
HAL Id: hal-04636648
https://hal.science/hal-04636648v1

Submitted on 5 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SLACKVM: Packing Virtual Machines in
Oversubscribed Cloud Infrastructures

Pierre Jacquet, Thomas Ledoux, Romain Rouvoy

To cite this version:
Pierre Jacquet, Thomas Ledoux, Romain Rouvoy. SLACKVM: Packing Virtual Machines in Over-
subscribed Cloud Infrastructures. 2024 CLUSTER - IEEE International Conference on Cluster Com-
puting, Sep 2024, Kobe, Japan. pp.1-12, �10.1109/CLUSTER59578.2024.00024�. �hal-04636648�

https://hal.science/hal-04636648v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

SLACKVM: Packing Virtual Machines
in Oversubscribed Cloud Infrastructures
Pierre JACQUET

Inria, Univ. Lille, CNRS,
UMR 9189 CRIStAL, France

pierre.a.jacquet@inria.fr

Thomas LEDOUX
IMT Atlantique, Inria, CNRS,

UMR 6004 LS2N, France
thomas.ledoux@inria.fr

Romain ROUVOY
Univ. Lille, Inria, CNRS,

UMR 9189 CRIStAL, France
romain.rouvoy@inria.fr

Abstract—Cloud providers generally expose a large catalog
of Virtual Machines (VMs) offers, some being categorized as
premium—guaranteeing dedicated resources—and others being
hosted in oversubscribed environments, where virtual resources
can exceed the physical capabilities of Physical Machines (PMs).
The latter strategy is often employed to increase platform
utilization, as hosted VMs are unlikely to fully utilize all their
allocated resources simultaneously [1]. However, managing mul-
tiple oversubscribed VM levels introduces an additional layer of
complexity for Cloud providers, often leading them to provision
isolated clusters of PMs for each category of offers.

In this paper, we introduce SLACKVM, a novel Cloud shared
architecture wherein VMs from various oversubscription levels
coexist on the same cluster of PMs. In particular, we demonstrate
that oversubscription levels can be complementary, meaning they
do not saturate the same resource components. By leveraging this
complementarity, Cloud providers can couple multiple levels to
better consolidate VMs offers onto PMs, and reduce the size of
their clusters by up to 9.6%. This resource savings results in both
an operational cost reduction and a reduced ecological footprint
for Cloud infrastructures, with a limited impact on the Quality
of Service (QoS).

I. INTRODUCTION

Over the past decade, there have been notable improvements
in the power efficiency of Data Centers (DCs). However,
following the Jevons paradox [2], the increasing demand for
data processing and storage has risen at an even greater
rate, resulting in a continued upward trajectory in power
consumption [3].

As some DCs are close to their maximum efficiency in terms
of Power Usage Efficiency (PUE) [4], research has been shift-
ing from infrastructure-level optimizations to software-level
optimizations. A key area of concern for Cloud providers re-
mains the low resource usage per Physical Machine (PM) [5],
[6], [7]. In particular, consolidating Virtual Machine (VM)
workloads onto fewer PMs can significantly reduce the carbon
footprint of DCs, lower their power consumption, and decrease
their operational costs.

While improving resource usage is an active topic in the
system community, the latest proposals only rely on the
introduction of new kinds of workloads to ”fill the gaps” of
resources left by VMs, instead of reducing the existing cluster
size, which may be associated to a rebound effect. Typically,
unallocated PM resources may be leveraged by spot VM [8],
[9], [10], while resources unused by tenants may be used

by harvest VM [11]. Disaggregated VMs were also recently
proposed to leverage resource fragmentation [12], [13]. While
these proposals improve the resource usage of a server, they
also share the particularity to be only suitable for a given type
of workload [14], as they lack guarantees on availability or
performance. In this paper, our approach does not aim to ”fill
the gaps” with alternative workloads. Instead, it advocates for
a method to prevent the occurrence of gaps in the first instance.

We consider this objective more convenient for a Cloud
provider, as it maintains the use of long-living generic VMs
instead of introducing highly specific ones. In other words, we
aim to enhance PM packing with a focus on long-term services
rather than small, ephemeral tasks (e.g., FaaS computing [15]).
It avoids reliance on a complex equilibrium notion between
infrastructure gaps and client demands [16]. Furthermore, this
approach effectively reduces the Infrastructure-as-a-Service
(IAAS) PM cluster size, contributing to an improvement in
the carbon footprint of ICT, which is known to grow at a fast
pace [3].

Oversubscription (also known as overcommitment)1 is com-
monly adopted to increase resource usage. This paper demon-
strates that oversubscription can also be harnessed to reduce
unallocated resources, further contributing to the efficiency of
DC operations.

Although Cloud providers are used to managing VMs
oversubscribed at different levels, these are currently hosted
by distinct clusters, with each PM adhering to at most a single
oversubscription ratio. Since CPU and memory oversubscrip-
tion levels do not occur in the same order of magnitude, we
demonstrate that different oversubscription levels may saturate
different types of physical resources. By combining different
oversubscription levels, we, therefore, illustrate the potential
to leverage their complementary nature, thereby reducing the
number of PMs required to handle a IAAS workload.

Our contribution, named SLACKVM, comprises a local
agent, demonstrating how resources can be segregated among
distinct groups of VMs, and a novel metric to improve
Cloud score-based schedulers with complementary packing
considerations. We assess our approach on both a physical
platform and a simulator, evaluating performance and noticing

1a strategy commonly employed by Cloud providers to rent more virtual
resources than physically available—assuming that customers do not simul-
taneously utilize all the resources allocated to them.

1

https://orcid.org/0009-0002-7988-8550
https://orcid.org/0000-0002-6136-6757
https://orcid.org/0000-0003-1771-8791

significant gains at scale. Specifically, our results demon-
strate that, by appropriately combining oversubscription levels,
Cloud providers can save up to 9.6% in terms of the number
of required PMs, which is a noticeable gain at the scale of a
Cloud provider.

In the remainder of this paper, we report on related work
(Section II), explain why oversubscription co-hosting is impor-
tant (Section III), present an overview of SLACKVM architec-
ture (Section IV), before diving into its design (Section V &
Section VI). We evaluate our approach (Section VII) before
concluding on this work (Section VIII).

II. RELATED WORK

The state of the art related to our contribution covers
both contributions in the areas of resource oversubscription
(Section II-A) and VM scheduling (Section II-B).

A. Resource oversubscription

Most hypervisors enable oversubscription by allowing the
sum of all allocated virtual resources to exceed the PM
capabilities [17], [18], [19]. An overload situation occurs
when a VM workload effectively requires more resources than
available from the PM. On a CPU overload, VMs cannot
use their allocated time slices, which may lead to Service-
Level Agreement (SLA) violations. To avoid such performance
degradation, oversubscription is usually limited at a certain
level, quantified as a ratio between the number of exposed
virtual resources and the available physical resources. For ex-
ample, a CPU oversubscription of 2:1 refers to the availability
of 2 virtual CPUs (vCPUs) per physical core.

Some cluster managers, such as OPENSTACK [20] and
Borg [21], can limit the oversubscription level using a single
static value for the whole cluster of PMs. The oversubscription
level can also be defined per PM. This ratio can be static, by
taking into account individual PMs performance [22], or dy-
namic, relying on the effective usage of computing resources.
In that case, oversubscription level computation depends on
a predicted peak usage [1], [23], as new deployments must
be performed on resources seen as available in the long run.
Peak prediction may be computed using VM percentile [24]
or standard deviation [1].

Consequently, each PM maintains a single oversubscription
level, which is determined by the cluster configuration or the
PM configuration. Although this PM ratio can be dynamically
adjusted over time in some approaches, it still represents
a single—albeit dynamic—level. However, Cloud providers
commonly offer a range of VMs with varying performance
guarantees, depending on their pricing tiers. This results in
the support of multiple oversubscription levels. As PMs sup-
port a single oversubscription level, this requires provisioning
dedicated clusters for each specific offer. We argue that this
approach is impractical and misses packing opportunities be-
tween complementary workloads. In our approach, we instead
improve oversubscription granularity beyond a single server
by introducing multiple oversubscription levels in a single PM,
using segregated resource pools.

B. VM scheduling

The selection of an appropriate PM for a given VM deploy-
ment is often framed as a Vector Bin Packing Problem [25]. In
this problem, a set of VMs with known resource requirements
must be allocated to PMs with known resource capacity. The
objective is to fulfill the VMs demands while minimizing
the number of required PMs. Bin packing problems are NP-
hard [26] and, over the years, numerous heuristics have been
proposed to tackle VM scheduling cases [27].

Cloud schedulers, such as OPENSTACK Nova (containers
and VMs) [28], Azure Protean (VMs) [29], Borg (Linux
containers) and Kubernetes (containers) [21], follow a similar
deployment process. The PM selection involves filtering candi-
dates from the cluster based on hard constraints (that must be
respected), such as resource availability for the deployment
request. Additionally, candidates are scored based on soft
constraints (that should be respected if possible), including
resource usage considerations like CPU, RAM, and I/O. Final
selection is made upon this score [28], [29]. In this paper, we
focus on extending this score-based selection by introducing
a new metric capturing the complementarity of deployment
within already hosted VMs in a PM. This metric is introduced
by the concept of hybrid oversubscription levels on a single
PM.

III. CLOUD RESOURCE BALANCE

In this section, we discuss how oversubscription levels im-
pact the packing of underlying PMs. We start by describing the
VM resources allocation (Section III-A) and then, we compare
it to PM configurations to identify bottlenecks (Section III-B).

A. Cloud allocations

VM configurations commonly adhere to the convention
of proposing power-of-2 values. Among the prevalent CPU
configurations for VMs are those with 1 vCPU, 2 vCPUs, and
4 vCPUs [30]. While hypervisor constraints do not inherently
preclude the proposition of intermediate sizes, this practice is
commonly adopted to facilitate VM packing [31]. Essentially,
when focusing solely on the CPU dimension, this approach
facilitates the efficient packing of PM, enabling the use of
strategies, such as First-Fit scheduling.

In practice, achieving perfect allocation on a PM—i.e.,
having all its resources utilized to 100%—is unlikely. VMs
allocation hosted on a given PM are often either CPU-bound,
resulting in underutilized memory, or memory-bound, leading
to underutilized CPU [32], [33]. Other types of resources, such
as networks, are less likely to limit deployments [34] and are
not considered in this paper.

To further dive into this issue, we analyzed the VM size
distribution reported in [30] to compute the average VM size
for both Azure and OVHcloud infrastructures (cf. Table I).
This first illustrates than allocations can significantly differ
between Cloud providers.

However, in an oversubscribed environment, resources al-
location may deviate from the deployment request. We are
now interested in identifying which server resource is depleted

2

TABLE I
AVERAGE VCPU & VRAM REQUESTS PER VM (vCPU & vRAM)

Dataset vCPU vRAM

Microsoft Azure 2.25 vCPUs per VM 4.8GB per VM
OVHcloud 3.24 vCPUs per VM 10.05GB per VM

first under different oversubscription policies. To achieve this,
we can compare the Memory per Core (M/C) ratio of hosted
VMs to the PM configurations [35]. When these ratios do
not align, one resource will typically be exhausted before the
other, resulting in stranded resources. We begin by reporting
on the M/C ratio of allocated resources.

Without oversubscription (1:1), we directly compute the
M/C ratio from Table I, by dividing the average VM memory
quantity by the average VM CPU request as, in this context,
only one vCPU is proposed per physical core.

The 2:1 oversubscription level refers to the allocation of 2
vCPUs per CPU core. This allocation scheme reduces physical
CPUs being allocated, while maintaining a similar amount of
DRAM. Consequently, the M/C ratio is increased.

Table II reports on the M/C ratio per Cloud provider, across
three different levels of CPU oversubscription.

TABLE II
M/C RATIO OF OVERSUBSCRIBED VMS (IN PROVISIONED GB/CORE)

Oversubscription levels 1:1 2:1 3:1
Microsoft Azure 2.1 3.0 4.5
OVHcloud 3.1 3.9 5.8

For oversubscribed environments, computations were con-
ducted under two hypotheses. First, the catalog size was
assumed to be more limited. For example, OVHcloud does
not offer oversubscribed VMs with a capacity exceeding 8 GB.
In our estimations of the M/C ratio for oversubscribed VMs,
the average vCPU and vRAM deployments sizes were re-
computed from the VM size distributions where VM having
more than 8 GB were excluded. While this approximation may
not be perfectly accurate, we contend that it is sufficient for
identifying overarching trends.

Second, memory was not oversubscribed. In practice, some
providers may opt to oversubscribe DRAM to a limited extent
compared to what can be achieved with CPU oversubscrip-
tion [36], [37], resulting in similar variations in the M/C ratio.2

B. Cloud resources collapse differently

While IAAS workload M/C ratio may evolve [35], each
server of the cluster reports on a fixed M/C ratio obtained from
its hardware configuration. For example, a PM with 64 cores
and 256 GB of RAM will expose a static M/C ratio of 4 GB
per core. We refer to this hardware ratio as its target ratio,
since aligning hosted VMs allocation to this ratio would lead
to an optimal allocation of hardware resources.

2For instance, OPENSTACK’s default oversubscription ratios are 16:1 for
CPU and 1.5:1 for DRAM [20]

a) Identifying the limiting factor: Comparing both VMs
and PMs ratios, therefore, serves as a method to identify Cloud
bottlenecks. When the M/C ratio of hosted VMs is higher
than the PM, a host will face memory limitations, resulting
in wasted CPU capacity. Conversely, if the M/C ratio of VMs
is lower than the PM, a host will primarily saturate its CPU
resources, leading to underutilized memory capacity.

With PMs operating at a M/C ratio of 2 GB per core, all the
workloads outlined in Table II experience memory saturation,
as the minimal VMs ratio is higher (2.1GB on Azure 1:1
level).

Nonetheless, we contend that a 4 GB per core ratio is a
more accurate representation of the PMs provisioned by Cloud
providers. In this scenario, typical bounds for the Azure dataset
are estimated as follows:

• 1:1 is highly CPU-bounded (2.1 < 4),
• 2:1 is CPU-bounded (3.0 < 4),
• 3:1 is slightly memory-bounded (4.5 > 4).
However, in the context of OVHcloud, which typically

involves larger deployments, biases are different:
• 1:1 is slightly CPU-bounded (3.1 < 4),
• 2:1 is balanced (3.9 ≈ 4),
• 3:1 is highly memory-bounded (5.8 > 4).

b) Resolving the limiting factor: In this context, improv-
ing VM packing can be achieved in different manners.

Only proposing VMs respecting a given M/C ratio cannot be
optimal, as customers may prefer CPU- or memory-intensive
workloads based on their requirements.

Determining the optimal oversubscription level to tune the
hosted M/C ratio can be an objective, but it is worth noting
that estimating this optimal level may also be unrealistic. This
is because non-oversubscribed VMs continue to be offered
by Cloud providers, as a significant share of their customers
favor performance over resource efficiency in their Cloud
deployments.

Another objective to consider is the adjustment of hardware
configurations to closely match the workload ratio demands.
However, achieving such an alignment is also unrealistic,
due to the associated costs for Cloud providers. In practice,
Cloud providers typically employ heterogeneous hardware,
occasionally prioritizing the extension of a PM lifespan rather
than consistently refreshing all the configurations at a fixed
pace.

Therefore, our research is focused on fine-tuning the hosted
VMs M/C ratio, by co-locating multiple oversubscription
levels, to approximate the PM’s specific resource ratio. It
leverages the synergy between workloads that exhibit diverse
resource requirements, such as the combination of a CPU-
bound workload, which is typically encountered in a low
oversubscribed environment, with a memory-bound workload,
commonly observed in highly oversubscribed environments.
By packing VMs from multiple oversubscription levels, it
becomes possible to effectively ”avoid the gaps”—hence max-
imizing the utilization of PMs while reducing the number of
PM required to host a given workload.

3

Global scheduler

vNode A

vNode B

vNode C

Local scheduler

https://docs.google.com/drawings/d/1QLC7qYwYOBSijkDuY

HeX35z8h-28ht4MZWM924GV_yk/edit?usp=sharing

vNode D

vNode E

vNode F

vCluster (1:1)

vCluster (3:1)

vCluster (2:1)

Local scheduler

worker node Nworker node 1

control plane

…

VM workloads

vm

vm

vm

vm

vm vm

vm
vm vm

vm

Fig. 1. Overview of SLACKVM partitioning

IV. SLACKVM OVERVIEW

A Cloud scheduler architecture consists of two key compo-
nents [27], [38]. The first one is a global scheduler, hosted
by the Cloud control plane, which handles incoming VM
deployment requests and selects the most suitable PM for
deployment. It typically achieves this by communicating with
an agent located on each worker node—the PM—referred to
as the local scheduler, to gather information about the PMs’
current state.

Once a PM is selected as the target, the VM deployment re-
quest is forwarded to the local scheduler. The local scheduler
generally assumes responsibility for tasks, such as creating a
disk image, invoking the hypervisor to initiate the VM, and, in
some cases, determining how resources are allocated among
the VMs, possibly utilizing features like cgroups for resource
management.

We propose to extend the capabilities of state-of-the-art
Cloud schedulers by enhancing their local scheduler func-
tionality to manage different oversubscription levels. Under
SLACKVM architecture, the local scheduler segregates a PM’s
resources into vNodes, where each vNode represents a group
of exclusive physical resources. As depicted in Figure 1,
each oversubscription level on a single PM utilizes a sepa-
rate vNode. The collection of vNodes referring to the same
oversubscription level is referred to as a vCluster.

In our context, a VM is deployed on a vNode rather than an
entire PM. This vNode represents a smaller share of a PM’s
resources. Interestingly, in SLACKVM, the size of a vNode is
dynamically adjusted upon a VM deployment, depending on
the resource request and its oversubscription level. We delve
into how our local scheduler manages vNodes in Section V.

The selection of the most appropriate vNode inside a
vCluster is performed by the global scheduler, which may
leverage this context to improve PM packing. We explore the
adaptation of Cloud scheduling for vClusters in Section VI.

V. LOCAL SCHEDULER

A traditional local scheduler is tasked with overseeing
the management of an individual PM within the system.
Its responsibilities encompass responding to requests from
the global scheduler regarding the PM state, which includes
resource utilization, the number of hosted VMs, and other
relevant parameters. Additionally, the local scheduler is re-
sponsible for coordinating the deployment and removal of
VMs on the PM by translating these actions into hypervisor-
related operations. Finally, it plays a critical role during VMs
lifetime by determining how resources are shared.

In contrast to other implementations, our local scheduler
employs a resource partitioning approach, where resources
are segregated into distinct resource partitions referred to as
vNode. Each vNode can host a set of VMs at a given
oversubscription level. Consequently, in our context, hosting
a VM within a vNode entails allocating and pinning it to the
resources managed by that vNode.

Determining the optimal distribution of vNodes, along with
their respective sizes can pose a complex challenge, as the
variability in VM offerings over time and across different
Cloud providers can be substantial. Instead of computing a
static distribution, we prefer to harness the dynamic capabil-
ities inherent to our vNodes. The size of a specific vNode
is dynamically adjusted, based on the arrival and departure of
hosted VMs.

Deploying a VM on a vNode is achieved by adjusting
the vNode’s size allocation to meet the new requirements.
This involves first selecting the appropriate cores to add to
the existing resource collection (as discussed in Section V-A),
before extending the pinning of all hosted VMs in that vNode
to the new range. Conversely, when a VM departs, it may
free up resources from the existing allocation. We also discuss
requirements in workload variability in Section V-B

A. Topology-driven resizing of vNodes
Modern PM processor topologies can be intricate. Cores

within a processor may lack common cache levels with other
cores due to segmented last-level cache (as observed in EPYC
architectures) or the presence of multiple sockets on the PM.
SLACKVM allocates vNodes to report on a configuration
that resembles a CPU model with fewer cores. This is done
both to improve isolation and to leverage existing Linux OS
scheduling mechanisms effectively.

Favouring resource isolation: Since each vNode is asso-
ciated with a distinct oversubscription level, they must be
isolated. At the CPU level, this is achieved by avoiding the
sharing of low-cache levels between vNodes.

Ideally, we allocate each vNode to a separate physical
socket, as this provides the best isolation on the same PM [39].
However, when the number of vNodes exceeds the number
of sockets, or when the size of a vNode exceeds a single
socket, multiple vNodes must be hosted on the same socket.
In such cases, we carefully examine cache levels being shared
between cores. In a setting with n cache levels, we first attempt
to guarantee isolation between cores at the nth level. If not

4

feasible, we proceed to the (n − 1)th level and so on, until
reaching n = 1.

Leveraging Linux scheduler: Scheduling of processes to
physical cores relies on Earliest Eligible Virtual Deadline
First (EEVDF), the Linux scheduler. This task is complex and
benefits from ongoing development by the Linux community
and processor vendors through dedicated drivers. Although
SLACKVM restricts the usage of some processes to a limited
range of cores, it does not go beyond this constraint. We
only consider resources through collections of physical cores.
The responsibility of selecting the most suitable core from the
specified vNode is left to the standard Linux scheduler, hence
benefiting from state-of-the-art scheduling optimizations.

Cores that belong to the same vNode have typically a low
level of cache in common, which mirrors a traditional CPU
topology. Therefore, if the PM implements an asymmetric
load mechanism, such as Intel Turbo Boost Max Technology
(ITMT), specifically designed to handle this type of topology,
it will interact in synergy with our core pinning strategy.

Exposing a virtual topology: We introduce a core distance
metric extending the Non-Uniform Memory Access (NUMA)
distance [40]. This extended metric incorporates an assessment
of the shared cache levels to provide a more complete evalu-
ation of core proximity. Linux system exposes an ID for each
core to identify the cache zone. We collect this information
and we compute distances between each core, as described
in Algorithm 1. While the incremental value is arbitrary (line
6), we chose it to be in the same order of magnitude as the
current NUMA distance notion [40].

Algorithm 1 Distance computation between two cores
Input: core0, core1, height
Output: distance

1: distance←0
2: for all level ∈ 0..height do
3: if CACHE(level, core0) == CACHE(level, core1)

then
4: return distance
5: end if
6: distance← distance+ 10
7: end for
8: return distance+ NUMA-DISTANCE(core0, core1)

The computed distance between cores is what allows our
local scheduler to be generic when pinning cores on hetero-
geneous physical machines. When extending a vNode, we
choose additional cores that are closest in terms of cache
level to the current allocation of the vNode, enabling a
gradual integration of sibling cores. Conversely, when creating
a vNode, initial cores are selected from the farthest ones
compared to existing vNodes.

While frequent changes in the pinning strategy may lead
to decreased performance due to more context switches, it is
important to note that these changes occur only when a VM
is being deployed or destroyed. Such events do not happen at
a significant frequency in the realm of CPU operations.

B. Leveraging workloads diversity in vNodes
In a conventional cluster, a PM only becomes oversub-

scribed when the quantity of allocated virtual resources ex-
ceeds the PM’s configuration. This occurs independently of
the oversubscription level, which serves as an upper limit
that may not always be reached. Given that this approach
introduces diversity among VMs, leading to variations in
CPU utilization before they directly compete for time-slices,
it becomes essential to provide mitigation strategies when
oversubscribing a smaller set of VMs within a vNode.

In a n:1 oversubscription scenario, a Cloud provider guar-
antees that no more than n vCPUs can contend for a single
physical core. Given that the EEVDF mechanism equitably
shares CPU time-slices among processes, a straightforward
approach is to allocate only VMs with the same premium level
policy to the same set of resources.

However, it is possible to allocate different oversubscription
levels of VMs to the same set of resources—i.e., vNode—
provided that they adhere to the conditions imposed by the
lowest oversubscription level within the VM set. In simpler
terms, a VM with a 2:1 oversubscription level may coexist
with VM belonging to a 3:1 oversubscription level, if and
only if the set of physical resources still complies with the
2:1 ratio (as the ”no more than 2 vCPUs per physical core”
condition satisfies the ”no more than 3 vCPUs per physical
core” condition).

While this approach increases the allocated resources, as the
3:1 overcommitted VM is ”upgraded”, it may be strategically
employed to enhance workload heterogeneity, temporarily.
Alternatively, remediation mechanisms, like those involving
cgroups are feasible, but they may be considered at odds with
the oversubscription principle, which aims to distribute the
pool of resources equally among all consumers.

Hence, our strategy relies on the pooling of oversubscribed
vNodes when feasible, effectively leveraging all resources that
remain unallocated by the non-oversubscribed vNode on the
same PM to enhance workload heterogeneity.

VI. GLOBAL SCHEDULER INCENTIVE

Instead of proposing a new IAAS scheduler, we focus in this
section on how packing can be improved by extending current
scheduler mechanisms. The PM selection process is contingent
upon the predefined objectives set forth by Cloud providers.
Objectives are treated by control planes using a scoring
system to pick the most appropriate PM for a given VM
deployment [21], [41]. We introduce a new metric in existing
scoring mechanisms to enhance VMs’ complementarity. This
new metric leverages our unique context, where a PM can be
oversubscribed simultaneously to multiple levels, to improve
server packing.

A vCluster is an abstraction of a set of vNodes of a
given oversubscription objective. It behaves similarly to a
traditional cluster of PMs: receiving a VM deployment request,
interrogating its pool of candidate hosts, and selecting the
most appropriate one. The difference comes from the dynamic
capabilities of its hosts—i.e., the vNodes. We deploy VMs on

5

vNodes while trying to maintain the M/C ratio of the set of
hosted VMs close to the M/C ratio of the hosting server.

Algorithm 2 Progress towards target ratio computation
Input: configPM , allocPM , vm
Output: progress

1: targetRatio← CONFIGPM(mem)
CONFIGPM(cpu)

2: if allocPM(cpu) > 0 then
3: currentRatio← ALLOCPM(mem)

ALLOCPM(cpu)

4: nextRatio← ALLOCPM(mem)+VM(mem)
ALLOCPM(cpu)+VM(cpu)

5: else
6: currentRatio← targetRatio
7: nextRatio← VM(mem)

VM(cpu)

8: end if
9: current∆← |currentRatio− targetRatio|

10: next∆← |nextRatio− targetRatio|
11: progress← current∆− next∆
12: if progress < 0 then
13: factor ← 1 + ALLOCPM(cpu)

CONFIGPM(cpu)

14: progress← progress× factor
15: end if
16: return progress

A PM has an inherent constant M/C ratio due to its
configuration, but the M/C ratio associated with its workload
is subject to dynamic variations. From an intuitive standpoint,
when allocated VMs emphasizes CPU allocation compared
to their PM configuration, it becomes desirable to prioritize
memory-intensive deployments on that PM. This approach
aims at preventing resource saturation before fully allocating
all the available dimensions. Our methodology is rooted in this
consideration.

Algorithm 2 is, therefore, designed to compute a progress
indicator aimed at assessing whether a PM would move closer
to its target M/C ratio if a candidate VM were to be deployed
on it. To achieve this, the algorithm first calculates the target
ratio, based on the PM configuration (line 1) and, then,
compares it with two distinct workload ratios. The first one is
derived from the PM current set of VMs (line 3), while the
second one considers the potential addition of the candidate
VM (line 4). Subsequently, both of these workload ratios
are compared to the optimal resource ratio (lines 9–10). The
algorithm, then, determines if the deployment of the new VM
would bring the PM closer to its target resource ratio or not
(line 11).

In the subsequent selection process, the PM having the
highest progress score in the cluster can be prioritize. If a
candidate deployment would shift the workload ratio away
from the target ratio resulting in a negative progress score,
the PM under consideration is therefore typically not selected.
However, there are scenarios where the progress score may
be negative for all PMs, such as when dealing with a large,
unbalanced VM deployment. In such cases, our preference is
to deploy the considered VM on a PM with a lighter workload,
as this improves our chances of counterbalancing the bias later
on. This is why lines 12 to 15 factor in the negative score of
the PM by considering its current resource allocation.

A PM that does not host any VM is regarded as having an
ideal ratio, as indicated in line 6 of the algorithm. This implies
a preference for consolidating existing hosting PMs before
considering idle ones for new deployments. The rationale
behind this approach is that a PM with an ongoing workload
will typically exhibit an allocation ratio diverging from its
target ratio, thereby making deployments more appealing to
it.

Allocations considered in this algorithm are based on
PM resource usages. Oversubscribed vNodes are considered
through the PM allocation, and not, for example, the sum
of exposed vCPUs. This approach enables our algorithm to
accommodate all possible oversubscription levels.

Furthermore, the algorithm computes the target ratio on
an individual PM basis, thereby accommodating variations in
hardware settings within a given cluster. This consideration
allows for the optimization of resource allocation tailored to
the specific characteristics of each PM.

VII. EMPIRICAL EVALUATION

Our proposed solution was tested on both a physical
platform, as detailed in Section VII-A, and a simulator, as
described in Section VII-B.

The input for both platforms is generated by customer
traces, encompassing actions, such as VM creation, VM usage,
and VM deletion. This collection of client activities is collec-
tively referred to as the ”workload”. Ensuring the inclusion
of realistic workloads was important in our context, as we
highlighted in Section III, where the distribution of typical
VMs sizes from Cloud providers has a noticeable impact on
the M/C ratio.

For both of our platforms, we opted to employ CLOUD-
FACTORY [30] as a workload generator. This tool facilitates
the generation of a dynamic set of VMs that align with a
Cloud provider context, considering both the distribution of
VM sizes and the CPU usage of VMs. We extended the
generator to incorporate our oversubscription considerations.
These modifications enabled our version of the generator to
create VM oversubscribed across multiple levels, with pro-
portions specified during the generation process. The impact
of the shares among oversubscription levels is subsequently
discussed in our evaluation.

A. Evaluation in the wild

We now turn our attention to presenting an example of the
operational behavior of our local scheduler in the context of a
physical platform. Prior research has extensively examined the
performance implications of pinned resources [39], [42], [43].
Our focus is on comparing the performance of our strategy
with the baseline scenario, where a PM hosts VMs at a
single oversubscription level without pinning considerations.
Additionally, we aim to evaluate our ability to isolate VMs
from distinct vNodes.

6

TABLE III
HARDWARE SETTINGS OF OUR IAAS WORKER

Processor AMD EPYC 7662 64-cores ×2
Total threads 2× 64 cores× 2 hyperthreads = 256
Memory 1 TB
Memory per Core (M/C) 1, 000/256 = 4
Operating System Linux Redhat 8.9
Virtualization Platform QEMU & KVM 7.1

1) Physical experimentation settings: In our experiments,
we used the PM described in Table III. The hardware settings
of this worker include 256 threads and 1TB of memory,
resulting in a M/C ratio of 4 GB per thread.

We adopted the Azure VM size distribution as a reference
and created a progressively escalating workload until the PM
capacity was reached. Regarding the workload of each individ-
ual VM, the CPU usage patterns obtained from CLOUDFAC-
TORY were translated into application loads. Among the VMs,
10% were set to idle, 60% underwent a CPU benchmark using
stress-ng [44], and the remaining VMs were composed
of interactive applications. Specifically, we selected the social
network application, a micro-service architecture from the
DEATHSTARBENCH [45], and continuously monitored their
response time under varying requests per second objectives
generated with wrk2. These response times served as a proxy
of VMs performance.

We considered three distinct oversubscription levels: 1:1,
2:1, and 3:1. In the baseline scenario, the three oversub-
scription levels are hosted separately. Our PM can host 131
VMs without oversubscription, 271 VMs at 2:1, or 356 VMs
oversubscribed at 3:1.

Under the SLACKVM scenario, the three oversubscription
levels are hosted concurrently, each accounting for about one-
third. Out of the total of 220 VMs, 70 were premium (1:1),
76 were 2:1, and 74 were 3:1. The social network applica-
tions were deployed on all 3 vNodes to assess performance
isolation.

Please note that both the number of oversubscription levels
and the maximum level of 3:1 in both scenarios were arbitrary
choices used as a proof of concept, but their value can be
adjusted according to hardware configurations and workloads
of Cloud providers. Our local scheduler does not impose a
limit on the considered oversubscription levels, and can host
more vNodes with more oversubscribed VMs, especially for
non-interactive workloads, like storage and batch processing.
As such, it can be configured by Cloud providers to align
with their specific context. In our scenarios, the 3:1 oversub-
scription level was selected as it is the last whole level being
suitable for interactive workloads within the Azure CPU usage
distribution (higher levels introduce a pronounced time slices
contention).

Our local scheduler is implemented in Python and interfaces
with the hypervisor using the libvirt library. It has been
tested with QEMU/KVM as the hypervisor of choice due to
its native support for dynamic CPU pinning changes.

1:1 2:1 3:1
Oversubscription ratio

100

101

90
th

 re
sp

on
se

 ti
m

e
(m

s)

Baseline
SlackVM

Fig. 2. Comparison of 90th percentile response times for the DEATHSTAR-
BENCH Social network app (log-scale Y axis)

2) Performance results: Performances between SLACKVM
and the dedicated clusters were compared through the 90th

response times that we measured in our empirical experiments.
Observed median values are reported in Table IV, while the
performance distribution per oversubscription ratio can be
visualized in Figure 2.

TABLE IV
PERFORMANCE COMPARISON BY THE MEDIAN OF THE 90th RESPONSE

TIMES MEASURED

Oversubscription levels Baseline (ms) SLACKVM (ms)
1:1 1.16 1.27 (×1.09)
2:1 1.46 1.65 (×1.13)
3:1 3.47 7.67 (×2.21)

As expected, the response time depends on the applied over-
subscription level. In the baseline scenario, isolation between
VMs with different oversubscription levels is achieved using
different PMs. However, we demonstrate with SLACKVM that
performance can still be isolated within a single PM. In our
experiment, all three oversubscription levels were hosted con-
currently on a single PM. The core pinning mechanism based
on cache-level distinction was efficient in maintaining distinct
levels of performance while keeping the performance overhead
low on the most critical workloads (the ones associated with
low levels of oversubscription).

While thread oversubscription may decrease performance,
as reported by [46], the vNodes performance overhead is
primarily due to the heterogeneity between cores. In a classic
setting, CPU scheduler mechanisms do not exploit Simultane-
ous Multithreading (SMT) capabilities until cache-level groups
are fully loaded. However, in scenarios where the allocation of
available cores is constrained, such as highly oversubscribed
environments, the operating system may trigger SMT capabil-
ities ”earlier”, due to limited workload spreading possibilities.

7

51015202530

Unallocated CPU (%)

A [100, 0, 0]

B [75, 25, 0]

C [75, 0, 25]

D [50, 50, 0]

E [50, 25, 25]
F [50, 0, 50]
G [25, 75, 0]

H [25, 50, 25]

I [25, 25, 50]
J [25, 0, 75]

K [0, 100, 0]

L [0, 75, 25]
M [0, 50, 50]

N [0, 25, 75]

O [0, 0, 100]

0 5 10 15 20 25

Unallocated Memory (%)

[1 : 1%, 2 : 1%, 3 : 1%]

Baseline

SlackVM

Fig. 3. Comparison of unallocated resource ratios between dedicated clusters (baseline) and SLACKVM when considering the OVHcloud setups

Interestingly, this performance penalty remains limited in non-
oversubscribed environments.

On the one hand, one can observe that the heuristics used
by SLACKVM affects the oversubscribed VMs in priority,
which are—by design—less prone to enforcing performance
guarantees with strict Service-Level Objectives (SLOs). On the
other hand, the least oversubscribed VMs are preserved from
performance degradation (less than 10% for 90th percentile),
hence maintaining their relevance as part of a premium offer.
Given these observations, we are now interested in further in-
vestigating the influence of the distribution of oversubscription
levels on the savings that can be achieved in terms of cluster
size, which is a key indicator for Cloud providers interested
in optimizing their Return on Investment (RoI).

B. Evaluation at scale

Evaluating IAAS schedulers is known to be challenging,
due to the lack of detailed information on current solutions
used in production [47]. Cloud schedulers compute a fitting
score for suitable PMs based on hundreds of undisclosed
rules [21], [24], [28], [29]. We choose to focus on improving
packing efficiency. We evaluate our newly introduced metric,
which indicates progress toward the perfect M/C ratio and its
impact on reducing cluster size. First-fist scheduling serves
as our baseline to evaluate it. This scheduling strategy is
commonly employed to assess packing efficiency [47], [48],
as it fills existing servers before considering new ones for
deployments [25], [48]. In practice, Cloud providers may guide
workload packing by adjusting the weight of our metric in their
scoring mechanism, alongside their others criteria.

SPOTVMS, HARVESTVMS, and disaggregated VMs serve
as complementary strategies when focusing on DC usage met-
rics, by filling infrastructure gaps, but our evaluation objective

is to assess our capability to prevent these gaps from occurring
initially.

1) Simulated experimentation settings: We also imple-
mented SLACKVM in the CLOUDSIMPLUS simulator [49],
which is a derivative of CLOUDSIM [50]. Specifically, we
created a particular worker type, utilizing our local scheduler
heuristics to accommodate VMs from various oversubscrip-
tion levels. Additionally, we implemented a global scheduler
responsible for selecting the most suitable host based on the
highest progress score, therefore improving the M/C ratio.

Regarding the distribution of VM configurations, we
adopted the provided specifications from OVHcloud and Azure
Cloud providers. As Cloud providers do not disclose the share
of VMs oversubscribed at each level, we conducted tests with
different distributions.

The established protocol generated a workload involving
a target of 500 VMs for each Cloud provider, exploring
various oversubscription level distributions. We simulated DC
workloads over the course of a week, adhering to arrival and
departure rates of VMs. For each workload, a CLOUDSIM-
PLUS simulation was initiated, starting from an empty cluster
and progressively increased until the minimal number of PMs
was determined. Each PM within the cluster offered 32 cores
and 128GB of memory, resulting in a M/C ratio of 4 GB per
core. To account for the typical largeness of Cloud workloads,
we express gains in percentage values, as our approach scales
with the cluster size.

2) Results at scale: The gains can be quantified in two
ways: in terms of stranded resources avoided and in terms of
avoided PMs (due to a better packing).

a) On the reduction of stranded resources: Figure 3
compares the share of unallocated resources for various dis-
tributions of oversubscription levels. These distributions are
ordered from the least oversubscribed (distribution A, includ-

8

ing only VMs without oversubscription—i.e., at 1:1) to the
most oversubscribed (distribution O, fully composed of VMs
oversubscribed at 3:1). In low-oversubscribed environments,
characterized by a CPU bottleneck, one can assess that there is
a high proportion of unallocated memory. Nevertheless, as the
ratio of oversubscribed resources increases in the distributions,
a notable shift takes place, leading to an excess of unallocated
CPU resources in the most oversubscribed environments. This
is attributed to memory bottlenecks.

Figure 3 highlights the resource allocation biases in the
DC using the baseline First-Fit scheduling. These biases
are a combination of the individual limiting factor within
each cluster, weighted by their significance in the overall
worker distribution. By adopting SLACKVM, the amount of
unallocated CPU and memory resources in the DC is reduced
for a large majority of the explored distributions. Thanks to the
pooling principle of SLACKVM, significant gains are observed
when there is a substantial share of both CPU and memory
unused in a given distribution. In the baseline approach, these
unused resource types are typically on distinct clusters, but
when combined with SLACKVM, they have the potential to
facilitate additional deployments.

This simulation can also be used by Cloud providers to
study the effects of the oversubscription level parameters
on the potential gains they can expect, depending on the
characteristics of their IAAS workloads.

Given our dependence on the sequence of arriving VMs,
it is important to acknowledge that the unallocated resource
shares are not reduced to the theoretical minimum of 0%. Our
progress towards a balanced M/C ratio aimed at enhancing
PM packing (even in the context of heterogeneous hardware
configurations), but it does not guarantee that a PM allocates
all of its resources (CPU and memory) when deploying the last
VM. Considering live migration to further balance the packing
of our vNodes is let as a future work.

b) On the reduction of the cluster size: Beyond resource
allocation, we also study the PM gains achieved from the
distributions involving the above 3 oversubscription levels, as
depicted in Figure 4. The x-axis represents the share of 1:1
VMs, the y-axis reflects the ratio of 2:1 VMs, while the ratio
of 3:1 VMs results from the intersection of both axes (as the
complementary value to reach 100%). In each cell, the figure
reports on the percentage of PM saved using SLACKVM.
Reported savings are contingent upon the interplay of resource
limits at each oversubscription level within the infrastructure.

In scenarios where all oversubscription levels tend to sat-
urate the same resource—i.e., CPU or memory—the gains
are generally modest. Considering a M/C ratio of 4, only the
workload associated with 3:1 VMs is memory-bound, while
others are either CPU-bound or exhibit a balanced resource
utilization. Consequently, the gains remain limited in scenarios
where no 3:1 VMs are deployed, as observed in distributions
A, B, D, G, and K in Figure 3, as well as in the values reported
along the diagonal in Figure 4.

However, gains may still be observable due to a ”threshold
effect”, inherent in mechanisms similar to First-Fit scheduling.

0% 25% 50% 75% 100%
1:1 VM proportion

0%
25

%
50

%
75

%
10

0%
2:

1
VM

 p
ro

po
rti

on

0.0 8.6 9.6 5.3 0.0

3.6 7.0 6.9 0.0

5.3 6.7 1.2

3.4 2.7

0.0

 100% 3:1 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 50% 3:1 25% 3:1 0% 3:1

 25% 3:1 0% 3:1

 0% 3:1

OVHCloud

0% 25% 50% 75% 100%
1:1 VM proportion

0%
25

%
50

%
75

%
10

0%
2:

1
VM

 p
ro

po
rti

on

0.0 7.3 3.8 3.0 0.0

8.8 6.5 3.6 1.5

8.6 4.4 1.7

5.6 2.1

0.0

 100% 3:1 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 75% 3:1 50% 3:1 25% 3:1 0% 3:1

 50% 3:1 25% 3:1 0% 3:1

 25% 3:1 0% 3:1

 0% 3:1

Azure

0

2

4

6

8

W
or

ke
rs

 sa
ve

d
(%

)

Fig. 4. SLACKVM gains in terms of PM (%) for various oversubscription
distributions (the 3:1 VM distribution corresponds to the 100 complement of
the other two distributions)

A First-Fit scheduling strategy typically consolidates work-
loads on the first i − 1 PMs before considering deployment
on PMi, resulting in lower utilization of PMi. In the case of
isolated clusters for each oversubscription level, this results
in one additional PMi per cluster, which is subsequently
consolidated when considering our vClusters in SLACKVM.
This consolidation leads to a maximum gain of n − 1 PMs,
where n represents the number of oversubscription levels. This
type of gain is considered marginal, as it does not scale with
the number of VMs under consideration.

Nonetheless, when considering complementary oversub-
scription levels, the gains in terms of PMs being used can
become substantial. For instance, in distribution F, where 50%
of VMs operate without oversubscription—i.e., a 1:1 ratio—
and the remaining 50% are oversubscribed at 3:1, there is a
potential reduction of 9.6% in the number of PMs required
when employing our vClusters in the context of OVHcloud
distribution. In this specific scenario, dedicated clusters would

9

require the provisioning of 83 PMs (55 for the 1:1 cluster and
28 for the 3:1 cluster), whereas our approach required only
75 PMs overall. This highlights the significant PM utilization
optimization achieved by SLACKVM through the use of our
vClusters.

The observed gains are contingent on the distribution, as
they can be perceived as the quantity of resources that would
have been unallocated on the critical path, but are effectively
collected by SLACKVM. If a cluster has the equivalent of
n unallocated CPU configurations, and another cluster has
the equivalent of m unallocated memory configurations, the
hypothetical pooling gain will be the lesser of the two—i.e.,
the critical path is reduced to a minimum.

The OVHcloud environment achieves higher gains, primar-
ily due to more balanced biases (compared to the consid-
ered M/C ratio) between its oversubscription levels. However,
Azure can also realize significant gains (up to 8.8% workers
saved), especially in distributions with a limited ratio of 1:1
VMs. The Azure 1:1 distribution is heavily biased towards
CPU, which requires limiting its usage on the distribution to
attain the highest gains, as Azure situation lacks a heavily
memory-biased oversubscription level to counterbalance it.

Although Cloud providers do not have full control over
the share of customers selecting oversubscribed or non-
oversubscribed VM offers, they can still tune their appropriate
oversubscription levels, based on their catalog and workload
profiles. This customization can minimize the unallocated re-
sources, allowing Cloud providers to derive maximum benefits
from our approach.

The gains in terms of PM scheduling infrastructure, such as
the elimination of the need for multiple OPENSTACK instances
(so-called control planes), are not explicitly reported in our
analysis but can be considered as an additional benefit of this
approach.

Production-ready schedulers may therefore benefit from
incorporating our M/C ratio progress score in the context of
multi-oversubscribed PMs, complementing it with their exist-
ing scheduling rules. The exploration of potential compromises
between these rules is left as a topic for future work.

VIII. CONCLUSION

In this paper, we have demonstrated that different over-
subscription levels can saturate different physical resources.
Building upon this insight, we explored the complementarity
of oversubscription levels. We introduced SLACKVM, a IAAS
architecture that can orchestrate heterogeneous oversubscrip-
tion levels on the same PM and, consequently, within the same
cluster of PMs.

On the global scheduling front, SLACKVM takes advantage
of the complementarity between oversubscription levels by
considering the individual hardware settings of each PM in-
volved in a cluster—using a Memory per Core (M/C) indicator.
In terms of local scheduling, SLACKVM effectively segregates
physical resources by carefully analyzing the PM’s hardware
topology to isolate performance implications.

Physical experiments have shown that SLACKVM can ef-
fectively preserve both the performance of premium offers and
isolation when compared to physical clusters. Our simulations
have further illustrated the potential of SLACKVM at scale,
with the ability to save up to 9.6% in terms of PM hosts
within the Cloud. While this reduction in the number of PMs
has a positive impact on the energy consumption and carbon
footprint of the Cloud ecosystem, it also improves the return
on hardware investments of Cloud providers.

We identified two perspectives for this work. This paper
primarily focuses on accommodating diverse oversubscription
levels for CPU resources within a single PM. However, our
approach can be extended to cover other critical resources,
including memory, disk, and network, provided effective par-
titioning or isolation can be achieved between different groups
of VMs. In particular, the isolation of memory resources for
distinct VMs, as exemplified in [51], represents a compelling
area for further exploration and research. While our vNodes
adopted static oversubscription levels, they could potentially
benefit from dynamically computed levels. This dynamic
approach has the potential to further enhance PM resource
utilization and improve the performance of oversubscribed
VMs. This resource allocation knob could be effectively used
to tune the performances of hosted services according to
agreed SLA.

SOFTWARE ARTEFACTS

Our local and global schedulers implementations are pub-
licly available.3 To encourage the reproduction of our results,
our modified version of CLOUDSIMPLUS4 and CLOUDFAC-
TORY5 are also publicly available online.

REFERENCES

[1] N. Bashir, N. Deng, K. Rzadca, D. Irwin, S. Kodak, and R. Jnagal,
“Take it to the limit: Peak prediction-driven resource over-commitment
in datacenters,” in 16th European Conference on Computer Systems,
EuroSys’21, p. 556–573, ACM, 2021.

[2] R. York and J. A. McGee, “Understanding the jevons paradox,” Envi-
ronmental Sociology, vol. 2, no. 1, pp. 77–87, 2016.

[3] International Energy Agency, “Data centres and data transmission net-
works,” 2021. Available at https://www.iea.org/energy-system/buildings/
data-centres-and-data-transmission-networks#programmes.

[4] European Commission Joint Research Centre, “The eu code
of conduct for data centres – towards more innovative,
sustainable and secure data centre facilitie),” 2023. Available
at https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/
eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05
en.

[5] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
Second Edition. 2013.

[6] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS’14, p. 127–144, ACM, 2014.

[7] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud:
An analysis on alibaba cluster trace,” in IEEE International Conference
on Big Data, Big Data’17, pp. 2884–2892, 2017.

3https://anonymous.4open.science/r/VMSlack-C546/
4https://anonymous.4open.science/r/Cloudsimplus-VMSlack-7EE2/
5https://anonymous.4open.science/r/Cloudfactory-VMSlack-1B7A

10

https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks#programmes
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks#programmes
https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05_en
https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05_en
https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-code-conduct-data-centres-towards-more-innovative-sustainable-and-secure-data-centre-facilities-2023-09-05_en
https://anonymous.4open.science/r/VMSlack-C546/
https://anonymous.4open.science/r/Cloudsimplus-VMSlack-7EE2/
https://anonymous.4open.science/r/Cloudfactory-VMSlack-1B7A

[8] Amazon Elastic Compute Cloud, “Amazon ec2 spot instances,” 2022.
Available at https://aws.amazon.com/ec2/spot/.

[9] Microsoft Azure, “Azure spot virtual machines,” 2020. Available at
https://azure.microsoft.com/en-us/pricing/spot.

[10] Google Cloud Platform, “Preemptible vm instances,” 2020. Available at
https://cloud.google.com/compute/docs/instances/preemptible.

[11] Y. Wang, K. Arya, M. Kogias, M. Vanga, A. Bhandari, N. J. Yadwadkar,
S. Sen, S. Elnikety, C. Kozyrakis, and R. Bianchini, “Smartharvest:
Harvesting idle cpus safely and efficiently in the cloud,” in 16th
European Conference on Computer Systems, EuroSys’21, p. 1–16, ACM,
2021.

[12] X. Jia, J. Zhang, B. Yu, X. Qian, Z. Qi, and H. Guan, “Giantvm: A
novel distributed hypervisor for resource aggregation with dsm-aware
optimizations,” ACM Trans. Archit. Code Optim., vol. 19, mar 2022.

[13] H.-R. Chuang, K. Manaouil, T. Xing, A. Barbalace, P. Olivier,
B. Heerekar, and B. Ravindran, “Aggregate vm: Why reduce or evict
vm’s resources when you can borrow them from other nodes?,” in 18th
European Conference on Computer Systems, EuroSys’23, p. 469–487,
ACM, 2023.

[14] A. Fuerst, A. Ali-Eldin, P. Shenoy, and P. Sharma, “Cloud-scale vm-
deflation for running interactive applications on transient servers,” in
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’20, p. 53–64, ACM, 2020.

[15] Y. Zhang, Í. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. Delim-
itrou, and R. Bianchini, “Faster and cheaper serverless computing on
harvested resources,” in 28th ACM SIGOPS Symposium on Operating
Systems Principles, SOSP’21, pp. 724–739, 2021.

[16] D. Movsowitz Davidow, O. Agmon Ben-Yehuda, and O. Dunkelman,
“Deconstructing alibaba cloud’s preemptible instance pricing,” in Pro-
ceedings of the 32nd International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’23, p. 253–265, ACM,
2023.

[17] Citrix, “Overcommiting pcpus on individual xenserver vms,”
2018. Available at https://support.citrix.com/article/CTX236977/
overcommiting-pcpus-on-individual-xenserver-vms.

[18] VMWare, “Cpu virtualization basics,” 2019. Available at https://docs.
vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.
doc/GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html.

[19] Proxmox, “Proxmox ve administration guide,” 2022. Available at https:
//pve.proxmox.com/pve-docs/pve-admin-guide.pdf.

[20] OpenStack, “overcommiting cpu and ram,” 2022. Available
at https://docs.openstack.org/arch-design/design-compute/
design-compute-overcommit.html.

[21] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
10th European Conference on Computer Systems, EuroSys’15, pp. 1–
17, 2015.

[22] J. Wang, H. Zhang, Z. Xu, W. He, and Y. Guo, “A scheduling algorithm
based on resource overcommitment in virtualization environments,” in
1st IEEE International Conference on Computer Communication and
the Internet, ICCCI’16, pp. 439–443, 2016.

[23] P. Jacquet, T. Ledoux, and R. Rouvoy, “Scroogevm: Boosting cloud
resource utilization with dynamic oversubscription,” IEEE Transactions
on Sustainable Computing, pp. 1–13, 2024.

[24] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura,
and R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud plat-
forms,” in 26th Symposium on Operating Systems Principles, SOSP’17,
p. 153–167, ACM, 2017.

[25] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector
bin packing,” research. microsoft. com, 2011.

[26] D. S. Hochba, “Approximation algorithms for np-hard problems,” ACM
Sigact News, vol. 28, no. 2, pp. 40–52, 1997.

[27] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, pp. 567–619, 2015.

[28] OpenStack, “Scheduling,” 2019. Available at https://docs.openstack.org/
mitaka/config-reference/compute/scheduler.html.

[29] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda,
“Protean: VM allocation service at scale,” in 14th USENIX Symposium
on Operating Systems Design and Implementation, OSDI’20, pp. 845–
861, USENIX Association, Nov. 2020.

[30] P. Jacquet, T. Ledoux, and R. Rouvoy, “Cloudfactory: An open toolkit
to generate production-like workloads for cloud infrastructures,” in 11th
IEEE International Conference on Cloud Engineering, IC2E’23, 2023.

[31] AWS, “Aws re:invent 2017 deep dive on amazon ec2 instances, featuring
performance optimization (cmp301),” 2017. Available at https://www.
youtube.com/watch?v=mZy6E2I5Rek&t=815s.

[32] Q. Zhang, P. Bernstein, D. S. Berger, B. Chandramouli, B. T. Loo, and
V. Liu, “Compucache: Remote computable caching using spot vms,” in
Conference on Innovative Data Systems Research, CIDR’22, January
2022.

[33] A. Fuerst, S. Novaković, I. n. Goiri, G. I. Chaudhry, P. Sharma, K. Arya,
K. Broas, E. Bak, M. Iyigun, and R. Bianchini, “Memory-harvesting
vms in cloud platforms,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, p. 583–594, ACM, 2022.

[34] P. Ambati, Í. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell,
S. Pasupuleti, T. Moscibroda, S. Elnikety, et al., “Providing SLOs
for Resource-Harvesting VMs in Cloud Platforms,” in 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI’20,
pp. 735–751, 2020.

[35] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst, P. Zardoshti,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura,
and R. Bianchini, “Pond: Cxl-based memory pooling systems for cloud
platforms,” 2022.

[36] P. Sharma and P. Kulkarni, “Singleton: system-wide page deduplication
in virtual environments,” in 21st International Symposium on High-
Performance Parallel and Distributed Computing, HPDC’12, p. 15–26,
ACM, 2012.

[37] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon, “Overdriver:
handling memory overload in an oversubscribed cloud,” SIGPLAN Not.,
vol. 46, p. 205–216, mar 2011.

[38] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource allocation
with management objectives—implementation for an openstack cloud,”
in 8th International Conference on Network and Service Management
(CNSM) – Workshop on Systems Virtualiztion Management (SVM),
pp. 309–315, IEEE, 2012.

[39] D. Ghatrehsamani, C. Denninnart, J. Bacik, and M. Amini Salehi,
“The art of cpu-pinning: Evaluating and improving the performance
of virtualization and containerization platforms,” in 49th International
Conference on Parallel Processing, ICPP’20, ACM, 2020.

[40] Linux Documentation, “Numa binding description,” 2021. Available
at https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.
txt.

[41] OpenStack, “Scheduling,” 2019. Available at https://docs.openstack.org/
mitaka/config-reference/compute/scheduler.html#weights.

[42] M. Badaroux, S. Miroddi, and F. Pétrot, “To pin or not to pin: Asserting
the scalability of qemu parallel implementation,” in 24th Euromicro
Conference on Digital System Design, DSD’21, pp. 238–245, IEEE,
2021.

[43] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma, “Analyzing
the impact of cpu pinning and partial cpu loads on performance and
energy efficiency,” in 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid’15, pp. 1–10, 2015.

[44] C. King, “stress-ng,” 2024. Available at https://github.com/
ColinIanKing/stress-ng/.

[45] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source Bench-
mark Suite for Microservices and Their Hardware-Software Implications
for Cloud & Edge Systems,” in ASPLOS, pp. 3–18, ACM, 2019.

[46] H. Huang, J. Rao, S. Wu, H. Jin, H. Jiang, H. Che, and X. Wu, “Towards
exploiting cpu elasticity via efficient thread oversubscription,” in 30th
International Symposium on High-Performance Parallel and Distributed
Computing, HPDC’21, p. 215–226, ACM, 2021.

[47] A. Pucher, E. Gul, R. Wolski, and C. Krintz, “Using trustworthy simu-
lation to engineer cloud schedulers,” in IEEE International Conference
on Cloud Engineering, IC2E’15, pp. 256–265, 2015.

[48] T. Knauth and C. Fetzer, “Energy-aware scheduling for infrastructure
clouds,” in 4th IEEE International Conference on Cloud Computing
Technology and Science, pp. 58–65, 2012.

[49] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio, and
M. M. Freire, “Cloudsim plus: A cloud computing simulation framework
pursuing software engineering principles for improved modularity, ex-

11

https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/pricing/spot
https://cloud.google.com/compute/docs/instances/preemptible
https://support.citrix.com/article/CTX236977/overcommiting-pcpus-on-individual-xenserver-vms
https://support.citrix.com/article/CTX236977/overcommiting-pcpus-on-individual-xenserver-vms
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-DFFA3A31-9EDD-4FD6-B65C-86E18644373E.html
https://pve.proxmox.com/pve-docs/pve-admin-guide.pdf
https://pve.proxmox.com/pve-docs/pve-admin-guide.pdf
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.openstack.org/arch-design/design-compute/design-compute-overcommit.html
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html
https://www.youtube.com/watch?v=mZy6E2I5Rek&t=815s
https://www.youtube.com/watch?v=mZy6E2I5Rek&t=815s
https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/numa.txt
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html#weights
https://docs.openstack.org/mitaka/config-reference/compute/scheduler.html#weights
https://github.com/ColinIanKing/stress-ng/
https://github.com/ColinIanKing/stress-ng/

tensibility and correctness,” in 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 400–406, 2017.

[50] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Softw. Pract. Exper., vol. 41, p. 23–50, jan 2011.

[51] S. Kim, H. Kim, J. Lee, and J. Jeong, “Group-based memory over-
subscription for virtualized clouds,” Journal of Parallel and Distributed
Computing, vol. 74, no. 4, pp. 2241–2256, 2014.

12

	Introduction
	Related work
	Resource oversubscription
	VM scheduling

	Cloud resource balance
	Cloud allocations
	Cloud resources collapse differently

	SlackVM overview
	Local scheduler
	Topology-driven resizing of vNodes
	Leveraging workloads diversity in vNodes

	Global scheduler incentive
	Empirical evaluation
	Evaluation in the wild
	Physical experimentation settings
	Performance results

	Evaluation at scale
	Simulated experimentation settings
	Results at scale

	Conclusion
	References

