
HAL Id: hal-04636603
https://hal.science/hal-04636603

Submitted on 5 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantics for a Turing-Complete Reversible
Programming Language with Inductive Types

Kostia Chardonnet, Louis Lemonnier, Benoît Valiron

To cite this version:
Kostia Chardonnet, Louis Lemonnier, Benoît Valiron. Semantics for a Turing-Complete Reversible
Programming Language with Inductive Types. FSCD 2024 - 9th International Conference on
Formal Structures for Computation and Deduction, Jul 2024, Tallinn, Estonia. pp.19:1-19:19,
�10.4230/LIPIcs.FSCD.2024.19�. �hal-04636603�

https://hal.science/hal-04636603
https://hal.archives-ouvertes.fr

Semantics for a Turing-Complete Reversible
Programming Language with Inductive Types
Kostia Chardonnet
Department of Computer Science and Engineering, University of Bologna, Italy

Louis Lemonnier1

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles,
Gif-sur-Yvette, France

Benoît Valiron
Université Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Inria,
Laboratoire Méthodes Formelles, Gif-sur-Yvette, France

Abstract
This paper is concerned with the expressivity and denotational semantics of a functional higher-order
reversible programming language based on Theseus. In this language, pattern-matching is used to
ensure the reversibility of functions. We show how one can encode any Reversible Turing Machine
in said language. We then build a sound and adequate categorical semantics based on join inverse
categories, with additional structures to capture pattern-matching and to interpret inductive types
and recursion. We then derive a notion of completeness in the sense that any computable, partial,
first-order injective function is the image of a term in the language.

2012 ACM Subject Classification Theory of computation → Program semantics

Keywords and phrases Reversible programming, functional programming, Computability, Denota-
tional Semantics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.19

Funding This work has been partially funded by the French National Research Agency (ANR) by the
projects ANR-21-CE48-0019, ANR-19-CE48-0014, ANR-22-CE47-0012, and within the framework
of “Plan France 2030”, under the project ANR-22-PETQ-0007, ANR-22-PNCQ-0001.
Kostia Chardonnet: is partially supported by the MIUR FARE project CAFFEINE, “Compositional
and Effectful Program Distances”, R20LW7EJ7L.

Acknowledgements The authors thank Vladimir Zamdzhiev for his expert insight on specific parts
of the denotational semantics.

1 Introduction

Originally, reversible computation has emerged as an energy-preserving model of computation
in which no data is ever erased. This comes from Laundauer’s principle which states that
the erasure of information is linked to the dissipation of energy as heat [30, 5]. In reversible
computation, given some process f , there always exists an inverse process f−1 such that their
composition is equal to the identity: it is always possible to “go back in time” and recover
the input of your computation. Although this can be seen as very restrictive, non-reversible
computation can be emulated in a reversible setting by keeping track of intermediate results.
As discussed in [4], the simulation of standard computation with reversible computation can
be understood as a notion of Turing completeness – provided we accept that the final result
comes together with auxiliary, intermediate computation.

1 Corresponding author.

© Kostia Chardonnet, Louis Lemonnier, and Benoît Valiron;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1761-3244
https://doi.org/10.4230/LIPIcs.FSCD.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

Reversible computation has since been shown to be a versatile model. In the realm of
quantum computation, reversible computing is at the root of the construction of oracles,
subroutines describing problem instances in quantum algorithms [34]. Most of the research
in reversible circuit design can then been repurposed to design efficient quantum circuits. On
the theoretical side, reversible computing serves the main ingredient in several operational
models of linear logic, whether through token-based Geometry of Interaction [32] or through
the Curry-Howard correspondence for µMALL [8, 6].

Reversible programming has been approached in two different ways. The first one,
based on Janus and later R-CORE and R-WHILE [31, 40, 15, 39], considers imperative and
flow-chart languages. The other one follows a functional approach [38, 37, 20, 19, 36, 8]: a
function A→ B in the language represents a function – a bijection – between values of type
A and values of type B. In this approach, types are typically structured, and functional
reversible languages usually feature pattern-matching to discriminate on values.

One of the issues reversible programming has to deal with is non-termination: in general,
a reversible program computes a partial injective map. This intuition can be formalised
with the concept of inverse categories [27, 9, 10, 11]: categories in which every morphism
comes with a partial inverse, for which the category PInj of sets and partial injective maps
is the emblematic concrete instance. This categorical setting has been successfully used in
the study of reversible programming semantics, whether based on flow-charts [14, 22], with
recursion [2, 24, 23, 26], with side effects [18, 17], etc.

Although much work has been dedicated to the categorical analysis of reversible com-
putation, the adequacy of the developed categorical constructs with reversible functional
programming languages has only recently been under scrutiny, either in concrete categories
of partial isomorphisms [26, 25], or for simple, non Turing-complete languages [7]. A formal,
categorical analysis of a (reversible) Turing-complete, reversible language is still missing.

Contributions. In this paper, we aim at closing this gap: we propose a Turing-complete
(understood as in the reversible setting), reversible language, together with a categorical
semantics. In particular, the contributions of this paper are as follows.

A (reversible) Turing-complete, higher-order reversible language with inductive types.
Building on the Theseus-based family of languages studied in [36, 7, 8, 6], we consider an
extension with inductive types, general recursion and higher-order functions.
Sound and adequate categorical semantics. We show how the language can be interpreted
in join inverse rig categories. The result relies on the DCPO-enrichments of join inverse
rig categories.
A notion of completeness. We finally discuss how the interpretation of the language in the
category PInj is complete in the sense that any first-order computable, partial injective
function on the images of types is realisable within the language.

2 Language

In this section, we present a reversible language, unifying and extending the Theseus-based
variants presented in the literature [36, 7, 8]. In particular, the language we propose features
higher-order (unlike [7]), pairing, injection, inductive types (unlike [36]) and general recursion
(unlike [8]). Functions in the language are based on pattern-matching, following a strict
syntactic discipline: term variables in patterns should be used linearly, and clauses should
be non-overlapping on the left and on the right (therefore enforcing non-ambiguity and
injectivity). In [36, 7, 8] one also requires exhaustivity for totality. In this paper, we drop
this condition in order to allow non-terminating behaviour.

K. Chardonnet, L. Lemonnier, and B. Valiron 19:3

Table 1 Grammar for terms and types.

(Base types) A,B ::= 1 | A⊕B | A⊗B | µX.A | X
(Isos) T ::= A↔ B | T1 → T2

(Values) v ::= () | x | injℓ v | injr v | ⟨v1, v2⟩ | fold v

(Patterns) p ::= x | ⟨p1, p2⟩
(Expressions) e ::= v | let p1 = ω p2 in e

(Isos) ω ::= {v1 ↔ e1 | · · · | vn ↔ en} | fix ϕ.ω | λψ.ω | ϕ | ω1 ω2

(Terms) t ::= () | x | injℓ t | injr t | ⟨t1, t2⟩ |
fold t | ω t | let p = t1 in t2

The language is presented in Table 1. It consist of two layers.
Base types: The base types consist of the unit type 1 along with its sole constructor
(), coproduct A ⊕ B and tensor product A ⊗ B with their respective constructors,
injℓ (t), injr (t) and ⟨t1, t2⟩. Finally, the language features inductive types of the form
µX.A where X is a type variable occurring in A and µ is its binder. Its associated
constructor is fold (t). The inductive type µX.A can then be unfolded into A[µX.A/X],
i.e., substituting each occurrence of X by µX.A in A. Typical examples of inductive
types that can be encoded this way are the natural number, as nat = µX.(1⊕X) or the
lists of types A, noted [A] = µX.1⊕ (A⊗X). Note that we only work with closed types.
We shall denote term-variables with x, y, z.
Isos types: The language features isos, denoted ω, higher order reversible functions whose
types T consist either of a pair of base type, noted A ↔ B or function types between
isos, T1 → T2. Note that the word iso comes from isomorphism. However, in this paper,
we have freed some constraints; in our case, isos are forward deterministic and backward
deterministic, meaning that each value has at most one image and at most one value
that has the former as image. A first-order iso of type A↔ B consists of a finite set of
clauses, written v ↔ e where v is a value of type A and e an expression of type B. An
expression consists of a succession of applications of isos to some argument, described
by let constructions: let (x1, . . . , xn) = ω (y1, . . . , yn) in e. Isos can take other isos
as arguments through the λϕ.ω construction. Finally, isos can also represent recursive
computation through the fix ϕ.ω construction, where ϕ is an iso-variable. In general, we
shall denote iso-variable by ϕ1, ϕ2, . . . and we use the shorthands fix

−→
ϕ or fix ϕ1, . . . , ϕn

and λ
−→
ϕ or λϕ1, . . . , ϕn for fix ϕ1.fix ϕ2. . . . fix ϕn. and λϕ.λϕ2. . . . λϕn.

Convention. We write (t1, . . . , tn) for ⟨t1, ⟨. . . , tn⟩⟩ and
⊕n

A (resp.
⊗n

A) for A⊕· · ·⊕A
(resp. A⊗ · · · ⊗A) n times and ω1 . . . ωnt for a succession of let constructions applying ωn

to ω1. We also consider constructors to be right-associative, meaning that fold injr ⟨x, y⟩
should be read as fold (injr (⟨x, y⟩)). To avoid conflicts between variables, we will always
work up to α-conversion and use Barendregt’s convention [3, p.26], which consists of keeping
the names of all bound and free variables distinct, even when this remains implicit.

Typing judgements. Both base terms and isos feature their typing judgements, given
in Table 2 and Table 3. Term typing judgements are of the form Ψ; ∆ ⊢ t : A where ∆ is a
context of term-variables of type A and Ψ is a context of iso-variables of type T and isos

FSCD 2024

19:4 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

Table 2 Typing rules for terms.

Ψ; ∅ ⊢ () : 1 Ψ;x : A ⊢ x : A
Ψ; ∆ ⊢ t : A

Ψ; ∆ ⊢ injℓ t : A⊕B
Ψ; ∆ ⊢ t : B

Ψ; ∆ ⊢ injr t : A⊕B
Ψ; ∆1 ⊢ t1 : A Ψ; ∆2 ⊢ t2 : B
Ψ; ∆1,∆2;⊢ ⟨t1, t2⟩ : A⊗B

Ψ; ∆ ⊢ t : A[µX.A/X]
Ψ; ∆ ⊢ fold t : µX.A

Ψ ⊢ω ω : A↔ B Ψ; ∆ ⊢ t : A
Ψ; ∆ ⊢ ω t : B

Ψ; ∆1 ⊢ t1 : A1 ⊗ · · · ⊗An Ψ; ∆2, x1 : A1, . . . , xn : An ⊢ t2 : B
Ψ; ∆1,∆2 ⊢ let (x1, . . . , xn) = t1 in t2 : B

Table 3 Typing rules for isos.

Ψ, ϕ : T ⊢ω ϕ : T
Ψ, ϕ : T ⊢ω ω : T
Ψ ⊢ω fix ϕ.ω : T

Ψ ⊢ω ω1 : T1 Ψ ⊢ω ω2 : T1 → T2
Ψ ⊢ω ω2 ω1 : T2

Ψ, ϕ : T1 ⊢ω ω : T2
Ψ ⊢ω λϕ.ω : T1 → T2

Ψ; ∆1 ⊢ v1 : A . . . Ψ; ∆n ⊢ vn : A ∀i ̸= j, vi ⊥ vj

Ψ; ∆1 ⊢ e1 : B . . . Ψ; ∆n ⊢ en : B ∀i ̸= j, ei ⊥ ej

Ψ ⊢ω {v1 ↔ e1 | · · · | vn ↔ en} : A↔ B.

typing judgements are of the form Ψ ⊢ω ω : T . While ∆ is a linear context, Ψ is not, as an
iso represents a closed computation, and can be duplicated or erased at will. In the last rule
of Table 3, the term variables in ∆ are bound by the pattern-matching construction: they
are not visible outside of the term, thus not appearing anymore in the typing context of the
conclusion.

While [8] and [36] require isos to be exhaustive (i.e. to cover all the possible values of
their input types) and non-overlapping (i.e. two clauses cannot match the same value),
we relax the exhaustivity requirement in this paper, in the spirit of what was done in [7].
Non-overlapping is formalised by the notion of orthogonality between values, noted v1 ⊥ v2.

▶ Definition 1 (Orthogonality). We introduce a binary relation ⊥ on terms. Given two terms
t1, t2, t1 ⊥ t2 holds if it can be derived inductively with the rules below; we say that t1 and t2
are orthogonal. The relation ⊥ is defined as the smallest relation such that:

injℓ t1 ⊥ injr t2 injr t1 ⊥ injℓ t2

t1 ⊥ t2
C⊥[t1] ⊥ C⊥[t2],

where the contexts C⊥ are defined using the following grammar:

C⊥ ::= [−] | injℓ C⊥ | injr C⊥ | ⟨C⊥, t⟩ | ⟨t, C⊥⟩ | fold C⊥ | let p = t in C⊥

Operational semantics. The language comes equipped with a rewriting system→ on terms,
defined in Table 4. As usual, we write →∗ for the reflexive transitive closure of →. The
evaluation contexts C→ are defined by the grammar [] | injℓ C→ | injr C→ | {v1 ↔
e1 | · · · | vn ↔ en} C→ | let p = C→ in t | ⟨C→, v⟩ | ⟨v, C→⟩ | C→ t | fold C→. Note
how the rewriting system follows a call-by-value strategy on terms and values, requiring that

K. Chardonnet, L. Lemonnier, and B. Valiron 19:5

Table 4 Evaluation relation →.

fix ϕ.ω → ω[fix ϕ.ω/ϕ] (λϕ.ω1)ω2 → ω1[ω2/ϕ]
ω1 → ω′

1
ω1ω2 → ω′

1ω2

ω → ω′

ω t→ ω′ t

σ(vi) = v′

{v1 ↔ e1 | · · · | vn ↔ en} v′ → σ(ei)
t1 → t2

C→[t1]→ C→[t2]
σ(p) = v

let p = v in t→ σ(t)

the argument of an iso be fully evaluated to a value before firing the substitution. On the
contrary, we follow a call-by-name strategy to simplify the manipulation of the fixpoint. Note
that unlike [8, 36], we do not require any form of termination and isos are not required to be
exhaustive: the rewriting system can diverge or be stuck. The evaluation of an iso applied to
a value is dealt with by pattern-matching: the input value will try to match one of the values
from the clauses and potentially create a substitution if the two values match, giving the
corresponding expression as an output under that substitution. A substitution σ is a mapping
from a set of variables to terms. The substitution of σ on an expression t, written σ(t), is
defined in the usual way by σ(()) = (); σ(x) = v if {x 7→ v} ⊆ σ; σ(injr (t)) = injr (σ(t));
σ(injℓ (t)) = injℓ (σ(t)); σ(fold (t)) = fold (σ(t)) σ(⟨t, t′⟩) = ⟨σ(t), σ(t′)⟩; σ(ω t) = ω σ(t)
and σ(let p = t1 in t2) = (let p = σ(t1) in σ(t2)). The support of a substitution, written
supp(σ), is defined as {x | (x 7→ v) ∈ σ}.

▶ Lemma 2 (Subject Reduction). If Ψ; ∆ ⊢ t : A and t→ t′, then Ψ; ∆ ⊢ t′ : A. ⌟

The proof is similar to what has been done in [8]. As the rewriting system is deterministic,
confluence is direct; meanwhile, as we are concerned with partial functions, progress is not
guaranteed: a term can be stuck, for example, {injℓ (x)↔ e} injr (v) does not reduce.

Inversion. Finally, any iso ω : T can be inverted into an iso ω−1 : T−1, such that their
composition makes up the identity. Intuitively, if ω is of type A ↔ B, then ω−1 will be
of type B ↔ A. Inversion is defined as follows. Given an iso-type T , we define its inverse
T−1 as: (A ↔ B)−1 = B ↔ A and (T1 → T2)−1 = T−1

1 → T−1
2 . Given an iso ω, we

define its dual ω−1 as: ϕ−1 = ϕ; (fix ϕ.ω)−1 = fix ϕ.ω−1; (ω1 ω2)−1 = (ω1)−1(ω2)−1;
(λϕ.ω)−1 = λϕ.(ω)−1 and {(vi ↔ ei)i∈I}−1 = {((vi ↔ ei)−1)i∈I} and v1 ↔ let p1 = ω1 p

′
1 in

· · ·
let pn = ωn p′

n in v′
1

−1

:=

 v′
1 ↔ let p′

n = ω−1
n pn in

· · ·
let p′

1 = ω−1
1 p1 in v1

 .

▶ Property 3 (Inversion is an involution). For any well-typed iso ω, we have (ω−1)−1 = ω.

Proof. By a straightforward induction on ω, notice that if ω = {v1 ↔ e1 | · · · | vn ↔ en}
then by definition we swap twice the order of the let construction, hence recovering the
original term. ◀

▶ Lemma 4 (Inversion is well-typed). If ϕ1 : A1 ↔ B1 . . . ϕn : An ↔ Bn ⊢ω ω : T , then
ϕ1 : B1 ↔ A1 . . . ϕn : Bn ↔ An ⊢ω ω

−1 : T−1. ⌟

▶ Lemma 5 (Inversion is preserved by evaluation). If ω → ω′ then ω−1 → ω′−1. ⌟

▶ Theorem 6 (Semantics of isos and their inversions [8]). For all well-typed isos ⊢ω ω : A↔ B,
and for all well-typed values ⊢ v : A, if (ω (ω−1 v))→∗ v′ then v = v′. ⌟

FSCD 2024

19:6 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

▶ Example 7. Remember that [A] = µX.1⊕ (A⊗X). One can define the map operator on
lists with an iso of type (A↔ B)→ [A]↔ [B], defined as

λψ.fix ϕ. {[] ↔ [] | h :: t ↔ leth′ = ψ h in let t′ = ϕ t in h′ :: t′} ,

with the terms [] = fold (injℓ (())), representing the empty list, while the head and tail of
the list is represented with h :: t = fold (injr (⟨h, t⟩)). Its inverse map−1 is

λψ.fix ϕ. {[] ↔ [] | h′ :: t′ ↔ let t = ϕ t′ in leth = ψ h′ in h :: t} .

Note that in the latter, the variable ψ has type B ↔ A. If we consider the inverse of the
term (map ω) we would obtain the term (map−1 ω−1) where ω−1 would be of type B ↔ A.

▶ Example 8 (Cantor Pairing). One can encode the Cantor Pairing between N ⊗ N ↔ N.
First recall that the type of natural number nat is given by µX.1⊕X, then define n as the
encoding of natural numbers into a closed value of type nat as 0 = fold (injℓ ()) and given
a variable x of type nat, its successor is S(x) = fold (injr (x)). Omitting the · operator
for readability, the pairing is then defined as:

ω1 : nat⊗ nat↔ (nat⊗ nat)⊕ 1

=

⟨S(i), j⟩ ↔ injℓ (⟨i, S(j)⟩)
⟨0, S(S(j))⟩ ↔ injℓ (⟨S(j), 0⟩)
⟨0, S(0)⟩ ↔ injℓ (⟨0, 0⟩)
⟨0, 0⟩ ↔ injr (())

 ,

ω2 : (nat⊗ nat)⊕ 1↔ nat

=
{

injℓ (x) ↔ let y = ϕ x in S(y)
injr (()) ↔ 0

}
,

CantorPairing : nat⊗ nat↔ nat

= fix ϕ.
{
x ↔ let y = ω1 x in

let z = ω2 y in z

}
,

where the variable ϕ in ω2 is the one being bound by the fix of the CantorPairing iso.
Intuitively, ω1 realises one step of the Cantor Pairing evaluation while ω2 checks if we reached
the end of the computation and either applies a recursive call, or stops.

For instance, CantorPairing ⟨1, 1⟩ will match with the first clause of ω1, evaluating into
injℓ ⟨0, 2⟩, and then, inside ω2 the reduction CantorPairing ⟨0, 2⟩ will be triggered through
the recursive call, evaluating the second clause of ω1, reducing to injℓ ⟨1, 0⟩, etc.

3 Expressivity

This section is devoted to assessing the expressivity of the language. To that end, we rely on
Reversible Turing Machine (RTM) [1]. We describe how to encode an RTM as an iso, and
prove that the iso realises the string semantics of the RTM.

3.1 Recovering duplication, erasure and manipulation of constants
Although the language is linear and reversible, since closed values are all finite, and one can
build isos to encode notions of duplication, erasure, and constant manipulation thanks to
partiality.

▶ Definition 9 (Duplication). We define DupS
A the iso of type A↔ A⊗A which can duplicate

any closed value of type A by induction on A, where S is a set of pairs of a type-variable X
and an iso-variable ϕ, such that for every free-type-variable X ⊆ A, there exists a unique
pair (X,ϕ) ∈ S for some ϕ.

The iso is defined by induction on A: DupS
1 = {()↔ ⟨(), ()⟩}, and

DupS
A⊗B =

{
⟨x, y⟩ ↔ let ⟨x1, x2⟩ = DupS

A x in let ⟨y1, y2⟩ = DupS
B y in

⟨⟨x1, y1⟩, ⟨x2, y2⟩⟩

}
;

K. Chardonnet, L. Lemonnier, and B. Valiron 19:7

DupS
A⊕B =

{
injℓ (x) ↔ let ⟨x1, x2⟩ = DupS

A x in ⟨injℓ (x1), injℓ (x2)⟩

injr (y) ↔ let ⟨y1, y2⟩ = DupS
B y in ⟨injr (y1), injr (y2)⟩

}
;

If (X,_) ̸∈ S: DupS
µX.A = fix ϕ.

{
fold (x) ↔ let ⟨x1, x2⟩ = Dup

S∪{(X,ϕ)}
A[µX.A/X] x in

⟨fold (x1), fold (x2)⟩

}
;

If (X,ϕ) ∈ S: DupS
µX.A = {x↔ let ⟨x1, x2⟩ = ϕ x in ⟨x1, x2⟩}.

Remember that bound variables are assumed distinct following Barendregt’s convention,
allow for the well-definition of the isos above.

▶ Lemma 10 (Properties of Duplication). Given a closed type A, then Dup∅
A is well-defined,

and the iso Dup∅
A is well typed of type A↔ A⊗A. ⌟

▶ Lemma 11 (Semantics of Duplication). Given a closed type A and a closed value v of type
A, then Dup∅

A v →∗ ⟨v1, v2⟩ and v = v1 = v2. ⌟

▶ Definition 12 (Constant manipulation). We define erasev : A⊗ ΣT ↔ A which erases its
second argument when its value is v as {⟨x, v⟩ ↔ x}. Reversed, it turns any x into ⟨x, v⟩.

3.2 Definition of Reversible Turing Machine
▶ Definition 13 (Reversible Turing Machine [1]). Let M = (Q,Σ, δ, b, qs, qf) be a Turing
Machine, where Q is a set of states, Σ = {b, a1, . . . , an} is a finite set of tape symbols (in the
following, ai and b always refer to elements of Σ), δ ⊆ ∆ = (Q× [(Σ× Σ) ∪ {←, ↓,→}]×Q)
is a partial relation defining the transition relation such that there must be no transitions
leading out of qf nor into qs, b a blank symbol and qs and qf the initial and final states. We
say that M is a Reversible Turing Machine (RTM) if it is:

forward deterministic: for any two distinct pairs of triples (q1, a1, q
′
1) and (q2, a2, q

′
2) in δ,

if q1 = q2 then a1 = (s1, s
′
1) and a2 = (s2, s

′
2) and s1 ̸= s2.

Backward deterministic: for any two distinct pairs of triples (q1, a1, q
′
1) and (q2, a2, q

′
2) in

δ, if q′
1 = q′

2 then a1 = (s1, s
′
1) and a2 = (s2, s

′
2) and s′

1 ̸= s′
2.

▶ Definition 14 (Configurations [1]). A configuration of a RTM is a tuple (q, (l, s, r)) ∈
Conf = Q× (Σ∗×Σ×Σ∗) where q is the internal state, l, r are the left and right parts of the
tape (as string) and s ∈ Σ is the current symbol being scanned. A configuration is standard
when the cursor is on the immediate left of a finite, blank-free string s ∈ (Σ \ {b})∗ and the
rest is blank, i.e. it is in configuration (q, (ϵ, b, s)) for some q, where ϵ is the empty string,
representing an infinite sequence of blank symbols b.

▶ Definition 15 (RTM Transition [1]). An RTM M in configuration C = (q, (l, s, r)) goes
to a configuration C ′ = (q′, (l′, s′, r′)), written T ⊢ C ⇝ C ′ in a single step if there exists a
transition (q, a, q′) ∈ δ where a is either (s, s′), and then l = l′ and r = r′ or a ∈ {←, ↓,→},
and we have for the case a =←: l′ = l · s and for r = x · r2 we have s′ = x and r′ = r2,
similarly for the case a =→ and for the case a =↓ we have l′ = l and r′ = r and s = s′.

The semantics of an RTM is given on standard configurations of the form (q, (ϵ, b, s))
where q is a state, ϵ is the finite string standing for a blank-filled tape, and s is the blank-free,
finite input of the RTM.

▶ Definition 16 (String Semantics [1]). The semantics of a RTM M , written Sem(M) is
defined on standards configurations and is given by the set Sem(M) = {(s, s′) ∈ ((Σ\{b})∗ ×
(Σ\{b})∗) |M ⊢ (qs, (ϵ, b, s))⇝∗ (qf , (ϵ, b, s′))}.

FSCD 2024

19:8 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

▶ Theorem 17 (Properties of RTM [1]). For all RTM M , Sem(M) is the graph of an injective
function. Conversely, all injective computable functions (on a tape) are realisable by a RTM.
Finally, any Turing Machine can be simulated by a Reversible Turing Machine. ⌟

3.3 Encoding RTMs as Isos
A RTM configuration is a set-based construction that we can model using the type constructors
available in our language. Because the transition relation δ is backward and forward
deterministic, it can be encoded as an iso. Several issues need to be dealt with; we discuss
them in this section.

Encoding configurations. The set of states Q = {q1, . . . , qn} is modeled with the type
QT = 1⊕ · · · ⊕ 1 (n times). The encoding of the state qi is then a closed value qT

i . They are
pairwise orthogonal. The set Σ of tape symbols is represented similarly by ΣT = 1⊕ · · · ⊕ 1,
and the encoding of the tape symbol a is aT . We then define the type of configurations in
the obvious manner: a configuration C = (q, (l, s, r)) corresponds to a closed value isos(C)
of type QT ⊗ ([ΣT]⊗ ΣT ⊗ [ΣT]).

▶ Definition 18 (Encoding of Configurations). We define the type of configurations as CT =
(QT ⊗ ([ΣT]⊗Σ⊗ [ΣT])). Given a configuration C = (q, ((ϵ, a1, . . . , an), a, (a′

1, . . . , a
′
m, ϵ))), it

is encoded as isos(C) = (qT , ([aT
n , . . . , a

T
1], aT , [a′T

1 , . . . , a
′T
m])). For example, the standard con-

figuration C = (qs, (ϵ, b, [a1, . . . , an])) is represented as isos(C) = (qT
s , ([], bT , [aT

1 , . . . , a
T
n])).

Encoding the transition relation δ. A limitation of our language is that every sub-
computation has to be reversible and does not support infinite data structures such as
streams. In the context of RTMs, the empty string ϵ is identified with an infinite string of
blank symbols. If this can be formalised in set theory, in our limited model, we cannot emit
blank symbols out of thin air without caution.

In order to simulate an infinite amount of blank symbols on both sides of the tape during
the evaluation, we provide an iso that grows the size of the two tapes on both ends by
blank symbols at each transition step. The iso growth is shown in Table 5. It is built
using three auxiliary functions, written in a Haskell-like notation. len sends a closed value
[v1, . . . , vn] to ⟨[v1, . . . , vn], n⟩. snoc′ sends ⟨[v1, . . . , vn], v, n⟩ to ⟨[v1, . . . , vn, v], v, n⟩. snoc
sends ⟨[v1, . . . , vn], v⟩ to ⟨[v1, . . . , vn, v], v⟩. Finally, growth sends ⟨[aT

1, . . . , a
T
n], [a′T

1 , . . . , a
′T
m]⟩

to ⟨[aT
1 , . . . , a

T
n , b

T], [a′T
1 , . . . , a

′T
m , b

T]⟩.
Now, given a RTM M = (Q,Σ, δ, b, qs, qf), a relation (q, r, q′) ∈ δ is encoded as a clause

between values iso(q, r, q′) = v1 ↔ v2 of type CT ↔ CT . These clauses are defined by case
analysis on r as follows. When x, x′, z, y and y′ are variables:

iso(q,→, q′) = (qT , (x′, z, y :: y′))↔ let (l, r) = growth (x′, y′) in (q′T , (z :: l, y, r)),
iso(q,←, q′) = (qT , (x :: x′, z, y′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, x, z :: r)),
iso(q, ↓, q′) = (qT , (x′, z, x′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, z, r)),
iso(q, (s, s′), q′) = (qT , (x′, sT , y′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, s′T , r)).

The encoding of the RTM M is then the iso isos(M) whose clauses are the encoding of each
rule of the transition relation δ, of type ConfT ↔ ConfT .

Encoding successive applications of δ. The transition δ needs to be iterated until the final
state is reached. This behavior can be emulated in our language using the iso It, defined in
Table 5. The iso Itω is typed with (A↔ A⊗ nat). Fed with a value of type A, it iterates ω
until ff is met. It then returns the result together with the number of iterations.

K. Chardonnet, L. Lemonnier, and B. Valiron 19:9

Table 5 Some useful isos for the encoding.

len : [A] ↔ [A] ⊗ nat
len [] ↔ ([], 0)
lenh :: t ↔ let (t′, n) = len t in

(h :: t′, S(n))

snoc′ : [A] ⊗A⊗ nat ↔ [A] ⊗A⊗ nat
snoc′ ([], x, 0) ↔ let (x1, x2) = Dup∅

A x in
([x1], x2, 0)

snoc′ (h :: t, x, S(n)) ↔ let (t′, x′, n′) = snoc′(t, x, n) in
(h :: t′, x′, S(n′))

snoc : [A] ⊗A ↔ [A] ⊗A

snoc (x, y) ↔ let (x′, n) = len x in
let (x′′, y′, n′) = snoc′ (x′, y, n) in
letn′′ = {x ↔ Sx} n′ in
let z = len−1 (x′′, n′′) in (z, y′)

growth : [ΣT] ⊗ [ΣT] ↔ [ΣT] ⊗ [ΣT]
growth (l, r) ↔ let ⟨l′, b1⟩ = snoc⟨l, bT ⟩ in

let ⟨r′, b2⟩ = snoc⟨r, bT ⟩ in
let l′′ = eraseb⟨l′, b1⟩ in
let r′′ = eraseb⟨r′, b2⟩ in (l′′, r′′)

It : (A ↔ A⊗ (1⊕ 1)) → (A ↔ A⊗ nat)
Itψ x ↔ let y = ψ x in

let z =
{

(y, tt) ↔ let (z, n) = (Itψ) y in (z, S n)
(y, ff) ↔ (y, 0)

}
y in z

rmBlank : [Σ] ↔ [Σ] ⊗ N
rmBlank [] ↔ ([], 0)
rmBlank bT :: t ↔ let (t′, n) = rmBlank t in (t′, S(n))
rmBlank aT

1 :: t ↔ ((aT
1 :: t), 0)

...
...

...
...

rmBlank aT
n :: t ↔ ((aT

n :: t), 0)

revaux : [A] ⊗ [A] ↔ [A] ⊗ [A]
revaux ([], y) ↔ ([], y)
revaux (h :: t, y) ↔ let (h1, h2) = Dup∅

A h in
let (t1, t2) = ϕ(t, h2 :: y) in
(h1 :: t1, t2)

rev : [A] ↔ [A] ⊗ [A]
rev = {x ↔ let (t1, t2) = revaux (x, []) in (t1, t2)}

cleanUp : CT ⊗ nat ↔ CT ⊗ nat ⊗ nat ⊗ nat ⊗ [ΣT]
cleanUp ((x, (l, y, r)), n) ↔ let (l′, n1) = rmBlank l in

let (rori, rrev) = rev r in
let (r′, n2) = rmBlank rrev in
((x, (l′, y, r′)), n, n1, n2, rori)

FSCD 2024

19:10 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

f1 f−1
1 f2 f−1

2

χ

in

∅

∅

out

garbage

out

in

∅

in

garbage’

out

∅

in ∅

out

∅

Figure 1 Reversibly removing additional garbage from some process.

To iterate iso(M), we then only need to modify iso to return a boolean stating whether
qf was met. This can be done straightforwardly, yielding an iso isosB(M)) of type ConfT ↔
ConfT ⊗(1 ⊕ 1). With such an iso, given M be a RTM such that M ⊢ (qs, (ϵ, b, s)) ⇝n+1

(qf , (ϵ, b, (a1, . . . , an))), then It(isosB(M)) (qT
s , ([bT], bT , sT)) reduces to the encoding term

((qT
f , ([bT , . . . , bT], bT , [aT

1 , . . . , a
T
n , b

T , . . . , bT])), n). If it were not for the additional blank
tape elements, we would have the encoding of the final configuration.

Recovering a canonical presentation. Removing blank states at the beginning of a list is
easy: for instance, it can be done with the iso rmBlank, shown in Table 5. Cleaning up the
tail of the list can then be done by reverting the list, using, e.g. rev in the same table. By
abuse of notation, we use constants in some patterns: an exact representation would use
Definition 12. Finally, we can define the operator cleanUp, solving the issue raised in the
previous paragraph. In particular, given a RTM M and an initial configuration C such that
M ⊢ C ⇝ C ′ = (q, (ϵ, b, (a1, . . . , an))), then we have that cleanUp (It(isosB(M))CT) →∗

((qT , ([], bT , [aT
1 , . . . , a

T
n])), v), where v is of type nat⊗ nat⊗ nat⊗ [ΣT]. If we want to claim

that we indeed capture the operational behaviour of RTMS, we need to get rid of this value v.

Getting rid of the garbage. To discard this value v, we rely on Bennett’s trick [4], shown
in Figure 1. Given two Turing machines f1 and f2 and some input in such that if f1(in) =
out⊗ garbage and f2(out) = in⊗ garbage′, then the process consists of taking additional
tapes in the Turing Machine in order to reversibly duplicate (represented by the ⊕) or
reversibly erase some data (represented by the χ) in order to recover only the output of f1,
without any garbage.

Given an iso ω : A↔ B ⊗ C and ω′ : B ↔ A⊗ C ′ where C,C ′ represent garbage, we can
build an iso from A↔ B as follows, where the variables x, y, z (and their indices) respectively
correspond to the first, second, and third wire of Figure 1. This operator makes use of the
iso Dup discussed in Section 3.1.

GarbRem(ω, ω′) x1 ↔ let ⟨x2, y⟩ = ω x1 in let ⟨x3, z⟩ = Dup∅
B x2 in

letx4 = ω−1 ⟨x3, y⟩ in let ⟨z2, y2⟩ = ω′ z in
let z3 = (Dup∅

B)−1 ⟨z2, x4⟩ in let z4 = ω′−1 ⟨z3, y2⟩ in z4.

▶ Theorem 19 (Capturing the exact semantics of a RTM). For all RTM M with standard
configurations C = (qs, (ϵ, b, s)) and C ′ = (qf , (ϵ, b, s′)) such that M ⊢ C ⇝∗ C ′, we have

GarbRem(cleanUp(It(isosB(M))), cleanUp(It(isosB(M−1)))) isos(C)→∗ isos(C ′)

The behavior of RTMs is thus captured by the language. ⌟

K. Chardonnet, L. Lemonnier, and B. Valiron 19:11

4 Categorical Background

We aim at providing a denotational semantics for the programming language introduced
above, meaning a mathematical interpretation abstract to the syntax. Our approach is
categorical, in the spirit of many others before us. Programs are compositional by design,
making it natural to interpret in a framework ruled by compositionality. Types are usually
interpreted as objects in a category C, and terms as morphisms in this category. We have
seen that the main feature of our programming language is reversibility and its terms can
be seen as partial isomorphisms, or partial injections. We want this property to be carried
on the interpretation, and we present in this section the proper categories to do so. The
category of sets and partial injective functions, written PInj, will be the recurring example
throughout this section to help the intuition.

4.1 Join inverse rig category
The axiomatisation of join inverse rig categories gives the conditions for the morphisms of a
category to be partial injections. First, the notion of restriction allows to capture the actual
domain of a morphism through a partial identity function. Historically, inverse categories
[27] were introduced before restriction categories, but the latter are more convenient to
introduce the subject.

▶ Definition 20 (Restriction [9]). A restriction structure is an operator that maps each
morphism f : A → B to a morphism f : A → A such that for all g and h such that the
domain of g is A and the domain of h is B we have f ◦ f = f , f ◦ g = g ◦ f , f ◦ g = f ◦ g and
h ◦ f = f ◦ h ◦ f . A morphism f is said to be total if f = 1A. A category with a restriction
structure is called a restriction category. A functor F : C → D is a restriction functor if
F (f) = F

(
f

)
for all morphism f of C. The definition is canonically extended to bifunctors.

When unambiguous, we write gf for the composition g ◦ f .

▶ Example 21. Given sets A,B and a partial function f : A→ B defined on A′ ⊆ A and
undefined on A \A′, the restriction of f is f : A→ A, the identity on A′ ⊆ A and undefined
on A \A′. This example shows that PInj is a restriction category.

To interpret reversibility, we need to introduce a notion of reversed process, a process
that exactly reverses another process. This is given by a generalised notion of inverse.

▶ Definition 22 (Inverse category [24]). An inverse category is a restriction category where
all morphisms are partial isomorphisms; meaning that for f : A→ B, there exists a unique
f◦ : B → A such that f◦ ◦ f = f and f ◦ f◦ = f◦.

▶ Example 23. In PInj, let us consider the partial function f : {0, 1} → {0, 1} as f(0) = 1
and undefined on 1. Its restriction f is undefined on 1 also but f(0) = 0. Its inverse f◦ is
undefined on 0 and such that f◦(1) = 0.

The example above generalises and PInj is an actual inverse category. Even more, it is
the inverse category: [27] proves that every locally small inverse category is isomorphic to a
subcategory of PInj.

▶ Definition 24 (Restriction compatible [24]). Two morphisms f, g : A→ B in a restriction
category C are restriction compatible if fg = gf . The relation is written f ⌣ g. If C is an
inverse category, they are inverse compatible if f ⌣ g and f◦ ⌣ g◦, noted f ≍ g. A set S of
morphisms of the same type A→ B is restriction compatible (resp. inverse compatible) if all
elements of S are pairwise restriction compatible (resp. inverse compatible).

FSCD 2024

19:12 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

▶ Definition 25 (Partial order [9]). Let f, g : A → B be two morphisms in a restriction
category. We then define f ≤ g as gf = f .

▶ Definition 26 (Joins [16]). A restriction category C is equipped with joins if for all
restriction compatible sets S of morphisms A→ B, there exists

∨
s∈S s : A→ B morphism of

C such that, whenever t : A→ B and whenever for all s ∈ S, s ≤ t, s ≤
∨

s∈S s,
∨

s∈S s ≤ t,∨
s∈S s =

∨
s∈S s, f ◦

(∨
s∈S s

)
=

∨
s∈S fs,

(∨
s∈S s

)
◦ g =

∨
s∈S sg. Such a category is called

a join restriction category. An inverse category with joins is called a join inverse category.

Building up from Definition 20, a join restriction functor is a restriction functor that
preserves all thus constructed joins.

▶ Definition 27 (Zero [24]). Since ∅ ⊆ HomC(A,B), and since all of its elements are
restriction compatible, there exists a morphism 0A,B

.=
∨

s∈∅ s, called zero. It satisfies the
following equations: f0 = 0, 0g = 0, 0◦

A,B = 0B,A, 0A,B = 0A,A.

▶ Definition 28 (Restriction Zero). A restriction category C has a restriction zero object 0 iff
for all objects A and B, there exists a unique morphism 0A,B : A→ B that factors through 0
and satisfies 0A,B = 0A,A.

▶ Definition 29 (Disjointness tensor [13]). An inverse category C is said to have a disjointness
tensor if it is equipped with a symmetric monoidal restriction bifunctor .⊕ . : C × C → C,
with as unit a restriction zero 0 and morphisms ιl : A→ A⊕B and ιr : B → A⊕B that are
total, jointly epic, and such that their inverses are jointly monic and ι◦l ι

◦
r = 0A⊕B .

▶ Definition 30 ([25]). Let us consider a join inverse category equipped with a symmetric
monoidal tensor product (⊗, 1) and a disjointness tensor (⊕, 0) that are join preserving,
and such that there are isomorphisms δA,B,C : A ⊗ (B ⊕ C) → (A ⊗ B) ⊕ (A ⊗ C) and
νA : A⊗ 0→ 0. This is called a join inverse rig category.

4.2 DCPO-category
We use the vocabulary of enriched category theory to shorten the discussion in this section.
The notions of enrichment required to understand the semantics later is basic and should not
frighten the reader. Categories in computer science are usually locally small, meaning that
given two objects A and B, there is a set of morphisms A→ B. Enrichment is the study of
the structure of those sets of morphisms, which could be vector spaces or topological spaces
for example, more details can be found in [28, 29, 33]. It turns out that homsets in join inverse
rig categories are dcpos – directed-complete partial orders, i.e. a partial-ordered set with
all directed joins. This allows us to consider fixpoints in homsets. DCPO is the category
of directed complete partial orders and Scott-continuous functions – monotone functions
preserving joins. Dcpos are often used for the denotational interpretation of different sorts of
λ-calculi, and more generally, to interpret recursive functions or indefinite loops.

▶ Definition 31 ([12]). A category enriched over DCPO, also called a DCPO-category, is
a locally small category whose hom-sets are directly partial ordered and where composition
is a continuous operation (i.e. a morphism in DCPO).

It is proven in [24] that a join inverse category can be considered enriched in DCPO
without loss of generality.

▶ Lemma 32. Let C be a join inverse rig category. The functors: − ⊗ − : C × C → C,
−⊕− : C × C → C, −◦ : Cop → C are DCPO-functors, meaning that they preserve the dcpo
structure of homsets.

K. Chardonnet, L. Lemonnier, and B. Valiron 19:13

4.3 Compactness
Inductive data types are written in the syntax as some least fixed point. As said earlier, types
are represented as objects in the category, and thus a type judgement is an object mapping,
or rather an endofunctor. Here, we show how to consider fixed points of endofunctors in our
categorical setting.

▶ Definition 33 (Initial Algebra). Given an endofunctor F : C → C, an F -algebra is a pair
of an object A and a morphism f : FA→ A. F -algebras form a category with F -algebras
homomorphisms. An initial F -algebra is an initial object in the category of F -algebras.

▶ Theorem 34 (Lambek’s theorem). Given an endofunctor F : C → C and an F -initial
algebra (X,α : FX → X), α is an isomorphism. ⌟

With Lambek’s theorem, we know that an initial algebra provides an object X such that
X ∼= FX; X is a fixed point of the endofunctor F , as requested. The existence of such fixed
points is given by the next theorem [12, Corollary 7.2.4].

▶ Definition 35 (Ep-pair). Given a DCPO-category C, a morphism e : X → Y in C is called
an embedding if there exists a morphism p : Y → X such that p ◦ e = idX and e ◦ p ≤ idY .
The morphisms e and p form an embedding-projection pair (e, p), also called ep-pair.

We recall that an ep-zero [12, Definition 7.1.1], is an initial object such that every
morphism with it as source is an embedding, and is also a terminal object such that every
morphism with it as target is a projection.

▶ Theorem 36. A DCPO-category with an ep-zero and colimits of ω-chains of embeddings
is parametrised DCPO-algebraically ω-compact; meaning that for every DCPO-functor
F : C × D → D, there is a pair consisting of a DCPO-functor F々: C → D and an indexed
family αF = {αF

A : F (A,F々A) → F々A} of initial F (A,−)-algebras. This pair is called a
parametrised initial algebra. ⌟

The hypotheses of the theorem above are verified by the categories we want to work with,
without loss of generality.

▶ Proposition 37 ([24]). Any join inverse rig category can be faithfully embedded in a rig
join inverse category with colimits of ω-chains of embeddings. ⌟

5 Denotational semantics

We now show how to build a denotational semantics for the language we presented thus far.
The semantics is akin to the one presented in [7] but with extra structure to handle inductive
types and recursive functions. While the semantics is sound and adequate w.r.t. a notion of
operational equivalence between terms, the main interest of the semantics rest in showing
that, given some RTM M whose semantics is a function f , we show that the semantics of
isos(M) is the same as f . This would provide us with a formal proof that any computable
reversible function can be captured by an iso.

Types. Let us consider C a join inverse rig category (Definition 30). We can assume without
loss of generality that C satisfies the hypothesis of Theorem 36. In order to deal with
open types, we make use an auxiliary judgement for types, of the form X1, . . . , Xn ⊨ A,
where {Xi}i is a subset of the free type variables appearing in A. We interpret this

FSCD 2024

19:14 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

kind of judgement as a DCPO-functor C|Θ| → C written JΘ ⊨ AK. This can be formally
defined as a (simple) inductive relation, and the semantics is defined similarly to what is
done in [12, 21]. JΘ ⊨ 1K is the constant functor that maps to the tensor product unit.
JΘ, X ⊨ XK is a projection. The other judgements are obtained by induction: if JΘ ⊨ AK = f

and JΘ ⊨ BK = g, then JΘ ⊨ A⊕BK = ⊕ ◦ ⟨f, g⟩ and JΘ ⊨ A⊗BK = ⊗ ◦ ⟨f, g⟩. Finally,
JΘ ⊨ µX.AK = (JΘ, X ⊨ AK)々. All this is summed up in Table 6.

Table 6 Interpretation of types.

JΘ ⊨ AK : C|Θ| → C
JΘ, X ⊨ XK = Π

JΘ ⊨ IK = K1

JΘ ⊨ A⊕BK = ⊕ ◦ ⟨JΘ ⊨ AK , JΘ ⊨ BK⟩
JΘ ⊨ A⊗BK = ⊗ ◦ ⟨JΘ ⊨ AK , JΘ ⊨ BK⟩

JΘ ⊨ µX.AK = (JΘ, X ⊨ AK)々

Lemma 32 and Theorem 36 ensure that this is well-defined. For closed types, we have
J1K = 1, JA⊕BK = JAK⊕ JBK, JA⊗BK = JAK⊗ JBK and JµX.AK ∼= JA[µX.A/X]K. Ground
iso types are represented by dcpos of morphisms in C, written JA↔ BK = HomC(JAK , JBK).
The type of iso functions T1 → T2 is interpreted by the dcpo of Scott continuous maps between
the two dcpos JT1K and JT2K, written [JT1K→ JT2K]. The terms used to build isos are dependent
in two contexts: variables in ∆ and isos in Ψ. In general, if ∆ = x1 : A1, . . . , xm : Am and
Ψ = ϕ1 : T1, . . . , ϕn : Tn, then we set J∆K = JA1K⊗ · · · ⊗ JAmK and JΨK = JT1K× · · · × JT2K,
with ⊗ being the monoidal product in C and × the cartesian product in DCPO.

Terms. A well-formed term judgement Ψ; ∆ ⊢ t : A has for semantics a Scott continuous
map JΨ; ∆ ⊢ t : AK ∈ DCPO(JΨK , C(J∆K , JAK)), defined as in Table 7 when g ∈ JΨK. All
this is well-defined in DCPO provided that JΨ ⊢ω ω : A↔ BK is. This last point is the focus
of the next section.

▶ Lemma 38. Given two judgements Ψ; ∆1 ⊢ t1 : A and Ψ; ∆2 ⊢ t2 : A, such that t1 ⊥ t2,
we have for all g ∈ JΨK the equality Jt1K (g)◦ ◦ Jt2K (g) = 0J∆2K,J∆1K. ⌟

Isos. Isos do only depend on function variables, but they are innately morphisms, so their
denotation will be similar to terms – a Scott continuous map. We define the denotation of
an iso by induction on the typing rules. The interpretation of an iso-variable is direct, it is
the projection on the last component. The interpretations of evaluations and λ-abstractions
are usual in a cartesian closed category, in our case, DCPO. All the rules apart for the iso-
abstraction are found in Table 7. The remaining rule, building an iso abstraction {vi ↔ ei}i∈I ,
needs more details.

▶ Lemma 39. Given a well-formed iso abstraction Ψ ⊢ω {vi ↔ ei}i∈I : A ↔ B, for all
g ∈ JΨK, the morphisms in C given by JΨ; ∆i ⊢ ei : BK (g) ◦ JΨ; ∆i ⊢ vi : AK (g)◦, with i ∈ I
are pairwise inverse compatible. ⌟

Each clause vi ↔ ei of an iso abstraction is given an interpretation JeiK ◦ JviK
◦. The

previous lemma shows that in the case of an iso abstraction, the interpretations of all clauses
can be joined (in the sense of Definition 26). This join also generalises to the join in DCPO
as shown by the lemma below.

K. Chardonnet, L. Lemonnier, and B. Valiron 19:15

Table 7 Denotational semantics of the language in a join inverse rig DCPO-category.

JΨ; ∆ ⊢ t : AK (g) ∈ C(J∆K , JAK)
JΨ; ∅ ⊢ ∗ : IK (g) = idJIK

JΨ;x : A ⊢ x : AK (g) = idJAK

JΨ; ∆ ⊢ injℓ t : A⊕BK (g) = ιl ◦ JΨ; ∆ ⊢ t : AK (g)
JΨ; ∆ ⊢ injr t : A⊕BK (g) = ιr ◦ JΨ; ∆ ⊢ t : BK (g)

JΨ; ∆1,∆2 ⊢ t1 ⊗ t2 : A⊗BK (g) = JΨ; ∆1 ⊢ t1 : AK (g)⊗ JΨ; ∆2 ⊢ t2 : BK (g)

JΨ; ∆ ⊢ fold t : µX.AK (g) = αJX⊨AK ◦ JΨ; ∆ ⊢ t : A[µX.A/X]K (g)

JΨ ⊢ω ω : T K ∈ DCPO(JΨK , JT K)
JΨ, ϕ : T ⊢ω ϕ : T K = πJT K

JΨ ⊢ω ω2ω1 : T2K = eval ◦ ⟨JΨ ⊢ω ω2 : T1 → T2K , JΨ ⊢ω ω1 : T1K⟩
JΨ ⊢ω λϕ.ω : T1 → T2K = curry(JΨ, ϕ : T1 ⊢ω ω : T2K)

JΨ ⊢ω fix ϕ.ω : T K = fix (JΨ, ϕ : T ⊢ω ω : T K)

▶ Lemma 40. Given a dcpo Ξ, two objects X and Y of C, a set of indices I and a family of
Scott continuous maps ξi : Ξ→ C(X,Y) that are pairwise inverse compatible, the function∨

i∈I ξi : Ξ→ C(X,Y) defined by x 7→
∨

i∈I ξi(x) is Scott continuous. ⌟

The interpretation of an iso abstraction is then given by:

JΨ ⊢ω {vi ↔ ei}i∈I : A↔ BK =
∨
i∈I

(comp ◦ ⟨JΨ; ∆i ⊢ ei : BK , JΨ; ∆i ⊢ vi : AK◦⟩)

The semantics is well-defined, in the sense that the interpretation of Ψ ⊢ω {vi ↔ ei}i∈I : A↔
B is a Scott continuous map between the dcpos JΨK and C(JAK , JBK).

6 Adequacy

We show a strong relationship between the operational semantics and the denotational
semantics of the language. First, we fix a mathematical interpretation J−K in a join inverse
rig category C, that is DCPO-enriched and whose objects 0 and 1 are distinct.

Since the language handles non-termination, our adequacy statement links the denotational
semantics to the notion of termination in the operational semantics: Given ⊢ t : A, t is said
to be terminating if there exists a value v such that t→∗ v. We either write t ↓, or t ↓ v.

▶ Theorem 41 (Adequacy). Given ⊢ t : A, t ↓ iff J⊢ t : AK ̸= 0JAK.

Soundness. We start by showing the simple implication in Theorem 41 amount to soundness:
the denotational semantics is stable w.r.t. computation.

▶ Proposition 42 (Soundness). Given a valid term judgement ⊢ t : A, provided that t→ t′,
then we have J⊢ t : AK = J⊢ t′ : AK . ⌟

We can conclude that if ⊢ t : A with t ↓, we have J⊢ t : AK ≠ 0JAK. This shows one of the
implications in Theorem 41. For the proof of the other implication, we follow a syntactic
approach, inspired by the proof in [35].

FSCD 2024

19:16 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

Proof of Adequacy. Our proof of adequacy involves a finitary sublanguage, where the
number of recursive calls is controlled syntactically: instead of general fixpoints, we introduce
a family of finitary fixpoints fixn ϕ.ω, unfolding n times before reducing to the empty iso
{}, corresponding to the diverging iso.

We show the adequacy result for the finitary terms thanks to strong normalisation, and
then show that it implies adequacy for the whole language; this is achieved by observing
that a normalising finitary term is also normalising in its non-finitary form.

7 Semantics preservation

In this section, we fix the interpretation J−K of the language in PInj, the category of sets and
partial injections. This choice comes without any loss of generality (see [27]), and allows us to
consider computable functions. In this section, we show that given a computable, reversible
function f : JAK → JBK, there exists an iso ω : A ↔ B such that JωK = f . In order to do
that, we fix a canonical flat representation of our types.

7.1 A Canonical Representation
We define a canonical representation of closed values of some type A into a new type
Enc = B⊕ 1⊕ 1⊕ 1⊕ 1⊕ nat (recall that B = 1⊕ 1 and nat = µX.1⊕X). For simplicity
let us name each the following terms of type Enc : tt = injℓ (injℓ ()), ff = injℓ (injr ()),
S = injr (injℓ ()), D⊕ = injr (injr (injℓ ())), D⊗ = injr (injr (injr (injℓ ()))), Dµ =
injr (injr (injr (injr (injℓ ())))), and for every natural number n, we write ñ for the term
injr (injr (injr (injr (injr (injr (n)))))), where n is the encoding of natural numbers, as
given in Example 8. Now, given some closed type A, we can define ⌊−⌋A : A↔ [Enc] the iso
that transform any close value of type A into a list of Enc. The iso is defined inductively
over A: ⌊−⌋1 = {()↔ [S]}, and

⌊−⌋A⊕B =
{

injℓ (x) ↔ let y = ⌊x⌋A in D⊕ :: ff :: y
injr (x) ↔ let y = ⌊x⌋B in D⊕ :: tt :: y

}
,

⌊−⌋A⊗B =
{
⟨x, y⟩ ↔ letx′ = ⌊x⌋A in let y′ = ⌊y⌋B in

let ⟨z, n⟩ = + + ⟨x′, y′⟩ in D⊗ :: ñ :: z

}
,

⌊−⌋µX.A =
{

fold x ↔ let y = ⌊x⌋A[µX.A/X] in Dµ :: y
}
,

where the iso ++: [A]⊗ [A]↔ [A]⊗ nat which concatenate two lists is defined as:

fix f.
{
⟨[], x⟩ ↔ ⟨x, 0⟩
⟨h :: t, x⟩ ↔ let ⟨y, n⟩ = f ⟨t, x⟩ in ⟨h :: y, S(n)⟩

}
.

7.2 Capturing every computable injection
With this encoding, every iso ω : A↔ B can be turned into another iso ⌊ω⌋ : [Enc]↔ [Enc] by
composing ⌊−⌋A, followed by ω, followed by ⌊−⌋−1

B . This is in particular the case for isos that
are the images of a Turing Machine. We are now ready to see how every computable function
f from JAK → JBK can be turned into an iso whose semantics is f . Given a computable
function f : JAK → JBK, call Mf the RTM computing f . Since f is in PInj, its output
uniquely determines its input. Following [4], given the output of the machine Mf there exists
another Turing Machine M ′

f which takes this output and recover the original input of Mf . In
our encoding of a RTM, the iso will have another additional garbage which consist of a natural

K. Chardonnet, L. Lemonnier, and B. Valiron 19:17

number, i.e. the number of steps of the RTM Mf . Using GarbRem(isos(Mf), isos(M ′
f)) we

can obtain a single iso, from the encoding of A to the encoding of B, without any garbage
left. This also ensures that

r
GarbRem(isos(Mf), isos(M ′

f))
z

(x) = (Jisos(Mf)K (x))1, for any
input x.

▶ Theorem 43 (Computable function as Iso). Given a computable function f : JAK→ JBK, let
g : J[Enc]⊗ [Enc]K→ J[Enc]⊗ [Enc]K be defined as g = J⌊−⌋BK◦f ◦

q
⌊−⌋−1

A

y
, and let ω : A↔

B be defined as {x ↔ let y = ⌊x⌋A in let y′ = GarbRem(isos(Mg), isos(M ′
g)) y in let z =

⌊y′⌋−1
B in z}. Then JωK = f . ⌟

8 Conclusion

In this paper, we built upon the language presented in [7, 8, 36] in order to represent any
partial injective function which can manipulate inductive types. We showed how one can
encode any Reversible Turing Machine, hence the (reversible) Turing Completeness, and we
gave a denotational semantics based on join inverse rig categories, together with a soundness
and adequacy theorem. Most notably, we showed that for any computable function f from
PInj, there exists an iso whose semantics is f , thus our language fully characterises all of
the computable morphisms in PInj.

References
1 Holger Bock Axelsen and Robert Glück. A simple and efficient universal reversible turing

machine. In Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors, Language
and Automata Theory and Applications, pages 117–128, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-21254-3_8.

2 Holger Bock Axelsen and Robin Kaarsgaard. Join inverse categories as models of reversible
recursion. In Bart Jacobs and Christof Löding, editors, Proceedings of the 19th International
Conference on Foundations of Software Science and Computation Structures (FOSSACS’16),
volume 9634 of Lecture Notes in Computer Science, pages 73–90, Eindhoven, The Netherlands,
2016. Springer. doi:10.1007/978-3-662-49630-5_5.

3 Henk Barendregt. ’the lambda calculus: its syntax and semantics’. Studies in logic and the
foundations of Mathematics, 1984.

4 Charles H Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525–532, 1973. doi:10.1147/rd.176.0525.

5 Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider,
and Eric Lutz. Experimental verification of landauer’s principle linking information and
thermodynamics. Nature, 483(7388):187–189, 2012.

6 Kostia Chardonnet. Towards a Curry-Howard Correspondence for Quantum Computa-
tion. Theses, Université Paris-Saclay, January 2023. URL: https://theses.hal.science/
tel-03959403.

7 Kostia Chardonnet, Louis Lemonnier, and Benoît Valiron. Categorical semantics of revers-
ible pattern-matching. Electronic Proceedings in Theoretical Computer Science, 351:18–33,
December 2021. doi:10.4204/eptcs.351.2.

8 Kostia Chardonnet, Alexis Saurin, and Benoît Valiron. A Curry-Howard correspondence for
linear, reversible computation. In Bartek Klin and Elaine Pimentel, editors, 31st EACSL
Annual Conference on Computer Science Logic (CSL 2023), volume 252 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 13:1–13:18, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2023.13.

9 J. Robin B. Cockett and Stephen Lack. Restriction categories I: Categories of partial maps.
Theoretical Computer Science, 270(1):223–259, 2002. doi:10.1016/S0304-3975(00)00382-0.

10 J. Robin B. Cockett and Stephen Lack. Restriction categories ii: partial map classification.
Theoretical Computer Science, 294(1):61–102, 2003. doi:10.1016/S0304-3975(01)00245-6.

FSCD 2024

https://doi.org/10.1007/978-3-642-21254-3_8
https://doi.org/10.1007/978-3-662-49630-5_5
https://doi.org/10.1147/rd.176.0525
https://theses.hal.science/tel-03959403
https://theses.hal.science/tel-03959403
https://doi.org/10.4204/eptcs.351.2
https://doi.org/10.4230/LIPIcs.CSL.2023.13
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(01)00245-6

19:18 Sem. for a Turing-Complete Rev. Prog. Lang. with Induct. Types

11 Robin Cockett and Stephen Lack. Restriction categories III: Colimits, partial limits and
extensivity. Mathematical Structures in Computer Science, 17(4):775–817, 2007. doi:10.1017/
S0960129507006056.

12 M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Distinguished Disserta-
tions in Computer Science. Cambridge University Press, 2004. URL: https://books.google.
co.uk/books?id=rsIAmbc2cIoC.

13 Brett Gordon Giles. An Investigation of Some Theoretical Aspects of Reversible Computing.
PhD thesis, University of Calgary, 2014. doi:10.11575/PRISM/24917.

14 Robert Glück and Robin Kaarsgaard. A categorical foundation for structured reversible
flowchart languages: Soundness and adequacy. Log. Methods Comput. Sci., 14(3), 2018.
doi:10.23638/LMCS-14(3:16)2018.

15 Robert Glück, Robin Kaarsgaard, and Tetsuo Yokoyama. Reversible programs have reversible
semantics. In Emil Sekerinski, Nelma Moreira, José N. Oliveira, Daniel Ratiu, Riccardo
Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Campos, Troy Astarte, Laure
Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib, Pedro Monteiro,
and David Delmas, editors, Formal Methods. FM 2019 International Workshops - Porto,
Portugal, October 7-11, 2019, Revised Selected Papers, Part II, volume 12233 of Lecture Notes
in Computer Science, pages 413–427. Springer, 2019. doi:10.1007/978-3-030-54997-8_26.

16 Xiuzhan Guo. Products, Joins, Meets, and Ranges in Restriction Categories. PhD thesis,
University of Calgary, 2012. doi:10.11575/PRISM/4745.

17 Chris Heunen, Robin Kaarsgaard, and Martti Karvonen. Reversible effects as inverse arrows.
In Sam Staton, editor, Proceedings of the 34th Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXXIV), volume 341 of Electronic Notes in Theoretical
Computer Science, pages 179–199, Dalhousie University, Halifax, Canada, 2018. Elsevier.
doi:10.1016/j.entcs.2018.11.009.

18 Chris Heunen and Martti Karvonen. Reversible monadic computing. In Dan Ghica, editor,
Proceedings of the 31st Conference on the Mathematical Foundations of Programming Semantics
(MFPS XXXI), volume 319 of Electronic Notes in Theoretical Computer Science, pages 217–237,
Nijmegen, The Netherlands, 2015. doi:10.1016/j.entcs.2015.12.014.

19 Petur Andrias Højgaard Jacobsen, Robin Kaarsgaard, and Michael Kirkedal Thomsen. CoreFun:
A typed functional reversible core language. In Jarkko Kari and Irek Ulidowski, editors,
Reversible Computation - 10th International Conference, RC 2018, Leicester, UK, September
12-14, 2018, Proceedings, volume 11106 of Lecture Notes in Computer Science, pages 304–321.
Springer, 2018. doi:10.1007/978-3-319-99498-7_21.

20 Rosham P. James and Amr Sabry. Theseus: A high-level language for reversible computing.
Draft, available at https://legacy.cs.indiana.edu/~sabry/papers/theseus.pdf, 2014.

21 Xiaodong Jia, Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev. Commutative
monads for probabilistic programming languages. In 2021 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). IEEE, June 2021. doi:10.1109/lics52264.2021.
9470611.

22 Robin Kaarsgaard. Condition/decision duality and the internal logic of extensive restriction
categories. In Barbara König, editor, Proceedings of the 35th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXV), volume 347 of Electronic Notes in
Theoretical Computer Science, pages 179–202, London, UK, 2019. doi:10.1016/j.entcs.
2019.09.010.

23 Robin Kaarsgaard. Inversion, iteration, and the art of dual wielding. In Michael Kirkedal
Thomsen and Mathias Soeken, editors, Proceedings of the 11th International Conference on
Reversible Computation (RC 2019), volume 11497 of Lecture Notes in Computer Science, pages
34–50, Lausanne, Switzerland, 2019. Springer. doi:10.1007/978-3-030-21500-2_3.

24 Robin Kaarsgaard, Holger Bock Axelsen, and Robert Glück. Join inverse categories and
reversible recursion. Journal of Logical and Algebraic Methods in Programming, 87:33–50,
2017. doi:10.1016/j.jlamp.2016.08.003.

https://doi.org/10.1017/S0960129507006056
https://doi.org/10.1017/S0960129507006056
https://books.google.co.uk/books?id=rsIAmbc2cIoC
https://books.google.co.uk/books?id=rsIAmbc2cIoC
https://doi.org/10.11575/PRISM/24917
https://doi.org/10.23638/LMCS-14(3:16)2018
https://doi.org/10.1007/978-3-030-54997-8_26
https://doi.org/10.11575/PRISM/4745
https://doi.org/10.1016/j.entcs.2018.11.009
https://doi.org/10.1016/j.entcs.2015.12.014
https://doi.org/10.1007/978-3-319-99498-7_21
https://legacy.cs.indiana.edu/~sabry/papers/theseus.pdf
https://doi.org/10.1109/lics52264.2021.9470611
https://doi.org/10.1109/lics52264.2021.9470611
https://doi.org/10.1016/j.entcs.2019.09.010
https://doi.org/10.1016/j.entcs.2019.09.010
https://doi.org/10.1007/978-3-030-21500-2_3
https://doi.org/10.1016/j.jlamp.2016.08.003

K. Chardonnet, L. Lemonnier, and B. Valiron 19:19

25 Robin Kaarsgaard and Mathys Rennela. Join inverse rig categories for reversible functional
programming, and beyond. In Ana Sokolova, editor, Proceedings 37th Conference on Mathem-
atical Foundations of Programming Semantics, Hybrid: Salzburg, Austria and Online, 30th
August - 2nd September, 2021, volume 351 of Electronic Proceedings in Theoretical Computer
Science, pages 152–167. Open Publishing Association, 2021. doi:10.4204/EPTCS.351.10.

26 Robin Kaarsgaard and Niccolò Veltri. En garde! unguarded iteration for reversible computation
in the delay monad. In Graham Hutton, editor, Proceedings of the 13th International Conference
on Mathematics of Program Construction (MPC 2019), volume 11825 of Lecture Notes in
Computer Science, pages 366–384, Porto, Portugal, October 2019. Springer Verlag. doi:
10.1007/978-3-030-33636-3_13.

27 J. Kastl. Inverse categories. In Algebraische Modelle, Kategorien und Gruppoide, Studien zur
Algebra und ihre Anwendungen, Band 7, pages 51–60. Berlin, Akademie-Verlag, 1979.

28 G.M Kelly. Tensor products in categories. Journal of Algebra, 2(1):15–37, 1965. doi:
10.1016/0021-8693(65)90022-0.

29 Max Kelly. Basic concepts of enriched category theory, volume 64. CUP Archive, 1982.
30 Rolf Landauer. Irreversibility and heat generation in the computing process. IBM Journal of

Research and Development., 5(3):183–191, 1961. doi:10.1147/rd.53.0183.
31 Christopher Lutz. Janus: a time-reversible language. Letter to Rolf Landauer, posted online

by Tetsuo Yokoyama on http://www.tetsuo.jp/ref/janus.html, 1986.
32 Ian Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL’95, pages 198–208.
ACM Press, 1995. doi:10.1145/199448.199483.

33 J.-M. Maranda. Formal categories. Canadian Journal of Mathematics, 17:758–801, 1965.
doi:10.4153/CJM-1965-076-0.

34 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2002.

35 Michele Pagani, Peter Selinger, and Benoît Valiron. Applying quantitative semantics to higher-
order quantum computing. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, pages 647–658, New York, NY, USA,
2014. Association for Computing Machinery. doi:10.1145/2535838.2535879.

36 Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. From symmetric pattern-matching
to quantum control. In Christel Baier and Ugo Dal Lago, editors, Proceedings of the 21st
International Conference on Foundations of Software Science and Computation Structures
(FOSSACS’18), volume 10803 of Lecture Notes in Computer Science, pages 348–364, Thes-
saloniki, Greece, 2018. Springer. doi:10.1007/978-3-319-89366-2_19.

37 Michael Kirkedal Thomsen and Holger Bock Axelsen. Interpretation and programming of
the reversible functional language RFUN. In Ralf Lämmel, editor, Proceedings of the 27th
Symposium on the Implementation and Application of Functional Programming Languages,
IFL 2015, Koblenz, Germany, September 14-16, 2015, pages 8:1–8:13. ACM, 2015. doi:
10.1145/2897336.2897345.

38 Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Towards a reversible functional
language. In Alexis De Vos and Robert Wille, editors, Revised Papers of the Third International
Workshop on Reversible Computation (RC’11), volume 7165 of Lecture Notes in Computer
Science, pages 14–29, Gent, Belgium, 2012. Springer. doi:10.1007/978-3-642-29517-1_2.

39 Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Fundamentals of reversible
flowchart languages. Theoretical Computer Science, 611:87–115, 2016. doi:10.1016/j.tcs.
2015.07.046.

40 Tetsuo Yokoyama and Robert Glück. A reversible programming language and its invertible
self-interpreter. In G. Ramalingam and Eelco Visser, editors, Proceedings of the 2007 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation,
PEPM 2007, Nice, France, January 15-16, 2007, pages 144–153, 2007. doi:10.1145/1244381.
1244404.

FSCD 2024

https://doi.org/10.4204/EPTCS.351.10
https://doi.org/10.1007/978-3-030-33636-3_13
https://doi.org/10.1007/978-3-030-33636-3_13
https://doi.org/10.1016/0021-8693(65)90022-0
https://doi.org/10.1016/0021-8693(65)90022-0
https://doi.org/10.1147/rd.53.0183
http://www.tetsuo.jp/ref/janus.html
https://doi.org/10.1145/199448.199483
https://doi.org/10.4153/CJM-1965-076-0
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1145/2897336.2897345
https://doi.org/10.1145/2897336.2897345
https://doi.org/10.1007/978-3-642-29517-1_2
https://doi.org/10.1016/j.tcs.2015.07.046
https://doi.org/10.1016/j.tcs.2015.07.046
https://doi.org/10.1145/1244381.1244404
https://doi.org/10.1145/1244381.1244404

	1 Introduction
	2 Language
	3 Expressivity
	3.1 Recovering duplication, erasure and manipulation of constants
	3.2 Definition of Reversible Turing Machine
	3.3 Encoding RTMs as Isos

	4 Categorical Background
	4.1 Join inverse rig category
	4.2 DCPO-category
	4.3 Compactness

	5 Denotational semantics
	6 Adequacy
	7 Semantics preservation
	7.1 A Canonical Representation
	7.2 Capturing every computable injection

	8 Conclusion

