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Neuromod

Fig. 1. Voxel-wise feature importance scores for one subject in each dataset:
The scores are z-scored and thresholded to only show the top 1 percentile. From left
to right, top to bottom: the cognitive tasks performed in Neuromod is visual N-back,
in AOMIC is emotion anticipation, in Forrest is music genre perception, and in RSVP-
IBC is RSVP language task.
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Fig. 2. Decoding accuracy using linear SVC with /1 penalization during pre-
training: Overall average decoding accuracy across subjects, 20 cross-validation splits
and ten training set sizes.



