau-Yosida approximation of ∂I[0,1] (see e.g. [6, 26]),
defined for all v ∈ R by

ψε(v) = −(v)−

ε
+

(v − 1)+

ε
=


v

ε
if v ≤ 0

0 if v ∈ [0, 1]
v − 1

ε
if v ≥ 1.

(1.3)

Firstly, we proved in [11], for fixed ε > 0, existence and uniqueness of a solution uε for
Problem (1.2) in the sense of Definition 1.3 below:

Definition 1.3. A stochastic process uε ∈ L2
PT

(
Ω× (0, T );H1(Λ)

)
element of

L∞
(
0, T ;L2(Ω;H1(Λ))

)
∩ L2

(
Ω; C

(
0, T ;L2(Λ)

))
and such that ∂t

(
uε−

∫ .

0

g(uε)dW
)
and ∆uε belong to L2(Ω;L2(0, T ;L2(Λ))), is a solution

to the Problem (1.2) if almost everywhere in (0, T ) and P-almost surely in Ω, the following
variational formulation holds for any v ∈ H1(Λ)∫

Λ

∂t

(
uε −

∫ .

0

g(uε) dW (s)

)
v dx+

∫
Λ

∇uε.∇v dx+

∫
Λ

ψε(uε)v dx =

∫
Λ

(
β(uε) + f

)
v dx,

with P-a.s in Ω, u0 = lim
t→0

uε(., t) in L2(Λ).

Secondly, the analysis of the sequences (uε)ε>0 and (ψε(uε))ε>0 allowed us (mainly thanks
to monotonicity tools) to pass the limit with respect to the approximating parameter
ε > 0. We finally proved existence of a solution (u, ψ) of Problem (1.1) in the sense of
Definition 1.1, as a weak limit of a subsequence of the pair (uε, ψε(uε))ε>0. Then, we
finished our study by proving the uniqueness of such a solution (u, ψ).

The objective of the present paper is to propose a time and space approximation of
the unique solution (u, ψ) of Problem (1.1) in the sense of Definition 1.1. To do so,
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our idea consists in discretizing, for a given ε > 0, Problem (1.2) by the way of finite-
volume methods. Our main goal is to show that the resulting finite-volume approximation,
depending on ε and on the time and space parameters (denoted respectively N and h in
the sequel), can be bounded independently of these three parameters, with the idea of
making them tend towards zero simultaneously. The aim of the game is then to find a
relationship between ε,N and h that allows us to bound our finite-volume approximation
and to pass to the limit in the numerical scheme, leading us to our main result stated
hereafter:

Theorem 1.4. Assume that hypotheses A1 to A4 hold and let (u, ψ) be the unique solution
of Problem (1.1) in the sense of Definition 1.1. Let (Tm)m∈N be a sequence of admissible
finite-volume meshes of Λ in the sense of Definition 2.1 such that the mesh size hm
tends to 0, let (Nm)m∈N ⊂ N? be a sequence of positive integers which tends to infinity
and let (εm)m∈N ⊂ R?

+ be another sequence such that limm→+∞ εm = 0. For a fixed
m ∈ N, let urhm,Nm and ulhm,Nm be respectively the right and left in time finite-volume
approximations defined by (2.2)-(3.1)-(3.2) with T = Tm, N = Nm and ε = εm. If
there exists θ > 0 such that for any m ∈ N, T

Nm
= O((εm)2+θ), then the sequences

(urhm,Nm)m∈N and (ψεm(urhm,Nm))m∈N converge towards u and ψ, respectively strongly and
weakly in L2(Ω;L2(0, T ;L2(Λ))). Moreover, the convergence of (urhm,Nm))m∈N towards u
also holds strongly in Lp(0, T ;L2(Ω;L2(Λ))) for any finite p ≥ 1.

1.3 Outline

This contribution is organized as follows. In Section 2, the discretization framework is
introduced: choice of the time step, definition of admissible finite-volume meshes of Λ,
related notations and employed discrete norms. Then in Section 3, the semi-implicit TPFA
scheme for the discretization of the regularized Problem (1.2) ant its associated discrete
solutions are defined, and the well-posedness of such a scheme is investigated. In Section
4, a clever relation between the regularization and the time and space discretization
parameters (denoted ε,∆t and h, respectively), allows us to derive stability estimates
satisfied by the discrete solutions, independently of these three parameters. Section 5 is
then dedicated to the convergence analysis of our scheme by combining arguments we
developed in [14] for the passage to the limit with respect to ∆t and h, with the ones used
in [11] to pass to the limit with respect to ε.

2 Discretization framework
Let us start this section by some general notations, then Subsections 2.2, 2.3, 2.4 contain
all the definitions and notations related to temporal and spatial discretizations. Let us
mention that they are the same as in our previous papers [12, 13, 14], but for a matter of
self-containedness we choose to repeat them identically.
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2.1 General notations

• The integral over Ω with respect to the probability measure P is denoted by E[·],
and is called the expectation.

• For any x, y in Rd, the euclidean norm of x is denoted by |x|, and the associated
scalar product of x and y by x · y.

• The d-dimensional Lebesgue measure of Λ is denoted by |Λ|, by overusing the eu-
clidean norm notation.

• For q ∈ {1, d}, the L∞(Rq) norm is denoted by || · ||∞.

2.2 Uniform time step and admissible finite-volume meshes

With the aim of proposing a time and space approximation of the variational solution of
Problem (1.2), a choice for the temporal and spatial discretizations must be made. The
temporal one is achieved using a uniform subdivision: setting N ∈ N?, the fixed time step
is defined by ∆t = T

N
and the interval [0, T ] is decomposed in 0 = t0 < t1 < ... < tN = T

equidistantly with tn = n∆t for all n ∈ {0, ..., N − 1}. For the spatial one, following [39,
Definition 9.1], we consider admissible finite-volume meshes as defined hereafter:

Definition 2.1. (Admissible finite-volume mesh) An admissible finite-volume mesh of Λ,
denoted by T , is given by a family of “control volumes”, which are open polygonal convex
subsets of Λ, a family of subsets of Λ contained in hyperplanes of Rd, denoted by E (these
are the edges for d = 2 or sides for d = 3 of the control volumes), with strictly positive
(d−1)-dimensional Lebesgue measure, and a family of points of Λ denoted by P satisfying
the following properties∗

• Λ =
⋃
K∈T K.

• For any K ∈ T , there exists a subset EK of E such that ∂K = K \ K =
⋃
σ∈EK σ

and E =
⋃
K∈T EK. EK is called the set of edges of K for d = 2 and sides for d = 3,

respectively.

• For any K,L ∈ T , with K 6= L then either the (d− 1) Lebesgue measure of K ∩ L
is 0 or K ∩ L = σ for some σ ∈ E, which will then be denoted by K|L or L|K.

• The family P = (xK)K∈T is such that xK ∈ K for all K ∈ T and, if K,L ∈ T are
two neighbouring control volumes, it is assumed that xK 6= xL, and that the straight
line between xK and xL is orthogonal to σ = K|L.

• For any σ ∈ E such that σ ⊂ ∂Λ, let K be the control volume such that σ ∈ EK.
If xK /∈ σ, the straight line going through xK and orthogonal to σ has a nonempty
intersection with σ.

∗In fact, we shall denote, somewhat incorrectly, by T the family of control volumes.
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xK xL

σ =K|L

dK|L

nK,σ

Figure 1: Notations of the mesh T associated with Λ ⊂ R2

For a given admissible finite-volume mesh T of Λ, the following associated notations will
be used in the rest of the paper.

Notations.

• The mesh size is denoted by h = size(T ) = sup{diam(K) : K ∈ T }.

• The number of control volumes K ∈ T is denoted by dh ∈ N, where h = size(T ).

• The sets of interior and exterior interfaces are respectively denoted by
Eint := {σ ∈ E : σ * ∂Λ} and Eext := {σ ∈ E : σ ⊆ ∂Λ}.

• For any K ∈ T , the d-dimensional Lebesgue measure of K is denoted by mK .

• For any K ∈ T , the unit normal vector to ∂K outward to K is denoted by nK .

• For any K ∈ T and any σ ∈ EK , the unit vector on σ pointing out of K is denoted
by nK,σ.

• For any σ ∈ Eint, the (d− 1)-dimensional Lebesgue measure of σ is denoted by mσ.

• For any neighboring control volumes K,L ∈ T , the euclidean distance between xK
and xL is denoted by dK|L.

• The maximum of edges incident to any vertex of the mesh is denoted by N .

• For anyK ∈ T and any σ ∈ EK , the euclidean distance between xK and σ is denoted
by d(xK , σ).

The regularity of the mesh T is measured by the following positive number

reg(T ) = max

(
N ,max

K∈T
σ∈EK

diam(K)

d(xK , σ)

)
.

As in the deterministic setting, it is assumed that reg(T ) is uniformly bounded by a
constant not depending on the mesh size h, which is one of the key point to prove the
convergence of our finite-volume scheme. Indeed, the introduction of the number reg(T )
allows us particularly to derive the following inequality:
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∀K,L ∈ T , h

dK|L
≤ reg(T ), (2.1)

and such a uniform control of the ratio in the left-hand side of (2.1) will be essential in
the proof of Lemma 5.11.

2.3 Discrete unknowns and piecewise constant functions

From here to the end of Section 4, let N be a positive integer, ∆t = T
N

and T be an
admissible finite-volume mesh of Λ in the sense of Definition 2.1 with a mesh size h > 0.
The ideology of a finite-volume method to approximate the variational solution of Prob-
lem (1.2) is to associate to each control volume K ∈ T and time tn ∈ {0, ..., tN} a discrete
unknown value denoted by unK ∈ R, expected to be an approximation of uε(tn, xK).

For a given vector (wnK)K∈T ∈ Rdh , we introduce in what follows various associated
functions. Firstly, we define the piecewise constant function in space wnh : Λ→ R by

wnh(x) :=
∑
K∈T

wnK1K(x), ∀x ∈ Λ.

Using the fact that the mesh T is fixed, the continuous mapping defined from Rdh to
L2(Λ) by

(wnK)K∈T 7→
∑
K∈T

1Kw
n
K ,

allows us to consider the space Rdh as a finite-dimensional subspace of L2(Λ) and to do
the following natural identification between the function and the vector

wnh ≡ (wnK)K∈T ∈ Rdh .

Secondly, the knowledge for any n ∈ {0, . . . , N} of the function wnh enables us to define the
following right and left piecewise constant functions in time and space denoted respectively
by wrh,N and wlh,N , which are defined from [0, T ]× Λ to R by

wrh,N(t, x) :=
N−1∑
n=0

wn+1
h (x)1[tn,tn+1)(t) if t ∈ [0, T ) and wrh,N(T, x) := wNh (x),

wlh,N(t, x) :=
N−1∑
n=0

wnh(x)1[tn,tn+1)(t) if t ∈ (0, T ] and wlh,N(0, x) := w0
h(x).

(2.2)

Since T and N are fixed, reasoning as for the piecewise constant function in space above,
the continuity of the mapping defined from Rdh×N to L2(0, T ;L2(Λ)) by

(wnK) K∈T
n∈{0,...,N−1}

7→
∑
K∈T

n∈{0,...,N−1}

1K1[tn,tn+1)w
n
K ,

9



allows us to consider the space Rdh×N as a finite-dimensional subspace of L2(0, T ;L2(Λ))
and to do naturally the identifications

wlh,N ≡ (wnK) K∈T
n∈{0,...,N−1}

∈ Rdh×N ,

wrh,N ≡ (wn+1
K ) K∈T

n∈{0,...,N−1}
∈ Rdh×N .

Remark 2.2. In the following, when a time and space function φ : [0, T ]× Λ→ R will be
considered for fixed x ∈ Λ, the space variable will be omitted in the notations and φ(x)
will be written instead of φ(·, x). An analogous notation will apply for fixed t ∈ [0, T ],
i.e., we will write φ(t) for φ(t, ·).

2.4 Discrete norms and weak gradient

For the remainder of this subsection, let us set n ∈ {0, ..., N − 1}, consider an arbitrary
vector (wnK)K∈T ∈ Rdh and identify it with the piecewise constant function in space
wnh ≡ (wnK)K∈T . Are introduced in what follows for wnh the definitions of its discrete
L2(Λ)-norm, weak gradient and discrete H1(Λ)-semi-norm.

Definition 2.3 (Discrete L2(Λ)-norm). The discrete L2(Λ)-norm of wnh ∈ Rdh is defined
by

||wnh ||L2(Λ) =

(∑
K∈T

mK |wnK |2
) 1

2

.

Definition 2.4 (Weak gradient). Let eh be the number of elements in E. The weak
gradient operator ∇h : Rdh → (Rd)eh maps any scalar fields wnh ∈ Rdh into vector fields
∇hwnh = (∇h

σw
n
h)σ∈E ∈ (Rd)eh, where for any σ ∈ E, ∇h

σw
n
h ∈ Rd is defined by

∇h
σw

n
h :=

d
wnL − wnK
dK|L

nK,σ, if σ = K|L ∈ Eint;

0, if σ ∈ Eext.

Definition 2.5 (Discrete H1(Λ)-semi-norm). The discrete H1(Λ)-semi-norm of wnh ∈ Rdh

is defined by

|wnh |1,h :=

 ∑
σ=K|L∈Eint

mσ

dK|L
|wnK − wnL|2

 1
2

.

Remark 2.6. We have the following relation between the discrete (L2(Λ))d-norm of ∇hwnh
and the discrete H1(Λ)-semi-norm of wnh :

‖∇hwnh‖2
(L2(Λ))d =

∑
σ=K|L∈Eint

dK|Lmσ

d

∣∣∣∣dwnK − wnLdK|L

∣∣∣∣2 = d|wnh |21,h. (2.3)

We end this subsection by recalling a classical trick of sum reordering, which will be used
several times in the rest of the paper.
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Remark 2.7 (Discrete partial integration). For any w̃nh ≡ (w̃nK)K∈T ∈ Rdh , the following
rule of "discrete partial integration" holds:∑

K∈T

∑
σ=K|L∈EK∩Eint

mσ

dK|L
(wnK − wnL)w̃nK =

∑
σ=K|L∈Eint

mσ

dK|L
(wnK − wnL)(w̃nK − w̃nL). (2.4)

Now, we have all the necessary definitions and notations to present the finite-volume
scheme studied in this paper. This is the aim of the next section.

3 The semi-implicit TPFA scheme for Problem (1.2)
By the discretization of the initial condition u0 of Problem (1.1) over each control volume:

u0
K :=

1

mK

∫
K

u0(x) dx, ∀K ∈ T , (3.1)

we are firstly allowed to define the random vector u0
h ≡ (u0

K)K∈T ∈ Rdh . Secondly, starting
from this given initial F0-measurable random vector u0

h ∈ Rdh , and fixing a parameter
ε > 0, we construct our semi-implicit TPFA scheme as follows:

For any n ∈ {0, . . . , N − 1}, knowing unh ≡ (unK)K∈T ∈ Rdh , we search for un+1
h ≡

(un+1
K )K∈T ∈ Rdh , solution of the following equations, P-a.s in Ω:

mK

∆t
(un+1

K − unK) +
∑

σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L ) +mKψε(u

n+1
K )

=
mK

∆t
g(unK)(W n+1 −W n) +mKβ(un+1

K ) +mKf
n
K , ∀K ∈ T ,

(3.2)

where W n+1 −W n denotes the increments of the Brownian motion between tn+1 and tn:

W n+1 −W n = W (tn+1)−W (tn) for n ∈ {0, . . . , N − 1},

and fnK is defined by

fnK =
1

∆tmK

∫ tn+1

tn

∫
K

f(x, t) dx dt. (3.3)

Remark 3.1. Although for any n ∈ {1, ..., N} and any K ∈ T , the discrete unknowns
unK (and then the discrete solution unh) depend on ε, we omit this dependency from the
notation for the sake of clarity.

Proposition 3.2 (Well-posedness of the scheme). Let T be an admissible finite-volume
mesh of Λ in the sense of Definition 2.1 with a mesh size h, let N be a positive integer
and let ε ∈ R?

+ be a given parameter. Then, under Assumptions A1 to A4, there exists
a unique solution (unh)1≤n≤N ∈ (Rdh)N to Problem (3.2) associated with the initial vector
u0
h defined by (3.1). Moreover, for any n ∈ {0, . . . , N}, unh is a Ftn-measurable random

vector.
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Proof. It is a direct application of the main result of [13] in the particular case where the
convection term is null and the source’s one is equal to u 7→ β(u)− ψε(u) + f .

The right and left finite-volume approximations urh,N and ulh,N defined by (2.2) to ap-
proximate the solution uε of Problem (1.2) are then built from the discrete solution
(unh)1≤n≤N ∈ (Rdh)N given by Proposition 3.2.

4 Stability estimates
In this section will be derived several stability estimates satisfied by the discrete solution
(unh)1≤n≤N ∈ (Rdh)N given by Proposition 3.2, and also by the associated left and right
finite-volume approximations (ulh,N)h,N and (urh,N)h,N defined by (2.2). Let us start by
bounding the discrete initial data:

Lemma 4.1. Under Assumption A1, the discrete initial data u0
h ∈ Rdh associated to u0

and defined by (3.1) satisfies the following inequality:

E
[
‖u0

h‖2
L2(Λ)

]
≤ E

[
‖u0‖2

L2(Λ)

]
.

Proof. It is a direct consequence of the definition of u0
h and Cauchy-Schwarz inequality.

This first lemma allows us to obtain the following first bounds on the discrete solutions:

Proposition 4.2 (Bounds on the discrete solutions). There exists a constant K0 > 0,
depending only on u0, Lg, Lβ, f and T such that for any ε > 0, any N ∈ N? large enough
(depending on Lβ) and any h ∈ R?

+

E
[
‖unh‖2

L2(Λ)

]
+

n−1∑
k=0

E
[
‖uk+1

h − ukh‖2
L2(Λ)

]
+ ∆t

n−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
≤ K0, ∀n ∈ {1, . . . , N}.

Proof. Set ε > 0, N ∈ N?, h ∈ R?
+ and fix n ∈ {1, . . . , N}. For any k ∈ {0, . . . , n − 1},

we multiply the numerical scheme (3.2) with uk+1
K , take the expectation, and sum over

K ∈ T to obtain thanks to (2.4)∑
K∈T

mK

∆t
E
[
(uk+1

K − ukK)uk+1
K

]
+

∑
σ=K|L∈Eint

mσ

dK|L
E
[
|uk+1
K − uk+1

L |
2
]

+
∑
K∈T

mKE
[
ψε(u

k+1
K )uk+1

K

]
=
∑
K∈T

mK

∆t
E
[
g(ukK)uk+1

K

(
W k+1 −W k

)]
+
∑
K∈T

mKE
[(
β(uk+1

K ) + fkK
)
uk+1
K

]
.

(4.1)

We consider the terms of (4.1) separately. Firstly note that∑
K∈T

mK

∆t
E
[
(uk+1

K − ukK)uk+1
K

]
=

1

2

∑
K∈T

mK

∆t
E
[
|uk+1
K |

2 − |ukK |2 + |uk+1
K − ukK |2

]
. (4.2)
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Secondly, since ψε is monotone with ψε(0) = 0, one gets that∑
K∈T

mKE
[
ψε(u

k+1
K )uk+1

K

]
≥ 0. (4.3)

Thirdly, since ukK and
(
W k+1 −W k

)
are independent one obtains∑

K∈T

mK

∆t
E
[
g(ukK)ukK

(
W k+1 −W k

)]
= 0,

and so by applying Young’s inequality and using the Itô isometry one arrives at∑
K∈T

mK

∆t
E
[
g(ukK)uk+1

K

(
W k+1 −W k

)]
=
∑
K∈T

mK

∆t
E
[
g(ukK)(uk+1

K − ukK)
(
W k+1 −W k

)]
≤
∑
K∈T

mK

∆t
E
[
|g(ukK)

(
W k+1 −W k

)
|2
]

+
1

4

∑
K∈T

mK

∆t
E
[
|uk+1
K − ukK |2

]
≤∆tL2

g

∑
K∈T

mK

∆t
E
[
|ukK |2

]
+

1

4

∑
K∈T

mK

∆t
E
[
|uk+1
K − ukK |2

]
.

(4.4)

Fourthly, using the Lipschitz property of β with β(0) = 0, the following holds∑
K∈T

mKE
[
β(uk+1

K )uk+1
K

]
≤ Lβ

∑
K∈T

mKE
[
|uk+1
K |

2
]
. (4.5)

Fifthly,∑
K∈T

mKE
[
fkKu

k+1
K

]
≤1

2

∑
K∈T

mKE
[
|fkK |2

]
+

1

2

∑
K∈T

mKE
[
|uk+1
K |

2
]

≤ 1

2∆t

∑
K∈T

E
[∫ tk+1

tk

∫
K

|f(x, t)|2 dx dt
]

+
1

2

∑
K∈T

mKE
[
|uk+1
K |

2
]
. (4.6)

Combining (4.2)-(4.3)-(4.4)-(4.5) and (4.6) and multiplying the obtained inequality with
2∆t, one gets∑

K∈T

mKE
[
|uk+1
K |

2 − |ukK |2 + |uk+1
K − ukK |2

]
+ 2∆t

∑
σ=K|L∈Eint

mσ

dK|L
E
[
|uk+1
K − uk+1

L |
2
]

≤ 2∆tL2
g

∑
K∈T

mKE
[
|ukK |2

]
+

1

2

∑
K∈T

mKE
[
|uk+1
K − ukK |2

]
+∆t(2Lβ + 1)

∑
K∈T

mKE
[
|uk+1
K |

2
]

+
∑
K∈T

E
[∫ tk+1

tk

∫
K

|f(x, t)|2 dx dt
]
.
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Then, (
1−∆t(2Lβ + 1)

)∑
K∈T

mKE
[
|uk+1
K |

2 − |ukK |2
]

+
1

2

∑
K∈T

mKE
[
|uk+1
K − ukK |2

]
+ 2∆t

∑
σ=K|L∈Eint

mσ

dK|L
E
[
|uk+1
K − uk+1

L |
2
]

≤∆t(2Lg
2 + 2Lβ + 1)

∑
K∈T

mKE
[
(ukK)2

]
+
∑
K∈T

E
[∫ tk+1

tk

∫
K

|f(x, t)|2 dx dt
]
.

For ∆t small enough so that 1−∆t(2Lβ + 1) ≥ 1
4
, after summing over k ∈ {0, . . . , n− 1},

one arrives at

1

4
E
[
‖unh‖2

L2(Λ) − ‖u0
h‖2

L2(Λ)

]
+

1

2

n−1∑
k=0

E
[
‖uk+1

h − ukh‖2
L2(Λ)

]
+ 2∆t

n−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
≤ ∆t(2Lg

2 + 2Lβ + 1)
n−1∑
k=0

E
[
‖ukh‖2

L2(Λ)

]
+

n−1∑
k=0

∑
K∈T

E
[∫ tk+1

tk

∫
K

|f(x, t)|2 dx dt
]
.

(4.7)

Then, it follows that

E
[
‖unh‖2

L2(Λ)

]
≤ E

[
‖u0

h‖2
L2(Λ)

]
+ 4∆t(2L2

g + 2Lβ + 1)
n−1∑
k=0

E
[
‖ukh‖2

L2(Λ)

]
+ 4||f ||2L2(Ω;L2(0,T ;L2(Λ))).

Applying the discrete Gronwall lemma yields

E
[
‖unh‖2

L2(Λ)

]
≤
(
E
[
‖u0

h‖2
L2(Λ)

]
+ 4||f ||2L2(Ω;L2(0,T ;L2(Λ)))

)
e4T (2L2

g+2Lβ+1). (4.8)

From (4.8) and Lemma 4.1 we may conclude that there exists a constant Υ > 0 such that

sup
n∈{1,...,N}

E
[
‖unh‖2

L2(Λ)

]
≤ Υ. (4.9)

Thanks to (4.9) one gets that for all n ∈ {1, . . . N}

∆t
n−1∑
k=0

E
[
‖g(ukh)‖2

L2(Λ)

]
≤ L2

g∆t
n−1∑
k=0

E
[
‖ukh‖2

L2(Λ)

]
≤ L2

gTΥ. (4.10)

From (4.7), Lemma 4.1 and (4.9) it now follows that for all n ∈ {1, . . . , N}

E
[
‖unh‖2

L2(Λ)

]
+ 2

n−1∑
k=0

E
[
‖uk+1

h − ukh‖2
L2(Λ)

]
+ 8∆t

n−1∑
k=0

E
[
|uk+1
h |

2
1,h

]
≤ E

[
‖u0‖2

L2(Λ)

]
+ 4ΥT (2L2

g + 2Lβ + 1) + 4||f ||2L2(Ω;L2(0,T ;L2(Λ))).
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We are now interested in the bounds on the right and left finite-volume approximations
defined by (2.2).

Lemma 4.3. The sequences (urh,N)ε,h,N and (ulh,N)ε,h,N are bounded in L∞(0, T ;L2(Ω;L2(Λ))),
independently of the regularization and discretization parameters ε ∈ R?

+, N ∈ N? and
h ∈ R?

+. Additionally, (ulh,N)ε,h,N is bounded in L2
PT

(
Ω× (0, T );L2(Λ)

)
.

Proof. We note that by (4.9)

‖urh,N‖L∞(0,T ;L2(Ω;L2(Λ))) + ‖ulh,N‖L∞(0,T ;L2(Ω;L2(Λ))) ≤ 2 sup
n∈{0,1,...,N}

E
[
‖unh‖2

L2(Λ)

]
≤ 2Υ + E

[
‖u0‖2

L2(Λ)

]
The predictability of (ulh,N)ε,h,N with values in L2(Λ) is a consequence of the Ftn -
measurability of unK for all n ∈ {0, ..., N} and all K ∈ T . Indeed, by construction,
(ulh,N)ε,h,N is then an elementary process adapted to the filtration (Ft)t≥0 and so it is
predictable.

Remark 4.4. Note that by Proposition 4.2, one gets the following useful estimate

E
[
‖urh,N − ulh,N‖2

L2(0,T ;L2(Λ))

]
= ∆tE

[
N−1∑
n=0

‖un+1
h − unh‖2

L2(Λ)

]
≤ K0∆t, (4.11)

Thanks to Proposition 4.2 we can also obtain a L2(Ω;L2(0, T ;L2(Λ)))-bound on the weak
gradients of the finite-volume approximation (urh,N)ε,h,N :

Lemma 4.5. There exists a constant K1 ≥ 0 depending only on u0, Lg, Lβ, f and T
such that ∫ T

0

E
[
|urh,N(t)|21,h

]
dt ≤ K1. (4.12)

Proof. It is a direct consequence of Proposition 4.2.

Lemma 4.6. The sequences (g(urh,N))ε,h,N , (g(ulh,N))ε,h,N , (β(urh,N))ε,h,N , and (β(ulh,N))ε,h,N
are bounded in L2(Ω;L2(0, T ;L2(Λ))) independently of the regularization and discretiza-
tion parameters ε ∈ R?

+, N ∈ N? and h ∈ R?
+. Moreover, (g(ulh,N))ε,h,N and (β(ulh,N))ε,h,N

are predictable processes with values in L2(Λ).

Proof. It is a direct consequence of the boundedness of the sequences (urh,N)ε,h,N and
(ulh,N)ε,h,N in L2(Ω;L2(0, T ;L2(Λ))) given by Lemma 4.3 and of the Lipschitz nature of g
and β.

Lemma 4.7. There exists a constant K2 ≥ 0 depending only on u0, Lg, Lβ, f and T
such that ∫ T

0

E
[
|g(urh,N(t))|21,h

]
dt ≤ K2. (4.13)
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Proof. After noticing that:∫ T

0

E
[
|g(urh,N(t))|21,h

]
dt ≤ L2

g

∫ T

0

E
[
|urh,N(t)|21,h

]
dt,

the result is immediate thanks to Lemma 4.5.

Proposition 4.8. If we assume that there exists θ > 0 such that ∆t = O(ε2+θ) and that
0 < ε < 1, then the sequences (ψε(u

r
h,N))ε,h,N and (ψε(u

l
h,N))ε,h,N are bounded respectively

in L2(Ω;L2(0, T ;L2(Λ))) and L2
PT

(
Ω× (0, T );L2(Λ)

)
, independently of the regularization

and discretization parameters ε ∈ R?
+, N ∈ N? and h ∈ R?

+.

Proof. Setting 0 < ε < 1, K ∈ T , N ∈ N?
+ and n ∈ {0, ..., N − 1}, multiplying (3.2) by

∆tψε(u
n+1
K ), taking the expectation, summing over K ∈ T and over n ∈ {0, . . . , N − 1}

lead to

N−1∑
n=0

∑
K∈T

mKE
[
(un+1

K − unK)ψε(u
n+1
K )

]
+

N−1∑
n=0

∑
K∈T

mK∆tE
[
(ψε(u

n+1
K ))2

]
+

N−1∑
n=0

∆t
∑
K∈T

E

 ∑
σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )ψε(u

n+1
K )


=

N−1∑
n=0

∑
K∈T

mKE
[
g(unK)(W n+1 −W n)ψε(u

n+1
K )

]
+

N−1∑
n=0

∑
K∈T

∆tmKE
[(
β(un+1

K ) + fnK
)
ψε(u

n+1
K )

]
.

(4.14)

Let us study separately each term of (4.14).
• For the study of the first term, we introduce the convex antiderivative of ψε defined for
any v ∈ R by

φε(v) =


v2

2ε
if v ≤ 0

0 if v ∈ [0, 1]
(v − 1)2

2ε
if v ≥ 1.

(4.15)

Note that thanks to the convexity of φε, the following holds

(un+1
K − unK)ψε(u

n+1
K ) = (un+1

K − unK)φ′ε(u
n+1
K ) ≥ φε(u

n+1
K )− φε(unK),

and so

N−1∑
n=0

∑
K∈T

mKE
[
(un+1

K − unK)ψε(u
n+1
K )

]
≥ 0, (4.16)
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owing to the facts that
∑
K∈T

mKE
[
φε(u

N
K)
]
≥ 0 and

∑
K∈T

mKE
[
φε(u

0
K)
]

= 0 since from

Assumption A1, P-a.s in Ω and for any K ∈ T , 0 ≤ u0
K ≤ 1.

• Using (2.4) and the monotonicity of ψε, one proves that

N−1∑
n=0

∆t
∑
K∈T

E

 ∑
σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )ψε(u

n+1
K )


=

N−1∑
n=0

∆tE

 ∑
σ=K|L∈Eint

mσ

dK|L
(un+1

K − un+1
L )

(
ψε(u

n+1
K )− ψε(un+1

L )
)

≥0.

(4.17)

• Firstly, by using the mean values theorem and the fact that for any v ∈ R, ψε(v)g(v) = 0,
we can prove that there exist several elements between unK and un+1

K , all written in the
form ζn+1

K = (1−λn+1
K )un+1

K +λn+1
K unK (for some λn+1

K ∈ [0, 1]), and such that the following
inequality holds true∣∣∣g(unK)

(
ψε(u

n+1
K )− ψε(unK)

)∣∣∣ ≤ 1

ε

∣∣g(unK)− g(ζn+1
K )

∣∣|un+1
K − unK |. (4.18)

Indeed, this can be shown by separating the cases according to the position of unK and
un+1
K relative to 0 and 1 (by noting that unK and un+1

K play a symmetrical role):

- If unK 6∈ (0, 1), by setting ζn+1
K = unK we get

0 =
∣∣∣g(unK)

(
ψε(u

n+1
K )− ψε(unK)

)∣∣∣ =
1

ε

∣∣g(unK)− g(ζn+1
K )

∣∣|un+1
K − unK |.

- If unK ∈ (0, 1) and un+1
K ∈ [0, 1], by setting again ζn+1

K = unK ,

0 =
∣∣∣g(unK)

(
ψε(u

n+1
K )− ψε(unK)

)∣∣∣ =
1

ε

∣∣g(unK)− g(ζn+1
K )

∣∣|un+1
K − unK |.

- If unK ∈ (0, 1) and un+1
K < 0, there exists ζn+1

K ∈ (un+1
K , 0) such that

g(unK)
(
ψε(u

n+1
K )− ψε(unK)

)
= g(unK)ψ′ε(ζ

n+1
K )un+1

K

=
(
g(unK)− g(ζn+1

K )
)
ψ′ε(ζ

n+1
K )un+1

K

and
∣∣∣g(unK)

(
ψε(u

n+1
K )− ψε(unK)

)∣∣∣ ≤ 1

ε

∣∣g(unK)− g(ζn+1
K )

∣∣|un+1
K − unK |.

- If unK ∈ (0, 1) and un+1
K > 1, there exists ζn+1

K ∈ (1, un+1
K ) such that

g(unK)
(
ψε(u

n+1
K )− ψε(unK)

)
= g(unK)ψ′ε(ζ

n+1
K )(un+1

K − 1)

=
(
g(unK)− g(ζn+1

K )
)
ψ′ε(ζ

n+1
K )(un+1

K − 1)

and
∣∣∣g(unK)

(
ψε(u

n+1
K )− ψε(unK)

)∣∣∣ ≤ 1

ε

∣∣g(unK)− g(ζn+1
K )

∣∣|un+1
K − unK |.
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Using the assumption that there exists θ > 0 such that ∆t = O(ε2+θ), then for any natural

number p such that p ≥ 1 +
2

θ
, one has that (since 0 < ε < 1)

∆tp−1

ε2p
=

∆tp−1

ε(2+θ)(p−1)
εθ(p−1)−2 ≤

( ∆t

ε2+θ

)p−1

. (4.19)

Choosing p ∈ N according to (4.19), using successively the fact that g(unK)ψε(u
n
K) = 0,

Inequality (4.18), Young’s inequality (with p and its conjugate p
p−1

), the constantK0 given
by Proposition 4.2, the fact that

E
[(
W n+1 −W n

)2p
]

=
(2p)!

p!2p
∆tp = (2p− 1)!!∆tp

and Inequality (4.19), one gets the existence of a constant Cp > 0 only depending on p
such that

N−1∑
n=0

∑
K∈T

mKE
[
g(unK)(W n+1 −W n)ψε(u

n+1
K )

]
=

N−1∑
n=0

∑
K∈T

mKE
[
g(unK)(W n+1 −W n)(ψε(u

n+1
K )− ψε(unK))

]
≤1

2

N−1∑
n=0

∑
K∈T

mKE

[(
W n+1 −W n

ε

)2 (
g(unK)− g(ζn+1

K )
)2

]
+

1

2

N−1∑
n=0

∑
K∈T

mKE
[(
un+1
K − unK

)2
]

≤ 1

2p

N−1∑
n=0

∑
K∈T

mKE

[(
W n+1 −W n

ε

)2p
]

+
p− 1

2p

N−1∑
n=0

∑
K∈T

mKE
[(
g(unK)− g(ζn+1

K )
) 2p
p−1

]
+K0

=
(2p− 1)!!

2pε2p

N−1∑
n=0

∑
K∈T

mK∆tp +
p− 1

2p
L2
g

(
2||g||∞

) 2
p−1

N−1∑
n=0

∑
K∈T

mKE
[(
unK − ζn+1

K

)2
]

+K0

≤Cp
∆tp−1

ε2p

N−1∑
n=0

∑
K∈T

mK∆t+ L2
g

(
2||g||∞

) 2
p−1

N−1∑
n=0

∑
K∈T

mKE
[(
unK − un+1

K )2
]

+K0

≤Cp
( ∆t

ε2+θ

)p−1

|Λ|T +K0

(
L2
g

(
2||g||∞

) 2
p−1 + 1

)
. (4.20)

• The second right-hand side term of (4.14) can be handled in the following manner thanks
to Young’s inequality and the constant K0 given by Proposition 4.2:

N−1∑
n=0

∑
K∈T

∆tmKE
[(
β(un+1

K ) + fnK
)
ψε(u

n+1
K )

]
≤1

2

N−1∑
n=0

∑
K∈T

∆tmKE
[(
ψε(u

n+1
K )

)2
]

+
1

2

N−1∑
n=0

∑
K∈T

∆tmKE
[(
β(un+1

K ) + fnK
)2
]

≤1

2

N−1∑
n=0

∑
K∈T

∆tmKE
[(
ψε(u

n+1
K )

)2
]

+ L2
βTK0 + ||f ||2L2(Ω;L2(0,T ;L2(Λ))). (4.21)
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Finally, combining (4.16),(4.17),(4.20) and (4.21), we obtain that

1

2

N−1∑
n=0

∑
K∈T

∆tmKE
[(
ψε(u

n+1
K )

)2
]

≤Cp
( ∆t

ε2+θ

)p−1

|Λ|T +K0

(
L2
g

(
2||g||∞

) 2
p−1 + 1

)
+ L2

βTK0 + ||f ||2L2(Ω;L2(0,T ;L2(Λ)))

and the announced result holds since ∆t = O(ε2+θ).

Remark 4.9. Note that using the constant K0 > 0 given by Proposition 4.2, the following
inequality holds directly

||ψε(ulh,N)− ψε(urh,N)||2L2(Ω;L2(0,T ;L2(Λ))) ≤
∆t

ε2
K0. (4.22)

Lemma 4.10. If we assume that there exists θ > 0 such that ∆t = O(ε2+θ) and that
0 < ε < 1, then the sequences

(
(urh,N )−

ε

)
ε,h,N

and
(

(urh,N−1)+

ε

)
ε,h,N

are bounded in

L2(Ω;L2(0, T ;L2(Λ))), independently of the regularization and discretization parameters
ε ∈ R?

+, N ∈ N? and h ∈ R?
+.

Proof. Since ψε(urh,N) = −
(urh,N)−

ε
+

(urh,N − 1)+

ε
and (urh,N)−× (urh,N − 1)+ = 0, one gets

that∣∣∣∣∣∣∣∣−(urh,N)−

ε

∣∣∣∣∣∣∣∣2
L2(Ω;L2(0,T ;L2(Λ)))

+

∣∣∣∣∣∣∣∣(urh,N − 1)+

ε

∣∣∣∣∣∣∣∣2
L2(Ω;L2(0,T ;L2(Λ)))

=
∣∣∣∣(ψε(urh,N))

∣∣∣∣2
L2(Ω;L2(0,T ;L2(Λ)))

,

and the result holds directly since the right-hand side is bounded by Proposition 4.8.

Using the same technique, one proves the following:

Lemma 4.11. If we assume that there exists θ > 0 such that ∆t = O(ε2+θ) and that
0 < ε < 1, then the sequences

(
(ulh,N )−

ε

)
ε,h,N

and
(

(ulh,N−1)+

ε

)
ε,h,N

are bounded in

L2
PT

(
Ω× (0, T );L2(Λ)

)
, independently of the regularization and discretization parameters

ε ∈ R?
+, N ∈ N? and h ∈ R?

+.

Remark 4.12. Note that using Lemma 4.10, Lemma 4.11 and by expanding the square
term of (4.22), one can prove that∣∣∣∣∣

∣∣∣∣∣(urh,N)−

ε
−

(ulh,N)−

ε

∣∣∣∣∣
∣∣∣∣∣
2

L2(Ω;L2(0,T ;L2(Λ)))

≤ ∆t

ε2
K0

and

∣∣∣∣∣
∣∣∣∣∣(urh,N − 1)+

ε
−

(ulh,N − 1)+

ε

∣∣∣∣∣
∣∣∣∣∣
2

L2(Ω;L2(0,T ;L2(Λ)))

≤ ∆t

ε2
K0,

which assures us that if the sequences
(

(urh,N )−

ε

)
ε
and

(
(ulh,N )−

ε

)
ε
(respectively

(
(urh,N−1)+

ε

)
ε

and
(

(urh,N−1)+

ε

)
ε
) converge, it is necessarily towards a common limit.
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5 Convergence of the “(ε,∆t, h)” scheme
We have now all the necessary tools to pass to the limit in our “(ε,∆t, h)” scheme. In
what follows, let (Tm)m∈N be a sequence of admissible meshes of Λ in the sense of Defini-
tion 2.1 such that the mesh size hm tends to 0 when m tends to +∞, let (Nm)m∈N ⊂ N?

be a sequence with limm→+∞Nm = +∞, set ∆tm := T
Nm

, and let (εm)m∈N ⊂]0, 1[ be
another sequence such that limm→+∞ εm = 0, and assume that there exists θ > 0 such
that ∆tm = O(ε2+θ

m ) for any m ∈ N.
For the sake of simplicity, for m ∈ N, we shall use the notations T = Tm, h = size(Tm),
∆t = ∆tm, N = Nm and ε = εm when the m-dependency is not useful for the understand-
ing of the reader.

5.1 Weak convergences of finite-volume approximations

First of all, owing to the bounds on the discrete solutions obtained in the previous section,
we are able to derive the following weak convergences:

Proposition 5.1. There exists a process u ∈ L2
PT

(
Ω × (0, T );H1(Λ)

)
such that, up to

subsequences of (urh,N)m and (ulh,N)m denoted in the same way,

ulh,N → u and urh,N → u, both weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. We refer to [14, Proposition 4.1], since the proof is exactly the same.

Lemma 5.2. There exists a process ψ in L2
PT

(
Ω× (0, T );L2(Λ)

)
such that, up to subse-

quences of (ψε(u
r
h,N))m and (ψε(u

l
h,N))m denoted in the same way,

ψε(u
r
h,N)→ ψ and ψε(ulh,N)→ ψ, both weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. This is a direct consequence of Proposition 4.8 and Remark 4.9. Let us mention
that the predictability property of ψ with values in L2(Λ) is inherited from (ψε(u

l
h,N))m

at the limit.

Lemma 5.3. There exist not relabeled subsequences of
(
− (urh,N )−

ε

)
m

and
(

(urh,N−1)+

ε

)
m
,

and ψ1, ψ2 in L2
PT

(
Ω× (0, T );L2(Λ)

)
such that

−
(urh,N)−

ε
→ ψ1 and

(urh,N − 1)+

ε
→ ψ2, both weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. This is a direct consequence of Lemma 4.10, Lemma 4.11 and Remark 4.12.

Lemma 5.4. Both strongly in L2(Ω;L2(0, T ;L2(Λ))), the following convergences hold:

(urh,N)− → 0 and (urh,N − 1)+ → 0 as m→ +∞.

Proof. By Lemma 4.10, we have the existence of a constant M > 0 independent of the
regularization and discretization parameters ε ∈ R?

+, N ∈ N? and h ∈ R?
+ such that

||(urh,N)−||2L2(Ω;L2(0,T ;L2(Λ))) + ||(urh,N − 1)+||2L2(Ω;L2(0,T ;L2(Λ))) ≤Mε2,

and the announced result holds.
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Remark 5.5. [Additional informations about ψ1 and ψ2]
Firstly, note that since − (urh,N )−

ε
≤ 0 and

(urh,N−1)+

ε
≥ 0, then ψ1 ≤ 0 and ψ2 ≥ 0.

Secondly, using the fact that ψε(urh,N) = − (urh,N )−

ε
+

(urh,N−1)+

ε
, one gets owing to Lemmas

5.2 and 5.3 that ψ = ψ1 + ψ2.
Thirdly, since

ψε(u
r
h,N)urh,N =

(urh,N)−

ε
× (urh,N)− +

(urh,N − 1)+

ε
×
(
(urh,N − 1)+ + 1

)
,

one obtains thanks to Lemmas 5.3 and 5.4 that

E
[∫ T

0

∫
Λ

ψε(u
r
h,N(t, x))urh,N(t, x) dx dt

]
→ E

[∫ T

0

∫
Λ

ψ2(t, x) dx dt

]
,

as m→ +∞.

Lemma 5.6. There exists a process gu in L2
PT

(
Ω× (0, T );H1(Λ)

)
such that, up to subse-

quences of (g(urh,N))m and (g(ulh,N))m denoted in the same way,

g(urh,N)→ gu and g(ulh,N)→ gu, both weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. This is mainly due to Lemma 4.6, Lemma 4.7 and (4.11). A detailed proof can be
found in [14].

Lemma 5.7. There exists a process βu in L2
PT

(
Ω× (0, T );L2(Λ)

)
such that, up to subse-

quences of (β(urh,N))m and (β(ulh,N))m denoted in the same way,

β(urh,N)→ βu and β(ulh,N)→ βu, both weakly in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. This is a direct consequence of Lemma 4.6 and (4.11).

Lemma 5.8. The sequence (f lh,N)m defined by (2.2) and (3.3) converges strongly towards
f in L2(Ω;L2(0, T ;L2(Λ))) as m→ +∞.

Proof. There exists Ω̃ ⊂ F with P(Ω̃) = 1 such that, for all ω ∈ Ω̃, by a standard
argument of Steklov average, it is well-known that lim

m→∞
f lh,N(ω) = f(ω) in L2((0, T )×Λ).

Moreover, since f ∈ L2(Ω;L2((0, T ) × Λ)), the mapping ω 7→ ||f(ω)||L2((0,T )×Λ) is an
element of L2(Ω), and using the fact that P-a.s in Ω

||f lh,N ||L2((0,T )×Λ) ≤ ||f ||L2((0,T )×Λ),

one can conclude thanks to Lebesgue’s dominated convergence theorem ([36, Theorem
1.3.3]) that (f lh,N)m converges strongly towards f in L2(Ω;L2((0, T ) × Λ)), hence, by
isometry, also in L2(Ω;L2(0, T ;L2(Λ))).
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Proposition 5.9. The weak limit u of our finite-volume scheme (3.1)-(3.2) introduced
in Proposition 5.1 has P-a.s. continuous paths with values in L2(Λ) and satisfies for all
t ∈ [0, T ],

u(t) = u0 +

∫ t

0

(∆u(s)− ψ + βu(s) + f(s)) ds+

∫ t

0

gu(s) dW (s),

in L2(Λ) and P-a.s. in Ω, where ∆ denotes the Laplace operator on H1(D) associated
with the formal Neumann boundary conditions, ψ, gu and βu respectively are given by
Lemmas 5.2, 5.6 and 5.7.

Proof. Let A ∈ A, ξ ∈ D(R) with ξ(T ) = 0 and ϕ ∈ D(R2) with ∇ϕ · n = 0 on ∂Λ,
where we denote D(D) := C∞c (D) for any open subset D ⊆ Rd, d ∈ N. We introduce the
discrete function ϕh : Λ→ R defined by ϕh(x) =

∑
K∈T

1K(x)ϕ(xK) for any x ∈ Λ.

For K ∈ T , n ∈ {0, . . . , N − 1} and t ∈ [tn, tn+1) we multiply (3.2) with 1Aξ(t)ϕ(xK) to
obtain

1Aξ(t)
mK

∆t

(
un+1
K − unK − g(unK)

(
W n+1 −W n

))
ϕ(xK)

+ 1Aξ(t)
∑

σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )ϕ(xK)

+ 1Aξ(t)mKψε(u
n+1
K )ϕ(xK)

=1Aξ(t)mK

(
β(un+1

K ) + fnK
)
ϕ(xK).

(5.1)

Firstly, we sum (5.1) over each control volumeK ∈ T , we integrate over each time interval
[tn, tn+1], then we sum over n = 0, . . . , N−1, and finally we take the expectation to obtain

S1,m + S2,m + S3,m + S4,m = S5,m + S6,m (5.2)

where

S1,m = E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mK
un+1
K − unK

∆t
ϕ(xK) dt

]

S2,m = −E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mKg(unK)
W n+1 −W n

∆t
ϕ(xK) dt

]

S3,m = E

N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)
∑

σ=K|L∈Eint∩EK

mσ

dK|L
(un+1

K − un+1
L )ϕ(xK) dt


S4,m = E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mKψε(u
n+1
K )ϕ(xK) dt

]

S5,m = E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mKβ(un+1
K )ϕ(xK) dt

]

S6,m = E

[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mKf
n
Kϕ(xK) dt

]
.
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Let us study separately the limit as m goes to +∞ of S1,m, S2,m, S3,m, S4,m, S5,m and
S6,m.

• Study of S1,m: Following [14, Proposition 4.5], one proves thanks to Proposition 5.1 and
a discrete integration by parts formula, that up to a subsequence denoted in the same
way

S1,m −−−−→
m→+∞

−E
[
1A

∫ T

0

∫
Λ

u(t, x)ξ′(t)ϕ(x) dx dt

]
− E

[
1A

∫
Λ

u0(x)ξ(0)ϕ(x) dx

]
.

• Study of S2,m: Thanks to Lemma 5.6 and the properties of the stochastic integral, one
shows that, up to a subsequence denoted in the same way (see [14, Proposition 4.5])

S2,m −−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

∫ t

0

gu(s, x) dW (s)ξ′(t)ϕ(x) dx dt

]
.

• Study of S3,m: Following the arguments we developed in [12, Proposition 4.16], one
shows that

S3,m −−−−→
m→+∞

−E
[
1A

∫ T

0

∫
Λ

ξ(t)∆ϕ(x)u(t, x) dx dt

]
.

• Study of S4,m: Using Lemma 5.2, one proves that

S4,m −−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

ψ(t, x)ϕ(x)ξ(t) dx dt

]
.

To do so, we use the following decomposition for S4,m = S4,m − S̃4,m + S̃4,m, where

S̃4,m = E
[
1A

∫ T

0

∫
Λ

ψε(u
r
h,N)ϕ(x)ξ(t) dx dt

]
−−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

ψ(t, x)ϕ(x)ξ(t) dx dt

]
.

Note that

|S4,m − S̃4,m| =

∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K

ψε(u
n+1
K )

(
ϕ(xK)− ϕ(x)

)
ξ(t) dx dt

]∣∣∣∣∣
≤ h||ξ||∞||∇ϕ||∞||ψε(urh,N)||L1(Ω;L1(0,T ;L1(Λ))) −−−−→

m→+∞
0.

• Study of S5,m: Thanks to Lemma 5.7, one shows as for the study of S4,m that

S5,m −−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

βu(t, x)ϕ(x)ξ(t) dx dt

]
.

• Study of S6,m: using Lemma 5.8 and the fact that f also belongs to L1(Ω;L1(0, T ;L1(Λ))),
one proves that

S6,m −−−−→
m→+∞

E
[
1A

∫ T

0

∫
Λ

f(t, x)ϕ(x)ξ(t) dx dt

]
.
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Indeed,∣∣∣∣S6,m − E
[
1A

∫ T

0

∫
Λ

f(t, x)ϕ(x)ξ(t) dx dt

]∣∣∣∣
=

∣∣∣∣∣E
[
N−1∑
n=0

∫ tn+1

tn

∑
K∈T

1Aξ(t)mKf
n
Kϕ(xK) dt

]
− E

[
1A

∫ T

0

∫
Λ

f(t, x)ϕ(x)ξ(t) dx dt

]∣∣∣∣∣
=

∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K

ξ(t) {fnKϕ(xK)− f(t, x)ϕ(x)} dx dt

]∣∣∣∣∣
=

∣∣∣∣∣E
[
1A

N−1∑
n=0

∑
K∈T

∫ tn+1

tn

∫
K

ξ(t)
{
ϕ(xK)

(
fnK − f(t, x)

)
+ f(t, x)

(
ϕ(xK)− ϕ(x)

)}
dx dt

]∣∣∣∣∣
≤||ξ||∞||ϕ||∞||f lh,N − f ||L1(Ω;L1((0,T )×Λ)) + h||ξ||∞||∇ϕ||∞||f ||L1(Ω;L1(0,T ;L1(Λ))) −−−−→

m→+∞
0.

Gathering all the previous convergence results, we can pass to the limit in (5.2), and,
by using the density of the set {Ψ ∈ D(R2) | ∇Ψ · n = 0 on ∂Λ} in H1(Λ) (given by
[37, Theorem 1.1]), we get that P-a.s. in Ω, for all ξ ∈

{
φ ∈ D(R) : φ(T ) = 0

}
and all

ϕ ∈ H1(Λ)

−
∫ T

0

∫
Λ

(
u(t, x)−

∫ t

0

gu(s, x) dW (s)

)
ξ′(t)ϕ(x) dx dt−

∫
Λ

u0(x)ξ(0)ϕ(x) dx

=−
∫ T

0

∫
Λ

∇u(t, x) · ∇ϕ(x)ξ(t) dx dt−
∫ T

0

∫
Λ

ψ(t, x)ϕ(x)ξ(t) dx dt

+

∫ T

0

∫
Λ

βu(t, x)ϕ(x)ξ(t) dx dt+

∫ T

0

∫
Λ

f(t, x)ϕ(x)ξ(t) dx dt.

(5.3)

By identically repeating the arguments developed in the proof of [14, Proposition 4.5], we
first obtain that u ∈ L2

(
Ω; C ([0, T ];L2(Λ))

)
, and then that for any t in [0, T ]

u(t)− u(0)−
∫ t

0

gu(s) dW (s) +

∫ t

0

ψ(s)ds−
∫ t

0

βu(s) ds−
∫ t

0

f(s) ds =

∫ t

0

∆u(s) ds,

in H1(Λ)∗ and P-a.s. in Ω. To conclude, let us mention that since the left-hand side of
the above equality is in L2(Λ), it also holds in L2(Λ).

Lemma 5.10. (Stochastic energy equality) For any c > 0, the stochastic process u intro-
duced in Proposition 5.1 satisfies the following stochastic energy equality:

e−ctE
[
||u(t)||2L2(Λ)

]
+ 2

∫ t

0

e−csE
[
||∇u(s)||2L2(Λ)

]
ds

=E
[
||u0||2L2(Λ)

]
− c

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds+

∫ t

0

e−csE
[
||gu(s)||2L2(Λ)

]
ds

+ 2

∫ t

0

e−csE
[∫

Λ

(
βu(s, x) + f(s, x)− ψ(s, x)

)
u(s, x) dx

]
ds, ∀t ∈ [0, T ].

(5.4)

Proof. It is a direct application of Itô formula to the stochastic process u and the func-
tional F : (t, v) 7→ e−ct||v||2L2(Λ) defined on [0, T ]× L2(Λ).
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5.2 Identification of weak limits coming from the non-linear terms

We state here a result proved in [14, Lemma 4.7], which gives a lower bound for the
inferior limit of the following quantity∫ T

0

∫ t

0

e−csE[|urhm,Nm(s)|21,hm ] ds dt,

for any c > 0. This boundedness result will be one of the key points in identifying the weak
limits ψ, gu, βu coming from the discretization of the non linear terms ψε(urh,N), g(urh,N)
and β(urh,N), see Lemmas 5.2, 5.6, 5.7.

Lemma 5.11. For any c > 0, the stochastic process u introduced in Proposition 5.1
satisfies the following inequality:∫ T

0

∫ t

0

e−csE
[∫

Λ

|∇u(x, s)|2 dx
]
ds dt ≤ lim inf

m→+∞

∫ T

0

∫ t

0

e−csE[|urhm,Nm(s)|21,hm ] ds dt. (5.5)

Now, we have all the necessary tools on the one hand for the identification of ψ, ψ1, ψ2,
gu and βu, and on the other hand for completing the proof of Theorem 1.4.

Proposition 5.12. The sequences (urh,N)m and (ulh,N)m converge strongly in
L2(Ω;L2(0, T ;L2(Λ))) to the unique variational solution of Problem (1.1) in the sense
of Definition 1.1.

Proof. Let us fix n ∈ {0, ..., N−1}, K ∈ T , and multiply (3.2) by ∆tun+1
K , use the formula

a(a − b) = 1
2
(a2 − b2 + (a − b)2) with a = un+1

K and b = unK , take the expectation, and
proceed as for the obtention of (4.4) to arrive at

mK

2
E
[
(un+1

K )2 − (unK)2
]

+
mK

2
E
[
(un+1

K − unK)2
]

+∆t
∑

σ=K|L∈Eint∩EK

mσ

dK|L
E
[
(un+1

K − un+1
L )un+1

K

]
+ ∆tmKψε(u

n+1
K )un+1

K

≤ mK

2
E
[
(un+1

K − unK)2
]

+
mK∆t

2
E
[
g2(unK)

]
+ ∆tmKE

[(
β(un+1

K ) + fnK
)
un+1
K

]
.

Now, we multiply the last inequality by e−ctn for arbitrary c > 0. Then, summing over
K ∈ T and n ∈ {0, ..., k} for k ∈ {0, ..., N − 1}, using (2.4) and reasoning as in the proof
of (4.3) one gets

1

2

k∑
n=0

∑
K∈T

mKe
−ctnE

[
(un+1

K )2 − (unK)2
]

+ ∆t
k∑

n=0

e−ctn
∑

σ=K|L∈Eint

mσ

dK|L
E
[
|un+1
K − un+1

L |2
]

+∆t
k∑

n=0

∑
K∈T

mKe
−ctnE

[
ψε(u

n+1
K )un+1

K

]
≤ ∆t

2

k∑
n=0

∑
K∈T

mKe
−ctnE

[
g2(unK)

]
+ ∆t

k∑
n=0

∑
K∈T

mKe
−ctnE

[(
β(un+1

K ) + fnK
)
un+1
K

]
.
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Let us focus on each sum of this last inequality separately, by using the computations we
developed in [14].
• Note that the general term of the first sum can be decomposed in the following way:

e−ctnE
[
(un+1

K )2 − (unK)2
]

= e−ctnE
[
(un+1

K )2
]
− e−ctn−1E

[
(unK)2

]
− E

[
(unK)2

] (
e−ctn − e−ctn−1

)
,

where t−1 := −∆t. Firstly, we have

1

2

k∑
n=0

∑
K∈T

mK

(
e−ctnE

[
(un+1

K )2
]
− e−ctn−1E

[
(unK)2

])
=

1

2

∑
K∈T

mKe
−ctkE

[
(uk+1

K )2
]
− 1

2

∑
K∈T

mKE
[
(u0

K)2
]
ec∆t.

(5.6)

Then, using properties of the exponential function,

− 1

2

k∑
n=0

∑
K∈T

mKE
[
(unK)2

] (
e−ctn − e−ctn−1

)
>− 1

2

∑
K∈T

mKE
[
(u0

K)2
] (

1− ec∆t
)

+
c

2
e−c∆t

∫ tk

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds

>
c

2
e−c∆t

∫ tk

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds.

(5.7)

• The second sum can be handled similarly in the following manner

∆t
k∑

n=0

e−ctn
∑

σ=K|L∈Eint

mσ

dK|L
E
[
|un+1
K − un+1

L |2
]

= ∆t
k∑

n=0

e−ctnE[|un+1
h |21,h]

≥
∫ tk+1

0

e−csE[|urh,N(s)|21,h] ds.

(5.8)

• Since ψε is non-decreasing and satisfies ψε(0) = 0, the third sum can be handled as
follows: ∫ tk+1

0

e−csE
[∫

Λ

ψε(u
r
h,N(s, x))urh,N(s, x) dx

]
ds

=
k∑

n=0

∑
K∈T

∫ tn+1

tn

e−csE
[∫

K

ψε(u
n+1
K )un+1

K dx

]
ds

≤∆t
k∑

n=0

∑
K∈T

mKe
−ctnE

[
ψε(u

n+1
K )un+1

K

]
.

(5.9)
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• We have also the following majoration of the fourth sum:

∆t

2

k∑
n=0

∑
K∈T

mKe
−ctnE

[
g2(unK)

]
≤ ∆t

2

∑
K∈T

mKE
[
g2(u0

K)
]

+
1

2

∫ tk

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds.

(5.10)

• Using the properties of the exponential function again, the last sum can be handled in
the following manner:

∆t
k∑

n=0

∑
K∈T

mKe
−ctnE

[(
β(un+1

K ) + fnK
)
un+1
K

]
≤
∫ tk+1

0

e−csE
[∫

Λ

(
β(urh,N(s, x)) + f lh,N(s, x)

)
urh,N(s, x) dx

]
ds

+ c∆t||urh,N ||L2(Ω;L2(0,T ;L2(Λ)))

(
Lβ||urh,N ||L2(Ω;L2(0,T ;L2(Λ))) + ||f ||L2(Ω;L2(0,T ;L2(Λ)))

)
.

(5.11)

Combining (5.6), (5.7), (5.8), (5.9), (5.10) and (5.11), one gets

∑
K∈T

mKe
−ctkE

[
(uk+1

K )2
]

+ 2

∫ tk+1

0

e−csE[|urh,N(s)|21,h] ds

+2

∫ tk+1

0

e−csE
[∫

Λ

ψε(u
r
h,N(s, x))urh,N(s, x) dx

]
ds

≤ ec∆t
∑
K∈T

mKE
[
(u0

K)2
]

+ ∆t
∑
K∈T

mKE
[
g2(u0

K)
]

+

∫ tk

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds

+2

∫ tk+1

0

e−csE
[∫

Λ

(
β(urh,N(s, x)) + f lh,N(s, x)

)
urh,N(s, x) dx

]
ds

−ce−c∆t
∫ tk

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds

+2c∆t||urh,N ||L2(Ω;L2(0,T ;L2(Λ)))

(
Lβ||urh,N ||L2(Ω;L2(0,T ;L2(Λ))) + ||f ||L2(Ω;L2(0,T ;L2(Λ)))

)
.
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Moreover, for t ∈ [tk, tk+1) since e−ct ≤ e−ctk and (t−∆t)+ ≤ tk, one obtains that

e−ctE
[
||urh,N(t)||2L2(Λ)

]
+ 2

∫ t

0

e−csE[|urh,N(s)|21,h] ds

+2

∫ t

0

e−csE
[∫

Λ

ψε(u
r
h,N(s, x))urh,N(s, x) dx

]
ds

≤ ec∆t
∑
K∈T

mKE
[
(u0

K)2
]

+ ∆t
∑
K∈T

mKE
[
g2(u0

K)
]

+

∫ t

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds

+2

∫ t

0

e−csE
[∫

Λ

(
β(urh,N(s, x)) + f lh,N(s, x)

)
urh,N(s, x) dx

]
ds

+2

∫ tk+1

t

e−csE
[∫

Λ

(
β(urh,N(s, x)) + f lh,N(s, x)

)
urh,N(s, x) dx

]
ds

−ce−c∆t
∫ (t−∆t)+

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds

+2c∆t||urh,N ||L2(Ω;L2(0,T ;L2(Λ)))

(
Lβ||urh,N ||L2(Ω;L2(0,T ;L2(Λ))) + ||f ||L2(Ω;L2(0,T ;L2(Λ)))

)
.

Using the constant K0 > 0 given by Proposition 4.2, one gets the estimate∫ t

(t−∆t)+
e−csE

[
||urh,N(s)||2L2(Λ)

]
ds

+ 2

∫ tk+1

t

e−csE
[∫

Λ

(
β(urh,N(s, x)) + f lh,N(s, x)

)
urh,N(s, x) dx

]
ds

≤∆t(1 + 2Lβ)K0 + 2
√

∆t||f ||L2(Ω;L2(0,T ;L2(Λ)))

√
K0,

and Chasles’ relation −
∫ (t−∆t)+

0
= −

∫ t
0

+
∫ t

(t−∆t)+
yields

e−ctE
[
||urh,N(t)||2L2(Λ)

]
+ 2

∫ t

0

e−csE[|urh,N(s)|21,h] ds

+ 2

∫ t

0

e−csE
[∫

Λ

ψε(u
r
h,N(s, x))urh,N(s, x) dx

]
ds

≤ ec∆tE[||u0||2L2(Λ)] + ∆tL2
gE[||u0||2L2(Λ)] +

∫ t

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds (5.12)

+ 2

∫ t

0

e−csE
[∫

Λ

(
β(urh,N(s, x)) + f lh,N(s, x)

)
urh,N(s, x) dx

]
ds

− ce−c∆t
∫ t

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds

+ c∆t(1 + 2Lβ)K0 + 2c
√

∆t||f ||L2(Ω;L2(0,T ;L2(Λ)))

√
K0

+ 2c∆t||urh,N ||L2(Ω;L2(0,T ;L2(Λ)))

(
Lβ||urh,N ||L2(Ω;L2(0,T ;L2(Λ))) + ||f ||L2(Ω;L2(0,T ;L2(Λ)))

)
.
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Furthermore,∫ t

0

e−csE
[
||g(urh,N)(s)||2L2(Λ)

]
ds

=

∫ t

0

e−csE
[
||g(urh,N)(s)− g(u)(s)||2L2(Λ)

]
ds

+ 2

∫ t

0

e−csE
[∫

Λ

g(urh,N)(s, x)g(u)(s, x)dx

]
ds−

∫ t

0

e−csE
[
||g(u)(s)||2L2(Λ)

]
ds.

(5.13)

In the same manner,

− ce−c∆t
∫ t

0

e−csE
[
||urh,N(s)||2L2(Λ)

]
ds

=− ce−c∆t
∫ t

0

e−csE
[
||urh,N(s)− u(s)||2L2(Λ)

]
ds (5.14)

− 2ce−c∆t
∫ t

0

e−csE
[∫

Λ

urh,N(s, x)u(s, x) dx

]
ds+ ce−c∆t

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds.

And at last∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))urh,N(s, x) dx

]
ds

=

∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))u(s, x) dx

]
ds

+

∫ t

0

e−csE
[∫

Λ

(
β(urh,N(s, x))− β(u(s, x))

)
(urh,N(s, x)− u(s, x)) dx

]
ds (5.15)

+

∫ t

0

e−csE
[∫

Λ

β(u(s, x))(urh,N(s, x)− u(s, x)) dx

]
ds.

Finally, by considering from now on a parameter c > 0 depending only on Lg and Lβ such
that for any N big enough∫ t

0

e−csE
[
||g(urh,N(s))− g(u(s))||2L2(Λ)

]
ds− ce−c∆t

∫ t

0

e−csE
[
||urh,N(s)− u(s)||2L2(Λ)

]
ds

+ 2

∫ t

0

e−csE
[∫

Λ

(
β(urh,N(s, x))− β(u(s, x))

)
(urh,N(s, x)− u(s, x)) dx

]
ds ≤ 0,

we are able to prove that, after injecting (5.13), (5.14) and (5.15) in (5.12), and integrating
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from 0 to T :∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+ 2

∫ T

0

∫ t

0

e−csE[|urh,N(s)|21,h] ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

ψε(u
r
h,N(s, x))urh,N(s, x) dx

]
ds dt

≤
∫ T

0

E[||u0||2L2(Λ)] dt+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

g(urh,N)(s, x)g(u)(s, x) dx

]
ds dt

−
∫ T

0

∫ t

0

e−csE
[
||g(u(s))||2L2(Λ)

]
ds dt− 2ce−c∆t

∫ T

0

∫ t

0

e−csE
[∫

Λ

urh,N(s, x)u(s, x) dx

]
ds dt

+ ce−c∆t
∫ T

0

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds dt+ T

(
ec∆t − 1

)
E[||u0||2L2(Λ)]

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

β(urh,N(s, x))u(s, x) dx

]
ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

β(u(s, x))
(
urh,N(s, x)− u(s, x)

)
dx

]
ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

f lh,N(s, x)urh,N(s, x) dx

]
ds dt

+ c∆tT (1 + 2Lβ)K0 + 2cT
√

∆t||f ||L2(Ω;L2(0,T ;L2(Λ)))

√
K0

+ 2c∆tT ||urh,N ||L2(Ω;L2(0,T ;L2(Λ)))

(
Lβ||urh,N ||L2(Ω;L2(0,T ;L2(Λ))) + ||f ||L2(Ω;L2(0,T ;L2(Λ)))

)
.

Firstly, by passing to the superior limit in this last inequality, Remark 5.5 and Lemma
5.8 allow us to state that:

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+ 2 lim inf

m→+∞

∫ T

0

∫ t

0

e−csE[|urh,N(s)|21,h] ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

ψ2(s, x) dx

]
ds dt

≤
∫ T

0

E[||u0||2L2(Λ)] dt+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

gu(s, x)g(u)(s, x) dx

]
ds dt

−
∫ T

0

∫ t

0

e−csE
[
||g(u(s))||2L2(Λ)

]
ds dt− c

∫ T

0

∫ t

0

e−csE
[
||u(s)||2L2(Λ)

]
ds dt

+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

βu(s, x)u(s, x) dx

]
ds dt+ 2

∫ T

0

∫ t

0

e−csE
[∫

Λ

f(s, x)u(s, x) dx

]
ds dt.
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Secondly, the stochastic energy equality (5.4) yields

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+ 2 lim inf

m→+∞

∫ T

0

∫ t

0

e−csE[|urh,N(s)|21,h] ds dt

+2

∫ T

0

∫ t

0

e−csE
[∫

Λ

ψ2(s, x)− ψ(s, x)u(s, x) dx

]
ds dt

≤
∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt+ 2

∫ T

0

∫ t

0

e−csE
[
||∇u(s)||2L2(Λ)

]
ds dt

−
∫ T

0

∫ t

0

e−csE
[
||g(u(s))− gu(s)||2L2(Λ)

]
ds dt.

Thirdly, thanks to the key Inequality (5.5) given by Lemma 5.11, we arrive at

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt+

∫ T

0

∫ t

0

e−csE
[
||g(u(s))− gu(s)||2L2(Λ)

]
ds dt

+2

∫ T

0

∫ t

0

e−csE
[∫

Λ

ψ2(s, x)− ψ(s, x)u(s, x) dx

]
ds dt

≤
∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt. (5.16)

Owing to the weak convergence of (urh,N)m towards u in L2(Ω;L2(0, T ;L2(Λ))), we can
affirm that the following inequality holds true∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt ≤ lim inf

m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt,

so that∫ T

0

∫ t

0

e−csE
[∫

Λ

ψ2(s, x)− ψ(s, x)u(s, x) + (g(u(s, x))− gu(s, x))2 dx

]
ds dt ≤ 0. (5.17)

By Lemma 5.4 and Remark 5.5, we can affirm that P-almost surely in Ω and almost
everywhere in (0, T ) × Λ, 0 ≤ u ≤ 1 and ψ = ψ1 + ψ2 with ψ1 ≤ 0 and ψ2 ≥ 0. Then
ψ2 − ψu = (1 − u)ψ2 − ψ1u ≥ 0 and (5.17) allows us to say that gu = g(u) and that
ψ2 − ψu = 0. In particular, we have since ψ2 − ψu = (1− u)ψ2 − ψ1u:

• In the set {u = 0}, then ψ2 − ψu = 0 implies that ψ2 = 0 and so ψ = ψ1 ≤ 0.

• In the set {u = 1}, then ψ2 − ψu = 0 implies that ψ1 = 0 and so ψ = ψ2 ≥ 0.

• In the set {0 < u < 1}, then ψ2 − ψu = 0 implies that ψ1 = ψ2 = 0 and so ψ = 0.

In this manner, ψ ∈ ∂I[0,1](u). Going back to (5.16), we have

lim sup
m→+∞

∫ T

0

e−ctE
[
||urh,N(t)||2L2(Λ)

]
dt ≤

∫ T

0

e−ctE
[
||u(t)||2L2(Λ)

]
dt, (5.18)
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and one can thus conclude from (5.18) and Proposition 5.1 that (urh,N)m converges strongly
to u in L2(Ω;L2(0, T ;L2(Λ))), that βu = β(u) and that (u, ψ) is the unique variational
solution of Problem (1.1) in the sense of Definition 1.1. As a consequence of [42, Corol-
lary 1.2.23, p.25] with (S,A, µ) = (Ω,F ,P), (T,B, ν) = ((0, T ),B(0, T ), λ), X = L2(Λ),
p = 2, L2(Ω;L2(0, T ;L2(Λ))) is isometrically isomorphic to L2(0, T ;L2(Ω;L2(Λ))), hence
(urh,N) also converges strongly towards u in L2(0, T ;L2(Ω;L2(Λ))). Combining this last
information with the boundedness of (urh,N)m in L∞(0, T ;L2(Ω;L2(Λ))) (see Lemma 4.3)
allows us to conclude that (urh,N)m converges strongly towards u in Lp(0, T ;L2(Ω;L2(Λ)))
for any finite p ≥ 1 thanks to Vitali’s theorem [36, Corollaire 1.3.3].
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