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Light-wave propagation in Erbium-doped fiber amplifiers :

comparison of models and numerical simulation methods

S. Balac

October 12, 2020

Abstract

We compare different numerical approaches to solve two boundary value problems that
modelize light-wave propagation in Erbium-doped fiber amplifiers. We consider two models,
a basic model for Erbium-doped fiber amplifiers very widely used in the literature and a
more advanced model that takes into account the amplified spontaneous emission (ASE)
phenomenon.
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1 Introduction

Our concern in this document is the investigation of numerical methods for the simulation of
light-wave propagation in Erbium-doped fiber amplifiers. From a mathematical point of view,
light-wave propagation in Erbium-doped fiber amplifiers can be described through a system
of non-linear ordinary equations (ode). The specificity of the situation is that this non-linear
system of ode is not related to a Cauchy problem but to a boundary value problem: data are
provided at both ends of the fiber. From a numerical point of view, the situation is therefore a
little more difficult to handle than the situation of a Cauchy problem where standard methods
such as the Runge-Kutta methods can be used straightaway. In order to solve this boundary
value problem for a non-linear ode system, we investigate two groups of numerical methods:
shooting methods on the one hand and relaxation methods on the other hand.

Roughly speaking, the principle of the shooting methods is as follows: (1) change the bound-
ary value problem into a Cauchy problem by choosing some arbitrary values for the missing data
at the fiber entry, (2) propagate the corresponding light-wave signal into the fiber, (3) compare
the solution to the boundary value at the fiber end. The chosen values for the missing data at
the fiber entry are then modified according to the gap between the computed values and the
expected ones at the fiber end and the process is iterated until the gap is sufficiently small.

The principle of the relaxation methods is the following. A subdivision of the fiber length
is introduced and a discretization scheme for ode (e.g. a Runge-Kutta scheme) is chosen and
written down. Taking into account the boundary conditions, this leads to a non-linear system of
equations that is solved using a standard numerical method such as Newton-Raphson method
or the Secant method. Note that these numerical methods for solving non-linear systems of
equations are iterative so that the two groups of methods are based on iterations.

The document is organized as follows. In Section 2, we introduce the mathematical model for
light-wave propagation in Erbium-doped fiber amplifiers based on the book of Becker, Olsson and
Simpson [1]. Description of the physical phenomena involved in Erbium-doped fiber amplifiers
as well as notations are extracted from this reference [1]. In Section 3, we consider the simplified
situation where the amplified spontaneous emission (ASE) phenomenon is neglected. We then
have a system of only two ode (one for the pump and one for the signal) that allows us to intro-
duced the above mentioned numerical methods in a simplified framework. After a description
of the various methods that can be used to simulate light-wave propagation in Erbium-doped
fiber amplifiers in this simplified situation, we compare their efficiency on a benchmark problem.
In Section 4, we consider the more realistic situation where ASE is taken into account. After
having highlighted the main difference with the simplified case from a numerical point of view,
we provide simulation results obtained by the above mentioned numerical methods.

2 The basic model for Erbium-doped fiber amplifiers

2.1 Amplification model in three-level atomic systems

The energy levels of rare earth ions are composed of relatively well-separated multiplets, each of
which is made up of a certain number of broadened individual levels. The most simple treatment
of the erbium-doped fiber amplifier starts out by considering a pure three-level atomic system,
see e.g. [1, Chapter 5] or [2, Chapter 1]. Most of the important characteristics of the amplifier
can be obtained from this simple model and its underlying assumptions. This three-level system
is intended to represent the part of the energy level structure of Er3+that is relevant to the
amplification process.

Thus, we consider a three-level system as depicted in Figure 1, with a ground state denoted
by 1, an intermediate state labeled 3 (into which energy is pumped), and state 2. Since state
2 often has a long lifetime in the case of a good amplifier, it is sometimes referred to as the
metastable level. State 2 is the upper level of the amplifying transition and state 1 is the lower
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level. The populations density (number of ions per unit volume) of the three levels are labeled
N1, N2, and N3 respectively. To obtain amplification, we need a population inversion between
states 1 and 2, and since state 1 is also the ground state, at least half of the total population of
erbium ions needs to be excited to level 2 to have population inversion.

One can take particular advantage, in the case of the erbium-doped fiber amplifier, of the fact
that the light fields are confined in a core of very small dimensions. The light intensities reached
are thus very high, over long distances, and population inversion is achieved with relatively small
pump powers. We will thus consider the problem to be one-dimensional. That is, we assume
that the pump and signal intensities as well as the erbium ion distribution are constant in the
transverse dimensions, over an effective cross-sectional area of the fiber.

We introduce the following quantities.

• The incident light intensity flux at the frequency corresponding to the 1 to 3 transition
(in number of photons per unit time per unit area) is denoted by ϕp and corresponds to
the pump.

• The incident flux at the frequency corresponding to the 1 to 2 transition (in photons per
unit time per unit area) is denoted by ϕs and corresponds to the signal field.

Figure 1: The three levels system used for the amplifier model.

The change in population for each level arises from absorption of photons from the incident
light field, from spontaneous and stimulated emission, and from other pathways for the energy
to escape a particular level. In particular, we denote by

• Γ32 the transition probability from level 3 to level 2;

• Γ21 the transition probability from level 2 to level 1;

• τ2 =
1

Γ21
the lifetime of level 2.

We also denote

• σp the absorption cross section for the 1 to 3 transition

• σs the emission cross section for the 2 to 1 transition

In this basic model, we assume that the transition rates between levels 1 and 3 are propor-
tional to the populations in those levels and to the product of the pump flux ϕp by the pump
cross section σp. The transition rates between levels 1 and 2 are proportional to the populations
in those levels and to the product of the signal flux ϕs by the signal cross section σs. The
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spontaneous transition rates of the ion (including radiative and nonradiative contributions) are
given by Γ32 and Γ21. Moreover, we assume that the absorption and emission cross sections we
consider are those for transitions between individual non-degenerate states and are thus equal.1

These considerations lead to the following system of equations for the population changes in the
three levels:2

∂N3

∂t
(z, t) =− Γ32N3(z, t) + (N1(z, t)−N3(z, t))σp ϕp(z, t)

∂N2

∂t
(z, t) =− Γ21N2(z, t) + Γ32N3(z, t) + (N2(z, t)−N1(z, t))σs ϕs(z, t)

∂N1

∂t
(z, t) =− Γ21N2(z, t) + (N1(z, t)−N3(z, t))σp ϕp(z, t)

+ (N2(z, t)−N1(z, t))σs ϕs(z, t)

(1a)

(1b)

(1c)

for all z ∈ [0, L] where L is the length of the fiber and for all time t ≥ 0. These equations are
referred to as the rate equations.

We are interested in the steady-state situation. The population N is then given by

N = N1(t) +N2(t) +N3(t) ∀t ∈ R+. (2)

Equations (1) can be solved analytically in the steady-state regime. In particular, we deduce
from equation (1a) that

N3(z) =
1

1 + Γ32
σpϕp(z)

(3)

When Γ32 is large (reflecting a fast decay from level 3 to level 2) compared to the effective pump
rate into level 3 (defined as σpϕp(z)), the population density N3 is very close to zero, so that the
population is mostly in levels 1 and 2. This situation which is really likely to occur in practice
allows a reduction of the three-level system to the two level system, see Section 2.2.

We also need the propagation equations for the two light fields (the pump and the signal
field) propagating through the fiber and interacting with the ions. The light fields corresponding
to the signal field and to the pump field will be attenuated or amplified after an infinitesimal
length dz by the combined effects of absorption arising from ions in their ground state N1 and
stimulated emission from ions in the excited state (N2 and N3). This leads, to the following
propagation equations:

∂ϕs

∂z
(z, t) =(N2(z, t)−N1(z, t))σs ϕs(z, t)

∂ϕp

∂z
(z, t) =(N3(z, t)−N1(z, t))σp ϕp(z, t)

(4a)

(4b)

when both pump and signal beams are propagating in the same direction, i.e., a co-propagating
configuration as opposed to a counter-propagating configuration. In the counter-propagating
configuration, the propagation equations read

∂ϕs

∂z
(z, t) =(N2(z, t)−N1(z, t))σs ϕs(z, t)

∂ϕp

∂z
(z, t) =− (N3(z, t)−N1(z, t))σp ϕp(z, t)

(5a)

(5b)

1We will consider latter the more practical case of erbium levels that consist of a set of states where the
absorption and emission cross sections are different, as they incorporate information on the thermal population
distribution.

2The rate equations can also be made more complex by considering such effects as excited state absorption and
the three-dimensional character of the problem. These effects will be discussed latter. The possible stimulated
emission at the pump wavelength will also be treated latter.

4



Note that these two configurations can be handled in a unique way by introducing a factor u
with values u = +1 in the co-propagating case and u = −1 in the contra-propagating case. The
propagation equation for the pump field then reads

∂ϕp

∂z
(z, t) = u (N3(z, t)−N1(z, t))σp ϕp(z, t) (6)

in the two cases.

2.2 Reduction of the three-level system to the two level system

When we assume that the pumping level 3 belongs to a multiplet different than that of level 2,
and that there is rapid relaxation from level 3 to level 2, for all practical purposes, the population
in level 3 can be assumed to be zero and the rate equations (1) involve only the two levels 1 and
2, with level 3 being involved only via the value of the pump absorption cross section from level
1 to level 3.

On the contrary, in certain pumping configurations, level 3 can be identical to level 2 in the
sense that the upper pump level and the upper amplifier level belong to the same multiplet.
In this case, the population of level 3 will not necessarily be equal to zero but assuming that
the thermal equilibrium time established within a given multiplet is very short compared to the
overall multiplet, the pumping will have some finite thermal population. There will then be
stimulated emission at the pump frequency as well as at the signal frequency, the amount of
which depends on the thermal population of the various states involved as well as the strength of
their interaction with a light field. The behavior of the entire system can be represented through
the absorption and emission cross sections (these two quantities contain the thermal population

distribution information). To this end, we denote by σ
(a)
s , σ

(e)
s , σ

(a)
p and σ

(e)
p respectively the

signal and pump absorption and emission cross sections parameters. In general, the emission
and absorption cross sections parameters will be related by the McCumber relationship.

Based on these two practical situations, we will refer only to the total populations of levels 1
and 2, and use the cross sections parameters to model the system’s interaction with the pump
and signal fields. The rate equations for the two level system corresponding to the reduction of
the three-level system (1) with the introduction of the emission and absorption cross sections
parameters reads

∂N2

∂t
(z, t) =− Γ21N2(z, t) +

(
σ(a)
s N1(z, t)− σ(e)

s N2(z, t)
)
ϕs(z, t)

−
(
σ(e)
p N2(z, t)− σ(a)

p N1(z, t)
)
ϕp(z, t)

∂N1

∂t
(z, t) =Γ21N2(z, t) +

(
σ(e)
s N2(z, t)− σ(a)

s N1(z, t)
)
ϕs(z, t)

−
(
σ(a)
p N1(z, t)− σ(e)

p N2(z, t)
)
ϕp(z, t)

(7a)

(7b)

Note that the case where level 3 belongs to a higher-lying multiplet can be reduced to the
two-level picture just described by simply setting the pump emission cross section to zero, which
effectively accounts for the fact that the population of level 3 is in this case equal to zero.

The propagation equations (5) for the pump and signal are modified accordingly to dis-
tinguish between the absorption and emission cross sections in the general situation where

σ
(a)
s ̸= σ

(e)
s and σ

(a)
p ̸= σ

(e)
p . Moreover, it is important to realize that even in a simple one-

dimensional model of the fiber amplifier, the transverse shape of the optical mode and its overlap
with the transverse erbium ion distribution profile are important and must be taken into account
in the model. In general, this phenomenon can be take into account simply by introducing a
factor known as the overlap factor [3]. Only the portion given by the overlap factor of the optical
mode that overlaps with the erbium ion distribution will stimulate absorption or emission from
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the Er3+transitions. We denote by Γs the overlap factor representing the overlap between the
erbium ions and the mode of the source field and we denote by Γp the overlap factor representing
the overlap between the erbium ions and the mode of the pump field. Taking into consideration
these two new aspects in the model, the propagation equations (5) are finally upgraded in the
following propagation equations:

∂ϕs

∂z
(z, t) =

(
σ(e)
s N2(z, t)− σ(a)

s N1(z, t)
)
Γs ϕs(z, t)

∂ϕp

∂z
(z, t) =u

(
σ(e)
p N2(z, t)− σ(a)

p N1(z, t)
)
Γp ϕp(z, t)

(8a)

(8b)

The incident signal light intensity flux ϕs is given by

ϕs =
Is
hνs

(9a)

where Is is the signal field intensity and νs the signal field frequency. In the one-dimensional
case, the signal field intensity is deduced from the signal field power by the following simplified
relationship:

Is =
Γs

Aeff
Ps (9b)

where Aeff is the effective cross-sectional area of the distribution of erbium ions. Similarly, the
incident pump light intensity flux ϕp is given by

ϕp =
Ip
hνp

(9c)

where Ip is the pump field intensity and νp the pump field frequency, and the pump field intensity
is deduced from the pump field power by the following simplified relationship:

Ip =
Γp

Aeff
Pp. (9d)

The propagation equations for the pump and signal powers deduced from (8) then read
∂Ps

∂z
(z, t) =

(
(σ(e)

s + σ(a)
s )N2(z, t)− σ(a)

s N
)
Γs Ps(z, t)

∂Pp

∂z
(z, t) =u

(
(σ(e)

p + σ(a)
p )N2(z, t)− σ(a)

p N
)
Γp Pp(z, t)

(10a)

(10b)

where N = N1(z, t) +N2(z, t) is the total ion population density assumed to be independent of
the position z along the fiber.

If we introduce the proportion N2 of ions in Level 2 defined as N2 = N2/N , then the
propagation equations for the pump and signal powers read

∂Ps

∂z
(z, t) =N

(
(σ(e)

s + σ(a)
s )N2(z, t)− σ(a)

s

)
Γs Ps(z, t)

∂Pp

∂z
(z, t) =uN

(
(σ(e)

p + σ(a)
p )N2(z, t)− σ(a)

p

)
Γp Pp(z, t)

(11a)

(11b)

These equations coincide with equations (5.59) – (5.60) in [1] up to the change in the notations
(N2 → N2, ρ→ N).
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In the steady-state regime, the rate equations (7) can be solved analytically. We have
N = N1(z, t) +N2(z, t) for all t ∈ R+ and we deduce from (7a) that

N2(z, t) =
σ
(a)
s ϕs(z, t) + σ

(a)
p ϕp(z, t)

Γ21 + (σ
(a)
s + σ

(e)
s )ϕs(z, t) + (σ

(a)
p + σ

(e)
p )ϕp(z, t)

N (12a)

=
σ
(a)
s

Γs
hνs

Ps(z, t) + σ
(a)
p

Γp

hνp
Pp(z, t)

AeffΓ21 + (σ
(a)
s + σ

(e)
s ) Γs

hνs
Ps(z, t) + (σ

(a)
p + σ

(e)
p )

Γp

hνp
Pp(z, t)

N (12b)

These relations coincide respectively with (5.52) and (6.3) in [1].

We define the pomp attenuation constant α
(a)
p and the signal attenuation constant α

(a)
s for

the pump and signal (in unit m−1) as

α(a)
p = N Γp σ(a)

p (13a)

α(a)
s = N Γs σ(a)

s (13b)

and the saturation powers for the pump and signal (in unit W ) as

P sat
p =

AeffΓ21hνp

(σ
(a)
p + σ

(e)
p ) Γp

(14a)

P sat
s =

AeffΓ21hνs

(σ
(a)
s + σ

(e)
s ) Γs

(14b)

Then, the ion population at level 2 given by (12b) can be expressed (in unit m−3) as

N2(z, t) =
τ2
Aeff

α
(a)
p

hνp
Pp(z, t) +

α
(a)
s

hνs
Ps(z, t)

1 + Ps(z,t)
P sat
s

+
Pp(z,t)
P sat
p

(15)

where Aeff is the cross-sectional area of the erbium ion distribution in the fiber and τ2 = 1
Γ21

is
the lifetime of level 2.

We can then substitute N2 as given by (15) in the propagation equations (10) to obtain the
following non-linear system of ODE

∂Ps

∂z
(z, t) =− α(a)

s Ps(z, t) +
α
(a)
s Ps(z, t) +

νs
νp
α
(a)
p Pp(z, t)

1 + Ps(z,t)
P sat
s

+
Pp(z,t)
P sat
p

Ps(z, t)

P sat
s

u
∂Pp

∂z
(z, t) =− α(a)

p Pp(z, t) +
α
(a)
p Pp(z, t) +

νp
νs
α
(a)
s Ps(z, t)

1 + Ps(z,t)
P sat
s

+
Pp(z,t)
P sat
p

Pp(z, t)

P sat
p

(16a)

(16b)

2.3 Analytical expression of the total output power

Let us consider back equation (7a). Combining it with (8), we obtain

∂N2

∂t
(z, t) =− Γ21N2(z, t)−

1

Γs

∂ϕs

∂z
(z, t)− u

Γp

∂ϕp

∂z
(z, t). (17)

From relations (9), we have

ϕs(z, t) =
Γs

hνsAeff
Ps(z, t) and ϕp(z, t) =

Γs

hνpAeff
Pp(z, t) (18)
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so that

∂N2

∂t
(z, t) =− 1

τ2
N2(z, t)−

1

Aeff

(
1

hνs

∂Ps

∂z
(z, t) +

u

hνp

∂Pp

∂z
(z, t)

)
(19)

where τ2 =
1

Γ21
is the lifetime of level 2.

This equation slightly differs from (5.61) in [1]. The coefficients highlighted in red are not
given in [1].

In the steady state regime, we deduce that

N2(z, t) = −
τ2
Aeff

(
1

hνs

∂Ps

∂z
(z, t) +

u

hνp

∂Pp

∂z
(z, t)

)
(20)

Let us now consider once again the propagation equations for the pump and signal powers as
given by (10). Substituting the expression of N2 as given by (20), we obtain

∂Ps

∂z
(z, t) =−

(
α(a)
s +

1

P sat
s

(∂Ps

∂z
(z, t) + u

νs
νp

∂Pp

∂z
(z, t)

))
Ps(z, t)

u
∂Pp

∂z
(z, t) =−

(
α(a)
p +

1

P sat
p

(νp
νs

∂Ps

∂z
(z, t) + u

∂Pp

∂z
(z, t)

))
Pp(z, t)

(21a)

(21b)

Let us denote by P in
s and P out

s the input and output powers of the signal field at the fiber ends
z = 0 and z = L respectively; Namely Ps(z = 0, t) = P in

s (t) and Ps(z = L, t) = P out
s (t) for all

time t ≥ 0. Similarly, we denote by P in
s and P out

s the input and output powers of the signal field
at the fiber ends. If the pump field is co-propagating (u = +1), we have Pp(z = 0, t) = P in

p (t)
and Pp(z = L, t) = P out

p (t) for all time t ≥ 0 whereas if the pump field is contra-propagating

(u = −1), we have Pp(z = L, t) = P in
p (t) and Pp(z = 0, t) = P out

p (t) for all time t ≥ 0.
Let us now divide (21a) by Ps and integrate both side of the equation from z = 0 to z = L.

We obtain in the two cases u = ±1

ln

(
P out
s (t)

P in
s (t)

)
= −α(a)

s L− 1

P sat
s

(
P out
s (t)− P in

s (t) +
νs
νp

(P out
p (t)− P in

p (t))
)

(22)

Thus,

P out
s (t) = P in

s (t) e−α
(a)
s L e

−
ν−1
s (Pout

s (t)−P in
s (t))+ν−1

p (Pout
p (t)−P in

p (t))

ν−1
s P sat

s (23)

= P in
s (t) e−α

(a)
s L e

−Eout(t)−Ein(t)

Esat
s (24)

where

Eout = ν−1
s P out

s + ν−1
p P out

p

Ein = ν−1
s P in

s + ν−1
p P in

p

Esat
s = ν−1

s P sat
s

Note that the quantities Eout, Ein and Esat
s are equivalent to energies (in unit J). Similarly, we

obtain

P out
p (t) = P in

p (t) e−α
(a)
p L e

−Eout(t)−Ein(t)

Esat
p (25)

where
Esat

p = ν−1
p P sat

p (26)
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By summing (23) multiplied by ν−1
s and (25) multiplied by ν−1

p , we obtain

Eout(t) = ν−1
s P in

s (t) e−α
(a)
s L e

−Eout(t)−Ein(t)

Esat
s + ν−1

p P in
p (t) e−α

(a)
p L e

−Eout(t)−Ein(t)

Esat
p (27)

We can solve (numerically) this non-linear equation to obtain the (exact) values of Eout
∗ for

all t ∈ R+. This provides a reference case to test the accuracy of a purely numerical approach
to solve the non-linear system of ODE (16).

Note that for numerical computation purposes, it is more convenient to express the non
linear equation (27) in a slightly different way. Multiplying both side by νp, we obtain

P̃ out(t) =
νp
νs

P in
s (t) e−α

(a)
s L e

− νs
νp

P̃out(t)−P̃ in(t)

P̃ sat
s + P in

p (t) e−α
(a)
p L e

− P̃out(t)−P̃ in(t)

P sat
p (28)

where

P̃ out = νpE
out =

νp
νs

P out
s + P out

p

P̃ in = νpE
in =

νp
νs

P in
s + P in

p

3 Numerical approaches for computing the pump and signal powers in the
fiber

3.1 Co-propagative vs contra-propagative case : Cauchy problem vs boundary value problem

Computation of the pump and signal powers along the fiber, i.e. computation of Ps(z, t) and
Pp(z, t) for all z ∈ [0, L], requires the solving of the non-linear system of ODE (16). Closed-form
solution to this non-linear system of ODE can not be obtained and a numerical approach is
mandatory. This autonomous non-linear system of ODE can be expressed as

Y ′
t (z) = −AYt(z) + F (Yt(z)) (29)

where for any fixed t ∈ R+ the unknown function Yt is defined as

Yt : z ∈ [0, L] 7−→
(
Ps(z, t)
Pp(z, t)

)
, (30)

A denotes the 2× 2 diagonal matrix with diagonal entries α
(a)
s and uα

(a)
p and F is the mapping

F : X = (x1, x2) ∈ R2 7−→


1

P sat
s

α
(a)
s x2

1+
νs
νp

α
(a)
p x1x2

1+ 1

P sat
s

x1+
1

P sat
p

x2

u 1
P sat
p

α
(a)
p x2

2+
νs
νp

α
(a)
s x1x2

1+ 1

P sat
s

x1+
1

P sat
p

x2

 ∈ R2. (31)

We now have to distinguish the two cases of co-propagating fields (u = +1) and contra-
propagating fields (u = −1). In the co-propagating case, the boundary conditions are

Ps(z = 0, t) = P in
s (t) and Pp(z = 0, t) = P in

p (t) ∀t ∈ R+ (32)

where P in
s and P in

p are the incoming given signal and pump powers at the fiber entry located at
z = 0. Thus, the non-linear ODE system (29) with boundary conditions (107) form a Cauchy
problem that can be solved numerically using classical schemes for ODE such as Runge-Kutta
schemes. We will not treat this case here since it is very conventional and there’s nothing special
to say about it.
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In the contra-propagating case, the boundary conditions are

Ps(z = 0, t) = P in
s (t) and Pp(z = L, t) = P in

p (t) ∀t ∈ R+. (33)

We have one condition at each fiber ends and the problem is not anymore a Cauchy problem but
a boundary value problem. A simple numerical approach for solving such a problem is referred
to as the Shooting method. It is detailed in Section 3.2 below. Another classical numerical
approach is the so-called relaxation method. It is actually a family of numerical methods that
will be introduced in Section 3.4.

3.2 The (standard) Shooting method

Let us briefly introduce the Shooting method for solving our problem in the contra-propagating
case. With the notation introduced earlier, our problem reads : Find a differentiable mapping

Y : z ∈ [0, L]→ Y (z) =

(
y1(z)
y2(z)

)
∈ R2 such that


Y ′(z) = −AY (z) + F (Y (z)) ∀z ∈]0, L[
y1(z = 0) = P in

s

y2(z = L) = P in
p

(34a)

(34b)

(34c)

where P in
s and P in

p are known data. We consider the following family of Cauchy problems
parameterized by λ ∈ R : Find a differentiable mapping

Uλ : z ∈ [0, L]→ Uλ(z) =

(
uλ,1(z)
uλ,2(z)

)
∈ R2

such that

(Qλ)


U ′
λ(z) = −AUλ(z) + F (Uλ(z)) ∀z ∈]0, L[

uλ,1(z = 0) = P in
s

uλ,2(z = 0) = λ

(35a)

(35b)

(35c)

One can easily see that Uλ solution to Cauchy problem (Qλ) is a solution to problem (34) if and
only if uλ,2(z = L) = P in

p . Therefore, we are looking for λ ∈ R such that

uλ,2(z = L)− P in
p = 0 (36)

that is to say, the roots of the mapping f : λ ∈ R 7→ uλ,2(z = L) − P in
p . Equation (36) is a

non-linear equation that can be solved numerically to determine its roots λ. Among the classical
methods for solving non-linear equations is the Newton-Raphson method. A sequence (λn)n∈N
such that

λn+1 = λn −
f(λn)

f ′(λn)
(37)

is iteratively computed from an initial value λ0 and this sequence is likely to converge to a root
λ of the mapping f when convergence conditions are satisfied. A drawback of Newton-Raphson
method is that it requires the knowledge of the derivative f ′, which is just about impossible
here to compute. An alternative method is the Secant method where the derivative of f is
replaced by an approximation computed from a finite difference formula. In the Secant method,
a sequence (λn)n∈N is computed according to the relation

λn+1 = λn − f(λn)
λn − λn−1

f(λn)− f(λn−1)
. (38)
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Hera again, the sequence is likely to converge to a root λ of the mapping f when convergence
conditions are fulfilled. The convergence rate of the Secant method is smaller than the one of
the Newton method, that is to say that the sequence (λn)n∈N less quickly approaches the sought
out root λ, but it has the advantage of not necessitating other information than the function
itself.

The algorithm of the Shooting method combined with the Secant method for solving the
boundary problem (34) may be described as follows.

• Initialization stage:

– Chose a first arbitrary value λ1 and solve Cauchy problem (Qλ1) by any suitable
method (e.g. a Runge-Kutta method).

– Let v1 denotes the approximation of uλ1,2(z = L) obtained.

– Chose a second arbitrary value λ2 and solve Cauchy problem (Qλ2).

– Let v2 denotes the approximation of uλ2,2(z = L) obtained this way.

• Let k = 3 and λk = λ2 − (v2 − P in
p ) λ2−λ1

v2−v1
.

• While a stopping criterium is not fulfilled do:

– Solve Cauchy problem (Qλk
).

– vk = uλk,2(z = L).

– k ← k + 1

– λk = λk−1 − (vk−1 − P in
p )

λk−1−λk−2

vk−1−vk−2
.

end do

Typically, iterations are stopped when two successive values vk and vk−1 are considered not
to differ sufficiently so that continuing the iterations provides a gain in accuracy. A tolerance
value is set, e.g. tol = 10−10, and when |vk − vk−1| < tol iterations are stopped.

Note that each evaluation of the non-linear function f(λ) = uλ,2(z = L) − P in
p requires to

solve the Cauchy problem (Qλ) for that value of the parameter λ in order to get the value of
uλ,2(z = L). This can be achieved by using a Runge-Kutta method as in the co-propagative
case. The contra-propagative case is therefore likely to be much more expansive in computation
than the co-propagative case. Fortunately, in the numerical experiments we have conducted,
only a small number iterations (lower than 10) of the Secant method were necessary to compute
an accurate solution in the contra-propagative case.

The Shooting method can be interpreted as follows. Since the value y2(z = 0) is unknown, a
first guess λ1 is chosen and the Cauchy problem deduced from the boundary problem (34) with
this guess is solved, i.e. the initial data (P in

s , λ1) is propagated or shoot. Of course, It is quite
unlikely that this solution matches the boundary condition y2(z = L) = P in

p . The difference

f(λ1) = y2(z = L) − P in
p is the algebraic distance to the target. A second shoot with a value

λ2 is achieved following the same principle. From these two initial shoots, we can deduce a
third value λ3 from the recurrence relation (38) and then iteratively compute λ4, etc. When the
convergence conditions for the Secant method are fulfilled, each new shoot is closer and closer to
the target. Finally, the computed solution almost matches the target condition y2(z = L) = P in

p .
The stopping criteria can be interpreted as follows: when two successive shots come to almost
the same position (almost being quantified by the tolerance value), there is no need to continue
the shots since there is no significant improvement toward the target. The principle of the
Shooting method is illustrated in Fig. 2.

Numerical examples illustrating the use of the Shooting method are provided in Section 3.5.
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Figure 2: Illustration of the principle of the Shooting method. The first two shots are illustrated.
The next shots are done with a parameter λ defined by the recurrence relation (38).

3.3 A variant of the Shooting method

In [2], a method for solving the boundary problem (34) is outlined. This method is incorrectly
referred to as a Relaxation method. It is actually a variant of the Shooting method that avoid
the need to solve a non-linear equation by the Secant method as it is the case for the standard
Shooting method described in Section 3.2. The counterpart is an increasing number of iterations
of the method. Note that Relaxation methods for solving the boundary problem (34) will be
detailed in Section 3.4.

This Shooting method variant can be described as follows. We chose an arbitrary value for
the parameter λ in the Cauchy problem (35) related to our boundary problem (34). We solve
Cauchy problem (35) for that value of λ by a numerical method such as the RK4 method. This

is the first shot. The value of the solution U
(1)
λ (L) =

(
u
(1)
λ,1(L)

u
(1)
λ,2(L)

)
at the fiber end is considered.

Here the exponent (1) means that the results is related to the first shot attempt. We can expect

that u
(1)
λ,2(L) = P in

p but there will be limited chances to happen. Therefore, we change U
(1)
λ (L)

for U
(2)
λ (L) =

(
u
(1)
λ,1(L)

P in
p

)
and we shoot backward with this initial data from z = L to z = 0.

Introducing the new space variable ζ = L − z, this backward shooting consists in solving the
Cauchy problem

(Qb
θ)


V ′
θ(ζ) = AVθ(ζ)− F (Vθ(ζ)) ∀ζ ∈]0, L[

vθ,1(ζ = 0) = θ

vθ,2(ζ = 0) = P in
p

(39a)

(39b)

(39c)

where θ = θ1
def
= u

(1)
λ,1(L). This time, we can expect that u

(2)
θ1,1

(0) = vθ1,1(L) = P in
p but there will

be limited chances to happen. So, we iterate the process and solve again Cauchy problem (Qλ)

for λ = u
(2)
θ1,2

(0) and then the backward Cauchy problem (Qb
θ) for θ = u

(2)
λ,1(L), and so forth until

converge of the process occurs.

The Shooting method variant can be interpreted as follows. Since the value y2(z = 0)
is unknown, a first guess λ1 is chosen and the Cauchy problem deduced from the boundary
problem (34) with this guess is solved, i.e. the initial data (P in

s , λ1) is propagated or shoot. Of
course, It is quite unlikely that this solution matches the boundary condition y2(z = L) = P in

p ,
i.e. that the shot reaches the target. So we note the angle of incidence θ1 of this shot and
we move to the target from where we shoot back with the same angle of incidence θ1. The
projectile goes back to the starting point direction. He will probably miss the starting point
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since the angle of incidence θ1 is not the one of the exact trajectory connecting the two points
(starting point and target). Nevermind, we note the angle of incidence λ2 of this backward shot
and shoot again with the same angle of incidence λ2, and so on until the target is reached, that
is to say until the good trajectory between the starting point and the target is found.

The principle of the Shooting method is illustrated in Fig. 3.

Figure 3: Illustration of the principle of the Shooting method variant.

3.4 The Relaxation method

3.4.1 General considerations

In the contra-propagative case, for a given value of t ∈ R+ considered as a parameter, we have
to solve the non-linear system of ODE

Y ′
t (z) = F (Yt(z))−AYt(z)

def
= G(Yt(z)) ∀z ∈ [0, L] (40)

where the unknown function Yt is defined as

Yt : z ∈ [0, L] 7−→
(
Yt,1(z)
Yt,2(z)

)
def
=

(
Ps(z, t)
Pp(z, t)

)
∈ R2, (41)

and where the 2× 2 diagonal matrix with diagonal and the mapping F are defined in (31). This
system has to be solved with the boundary conditions

Yt,1(0) = P in
s (t) and Yt,2(L) = P in

p (t). (42)

From now on, for conciseness, we will omit the parameter t and Yt will be denoted Y .
To solve (40)–(42), let us introduce a subdivision (zk)k=0,...,K of the interval [0, L] corre-

sponding to the fiber. Let us consider a sub-interval [zk, zk+1] for k ∈ {0, . . . ,K−1}. We denote
by hk = zk+1 − zk its length and by Yk the approximation of Y at node zk for k ∈ {0, . . . ,K}.
We can approach equation (40) in [zk, zk+1] by a standard numerical scheme for an ODE system
such as Runge-Kutta scheme for instance. We will refer to this scheme as Method A. Here are
some classical choices for Method A and the way Yk is computed by recurrence.

• When using Euler method (also known as Runge-Kutta scheme RK1), we obtain the
following recurrence relation

Yk+1 = Yk + hk G(Yk)

= Yk + hk

(
F (Yk)−AYk

)
(43)

• When using the forward midpoint method (also known as Runge-Kutta scheme RK2), we
obtain the following recurrence relation

Yk+1 = Yk + hk G
(
Yk +

hk
2 G(Yk)

)
= Yk + hk K2 (44)
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where {
K1 = F (Yk)−AYk

K2 = F (Yk +
hk
2 K1)−A(Yk +

hk
2 K1)

• When using the backward midpoint method (an implicit method, the most simple collo-
cation method), we obtain the following recurrence relation

Yk+1 = Yk + hk G(12(Yk + Yk+1))

= Yk + hk

(
F (12(Yk + Yk+1))−A 1

2(Yk + Yk+1)
)

(45)

• When using the fourth order Runge-Kutta scheme RK4, we obtain the following recurrence
relation

Yk+1 = Yk +
hk
6

(
K1 + 2K2 + 2K3 +K4) (46)

where 
K1 = G(Yk) = F (Yk)−AYk

K2 = G(Yk +
hk
2 K1) = F (Yk +

hk
2 K1)−A(Yk +

hk
2 K1)

K3 = G(Yk +
hk
2 K2) = F (Yk +

hk
2 K2)−A(Yk +

hk
2 K2)

K4 = G(Yk + hkK3) = F (Yk + hkK3)−A(Yk + hkK3)

Note that for the various Runge-Kutta schemes quoted above, we have a relation in the form

Yk+1 − Yk − hk Ψ(Yk) = 0, ∀k = 0, . . . ,K − 1 (47)

whereas when using the backward midpoint method, we have a relation in the form

Yk+1 − Yk − hk Ψ(Yk+1, Yk) = 0, ∀k = 0, . . . ,K − 1. (48)

From the boundary conditions,we have

Y0 =

(
P in
s (t)
Y0,2

)
and YK =

(
YK,1

P in
p (t)

)
(49)

Finally, equation (47) (resp. (48)) with (70) form a non-linear system of 2K equations with 2K
unknowns: Y0,2, YK,1 and Yk,1, Yk,2 for k = {1, . . . ,K−1}. We will only consider in the following
the case of the Runge-Kutta schemes where the non-linear system reads, with the notations
introduced above, 

Y1 − Y0 − h0Ψ(Y0) = 0

Yk+1 − Yk − hk Ψ(Yk) = 0, ∀k = 1, . . . ,K − 2

YK − YK−1 − hK−1Ψ(YK−1) = 0

(50)

At this stage, we have to chose a numerical method to solve the non-linear system (50). We
will refer to this choice of numerical method as Method B. Among the classical methods for
solving a non-linear system of equations are Newton-Raphson method and the Secant method.

In order to introduce these two methods (and latter on in order to implement these methods
in a computer program), we recast the non-linear system (50) as

H(Y) = 0 (51)
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where the unknown Y is defined as

Y =
(
Y0,2 Y1,1 Y1,2 . . . YK−1,1 YK−1,2 YK,1

)⊤
(52)

def
=
(
Y1 Y2 Y3 . . . Y2K−2 Y2K−1 Y2K

)⊤
and where from (50), the mapping H : R2K → R2K is defined as

H(Y) =



Y1,1 − P in
s − h0 Ψ1(P

in
s , Y0,2)

Y1,2 − Y0,2 − h0 Ψ2(P
in
s , Y0,2)

...
Yk+1,1 − Yk,1 − hk Ψ1(Yk,1, Yk,2)
Yk+1,2 − Yk,2 − hk Ψ2(Yk,1, Yk,2)

...
YK,1 − YK−1,1 − hK−1 Ψ1(YK−1,1, YK−1,2)
P in
p − YK−1,2 − hK−1 Ψ2(YK−1,1, YK−1,2)



=



Y2 − P in
s − h0 Ψ1(P

in
s ,Y1)

Y3 − Y1 − h0 Ψ2(P
in
s ,Y1)

...
Y2k+2 − Y2k − hk Ψ1(Y2k,Y2k+1)

Y2k+3 − Y2k+1 − hk Ψ2(Y2k,Y2k+1)
...

Y2K − Y2K−2 − hK−1 Ψ1(Y2K−2,Y2K−1)
P in
p − Y2K−1 − hK−1 Ψ2(Y2K−2,Y2K−1)


. (53)

The expressions of Ψ1 and Ψ2 depend on the choice made for Method A. For instance, when
using the RK2 scheme, we have

Ψi(Yj ,Yj+1) = Gi

(
(Yj ,Yj+1)

⊤) i = 1, 2 (54)

where Gi denotes the i-th component of the mapping G defined in (40), whereas when using the
RK4 scheme, we have

Ψi(Yj ,Yj+1) =
1

6

(
K1,i + 2K2,i + 2K3,i +K4,i) i = 1, 2 (55)

where 
K1,i = Gi

(
(Yj ,Yj+1)

⊤)
K2,i = Gi

(
(Yj +

hk
2 K1,1,Yj+1 +

hk
2 K1,2)

⊤)
K3,i = Gi

(
(Yj +

hk
2 K2,1,Yj+1 +

hk
2 K2,2)

⊤)
K4,i = Gi

(
(Yj + hkK3,1,Yj+1 + hkK3,2)

⊤)
Let us now introduce in our context the two choices for the numerical Method B for solving

the non-linear system (118) that are Newton-Raphson method and the Secant method.

3.4.2 Newton-Raphson method

The more natural choice for a numerical method for solving the non-linear system (118) is
Newton-Raphson method. Starting from an initial guess Y(0), Newton-Raphson method defines
a sequence (Y(n))n∈N such that

Y(n) = Y(n−1) + δ(n−1) ∀n ≥ 1 (56)

where δ(n) denotes the solution to the linear system

JH(Y(n−1)) δ(n−1) = −H(Y(n−1)) (57)
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where JH(Y(n−1)) is the Jacobian matrix of the mapping H evaluated in Y(n−1), that is to say

JH(Y(n−1)) =

 ∂1H1(Y(n−1)) . . . ∂2KH1(Y(n−1))
...

...

∂1H2K(Y(n−1)) . . . ∂2KH2K(Y(n−1))

 (58)

Because of the expression of the mapping H in this study, see (53), the matrix JH is sparse
and has the following form (the function argument is omitted for conciseness):

JH =



∂1H1 1
∂1H2 0 1

∂2H3 ∂3H3 1
∂2H4 ∂3H4 0 1

.
.
.

.
.
.

.
. .

.
. .

∂2K−4H2K−3 ∂2K−3H2K−3 1
∂2K−4H2K−2 ∂2K−3H2K−2 0 1

∂2K−2H2K−1 ∂2K−1H2K−1 1
∂2K−2H2K ∂2K−1H2K 0



(59)

where the elements not represented out of the four diagonals are all zeros. The matrix has one
upper diagonal with 1, the two lower diagonals with non zero elements and a main diagonal
with odd elements only being non-zero.

Note that because of the very special shape of the Jacobian matrix JH (sparse and band-
diagonal), a new thinking about the best suited method for solving the linear system (122) can
be done. Thus a third method is involved at this stage in the relaxation approach. Let’s call it
Method C. This point is discussed in Section 3.4.4.

To initialize the Newton-Raphson scheme (121)–(122), we can chose Y(0) such that Y(0)
2k+1 =

P in
s and Y(0)

2k+2 = P in
p for k = 0, . . . ,K−1. This corresponds to an initial guess for the solution to

the non-linear system (50) such that Yk,1 = P in
s and Yk,2 = P in

p at all the node zk, k = 0, . . . ,K.

Expression of the Jacobian matrix when the choice for Method B is the RK2 method.

When the ODE scheme is the RK2 method, a closed-form expression of the Jacobian ma-
trix JH(Y) for all Y ∈ R2K can be computed with reasonable effort. The non-zero coefficients
in row 2k + 1, k = 0, . . . ,K − 1 are

J2k+1,2k =
∂H2k+1

∂Y2k
(Y), J2k+1,2k+1 =

∂H2k+1

∂Y2k+1
(Y), J2k+1,2k+2 =

∂H2k+1

∂Y2k+2
(Y) = 1

whereas the non-zero coefficients in row 2k + 1, k = 0, . . . ,K − 1 are

J2k+2,2k =
∂H2k+2

∂Y2k
(Y), J2k+2,2k+1 =

∂H2k+2

∂Y2k+1
(Y), J2k+2,2k+3 =

∂H2k+2

∂Y2k+2
(Y) = 1.

From the chain rule, we obtain

J2k+1,2k = −1− hk
∂Ψ1

∂Y2k
(Y2k,Y2k+1) (60a)

J2k+1,2k+1 = −hk
∂Ψ1

∂Y2k+1
(Y2k,Y2k+1) (60b)

J2k+2,2k = −hk
∂Ψ2

∂Y2k
(Y2k,Y2k+1) (60c)

J2k+2,2k+1 = −1− hk
∂Ψ2

∂Y2k+1
(Y2k,Y2k+1) (60d)
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where Ψ1 and Ψ2 denote the two components of the mapping Ψ : R2 → R2 introduced in (47).
When considering the RK2 method, the expression of Ψ is given by (44). From the chain rule,
we obtain

∂Ψ1

∂Y2k
(Y2k,Y2k+1) =

(
1 + hk

2 ∂1G1(Y2k,Y2k+1)
)
∂1G1(Z1, Z2)

+ hk
2 ∂1G2(Y2k,Y2k+1) ∂2G1(Z1, Z2) (61a)

∂Ψ1

∂Y2k+1
(Y2k,Y2k+1) =

(
1 + hk

2 ∂2G2(Y2k,Y2k+1)
)
∂2G1(Z1, Z2)

+ hk
2 ∂2G1(Y2k,Y2k+1) ∂1G1(Z1, Z2) (61b)

∂Ψ2

∂Y2k
(Y2k,Y2k+1) =

(
1 + hk

2 ∂1G1(Y2k,Y2k+1)
)
∂1G2(Z1, Z2)

+ hk
2 ∂1G1(Y2k,Y2k+1) ∂2G2(Z1, Z2) (61c)

∂Ψ2

∂Y2k+1
(Y2k,Y2k+1) =

(
1 + hk

2 ∂2G2(Y2k,Y2k+1)
)
∂2G2(Z1, Z2)

+ hk
2 ∂2G1(Y2k,Y2k+1) ∂1G2(Z1, Z2) (61d)

where

Z1 = Y2k +
1
2hk G1(Y2k,Y2k+1)

Z2 = Y2k+1 +
1
2hk G2(Y2k,Y2k+1)

Finally, from (40), we have

∂1G1(Z1, Z2) = ∂1F1(Z1, Z2)− α(a)
s

=
(2α

(a)
s Z1 +

νs

νp
α
(a)
p Z2)

(
1 + Z1

P sat
s

+ Z2

P sat
p

)
− 1

P sat
s

(
α
(a)
s Z2

1 + νs

νp
α
(a)
p Z1Z2

)
P sat
s

(
1 + Z1

P sat
s

+ Z2

P sat
p

)2 − α(a)
s (62a)

∂2G1(Z1, Z2) = ∂2F1(Z1, Z2)

=

νs

νp
α
(a)
p Z1

(
1 + Z1

P sat
s

+ Z2

P sat
p

)
− 1

P sat
p

(
α
(a)
s Z2

1 + νs

νp
α
(a)
p Z1Z2

)
P sat
s

(
1 + Z1

P sat
s

+ Z2

P sat
p

)2 (62b)

∂1G2(Z1, Z2) = ∂1F2(Z1, Z2)

=

νp

νs
α
(a)
s Z2

(
1 + Z1

P sat
s

+ Z2

P sat
p

)
− 1

P sat
s

(
α
(a)
p Z2

2 +
νp

νs
α
(a)
s Z1Z2

)
uP sat

p

(
1 + Z1

P sat
s

+ Z2

P sat
p

)2 (62c)

∂2G2(Z1, Z2) = ∂2F2(Z1, Z2)− uα(a)
p

=
(2α

(a)
p Z2 +

νp

νs
α
(a)
s Z1)

(
1 + Z1

P sat
s

+ Z2

P sat
p

)
− 1

P sat
p

(
α
(a)
p Z2

2 +
νp

νs
α
(a)
s Z1Z2

)
uP sat

p

(
1 + Z1

P sat
s

+ Z2

P sat
p

)2 − uα(a)
p (62d)

Combining (62) with (61), we deduce a closed-form expression for the non-zero Jacobian matrix
coefficients as defined in (60). Note that although a similar computation could be done with the
Runge-Kutta RK4 method, this would be much more tedious to obtain a closed-form expression
for the non-zero Jacobian matrix coefficients.

3.4.3 The Secant method

Depending on the choice of the numerical scheme for the ODE, the expression of Ψ can be more
or less complicated and therefore a closed-form expression for the Jacobian matrix JH(Y) can
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be more or less easy to obtain. To overcome this difficulty, one can replace the Jacobian matrix
JH(Y(n−1)) involved in the linear system (122) by an approximation. For instance, the Secant
method for non-linear systems (also termed Broyden method) consists in solving instead of (122)
the linear system

Q(n−1) δ(n−1) = −H(Y(n−1)) (63)

where the sequence of matrix (Q(n))n∈N is obtained by the recurrence relation

Q(n) = Q(n−1) +
V (n−1)

(
δ(n−1)

)⊤(
δ(n−1)

)⊤
δ(n−1)

(64)

where V (n−1) is the vector of R2K defined by

V (n−1) = H(Y(n))−H(Y(n−1))−Q(n−1) δ(n−1). (65)

Remark. A drawback of the Secant method that can be deduced from (64) is that the matrix Q(n)

would be most likely to be full and not sparse as the Jacobian matrix JH defined in (124).

The Secant method requires the initialization of Q(0). This can be achieved by considering
an approximation of JH(Y(0)) based on a finite difference formula such as

(Q(0))i,j =
Hi(Y(0) + hej)−Hi(Y(0))

h
(66)

where a first order finite difference was used. The finite difference step-size h must be chosen
small enough but not too small to avoid round-off error and poor accuracy. One could also use
the second order of accuracy finite difference

(Q(0))i,j =
Hi(Y(0) + hej)−Hi(Y(0) − hej)

2h
(67)

The algorithm for the Secant method is therefore the following.

1. Choose the initial vector Y(n=0).

2. Compute the initial matrix Q0 by formula (66) or (67) for an arbitrary step h chosen small
enough but not too small.

3. Solve the linear system Qn=0 δ(n=0) = −H(Y(n=0)).

4. Let Y(n+1) = Y(n=0) + δ(n=0)

5. While the stopping criterium is not fulfilled do

(a) Compute b = H(Y (n+1))−H(Y (n))

(b) Compute Qn+1 = Qn −
(
b−Qnδ(n)

)(
δ(n)
)⊤(

δ(n)
)⊤

δ(n)

(c) Solve the linear system Qn+1 δ(n+1) = −H(Y(n+1))

(d) Update the variables

i. Y(n) ← Y(n+1)

ii. Y(n+1) ← Y(n+1) + δ(n+1)

iii. Qn+1 ← Qn

end do
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3.4.4 Choice of Method C for solving the linear system (122)

As mentioned earlier, when choosing the RK2 method as Method A, we can obtain an explicit
expression for the Jacobian matrix JH and, using Newton-Raphson method as Method B leads
us to solve the linear system (122) at each iteration of Newton-Raphson algorithm.

Because of the very special shape of the matrix JH(Y(n−1)) of the linear system (122) its
solution can be computed at a much lower cost than the cost of the standard Gaussian method
(whose cost is comparable to 1

3(2K)3).
Let us detail a cost-less hand-made algorithm for solving a linear system in the form

JH(Y(n−1)) X = b (68)

where b ∈ R2K is the given right-hand side of the linear system and X ∈ R2K denotes the
unknown. We denote by Ji,j the generic element of the matrix JH(Y(n−1)) (i, j = 1, . . . , 2K)
and by bi (resp. Xi) the components of the vector b (resp. X).

The first two equations (k = 0) of the linear system (68) read

J1,1X1 +X2 = b1

J2,1X1 +X3 = b2

It follows that

X2 = S(2)X1 + T (2)

X3 = S(3)X1 + T (3)

where S(2) = −J1,1, T (2) = b1, S(3) = −J2,1, T (3) = b2.
Let us now assume that we have the expression of X2k and X2k+1 in the form

X2k = S(2k)X1 + T (2k) (69a)

X2k+1 = S(2k + 1)X1 + T (2k + 1) (69b)

Then, equations 2k + 1 and 2k + 2 that read

J2k+1,2k X2k + J2k+1,2k+1X2k+1 +X2k+2 = b2k+1

J2k+2,2k X2k + J2k+2,2k+1X2k+1 +X2k+3 = b2k+2

we deduce that

X2k+2 = b2k+1 − J2k+1,2k X2k − J2k+1,2k+1X2k+1 = S(2k + 2)X1 + T (2k + 2)

X2k+3 = b2k+2 − J2k+2,2k X2k − J2k+2,2k+1X2k+1 = S(2k + 3)X1 + T (2k + 3)

where

S(2k + 2) = −J2k+1,2k S(2k)− J2k+1,2k+1 S(2k + 1) (70a)

T (2k + 2) = b2k+1 − J2k+1,2k T2k − J2k+1,2k+1 T2k+1 (70b)

S(2k + 3) = −J2k+2,2k S(2k)− J2k+2,2k+1 S(2k + 1) (70c)

T (2k + 3) = b2k+2 − J2k+2,2k T2k − J2k+2,2k+1 T2k+1 (70d)

The last two equations read

J2K−1,2K−2X2K−2 + J2K−1,2K−1X2K−1 +X2K = b2K−1 (71a)

J2K,2K−2X2K−2 + J2K,2K−1X2K−1 = b2K (71b)
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From (71b), we deduce that

J2K,2K−2

(
S(2K − 2)X1 + T (2K − 2)

)
+ J2K,2K−1

(
S(2K − 1)X1 + T (2K − 1)

)
= b2K (72)

and this last equation can be solved for X1. We obtain

X1 =
b2K − T (2K − 2)− T (2K − 1)

J2K,2K−2 S(2K − 2) + J2K,2K−1 S(2K − 1)
(73)

Once X1 is known, we obtain the other components of the solution X by relations (69a) for
k = 1, . . . ,K − 1 and X2K is obtained from (71a).

Let us examine the cost of this algorithm. First, we have to compute by induction the
coefficients S(2k), S(2k + 1), T (2k), T (2k + 1) for k from 2 to K − 1 using relations (70). The
cost is 8(K−1) multiplications and 6(K−1) additions. Then to compute X1 and X2K , we have
5 multiplications/divisions and 6 additions. Finally, to compute the other components of X by
relations (69a) for k = 1, . . . ,K − 1 we have 2(K − 1) multiplications and 2(K − 1) additions.
The total cost is therefore 10(K − 1) + 5 multiplications and 8(K − 1) + 6 additions. The cots
of this algorithm is therefore proportional to 10K and thus it is linear with the number of grid
points K. (Whereas the cost of Gaussian elimination is proportional to 1

3K
3.)

3.5 Numerical illustration

We have considered a Erbuim fiber amplifier with the following properties:

• Fiber length L = 10m

• Erbium ions density N = 1.4 1025m−3

• Γp = 0.88

• Γs = 0.52

• Aeff = 8.043 10−12m2

• α
(a)
p = 1.3816 10−3m−1

• α
(a)
s = 1.3816 10−3m−1

• Metastable level 2 lifetime τ2 = 10−2 s

• σ
(a)
p = 2.113 10−26m2

• σ
(e)
p = 0

• σ
(a)
s = 8.6106 10−26m2

• σ
(e)
s = 1.4263 10−26m2

• P in
s = 10−2W

• P in
p = 810−2W

Computation were achieved on a laptop personal computer (Intel Core i5, 8 Go RAM) under
Linux Ubuntu operating system.
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3.5.1 Using the Shooting methods

In the co-propagating case, the pump and signal powers along the fiber are depicted in Fig. 4.
The Cauchy problem formed by the non-linear ODE system (29) with boundary conditions
(107) was solved under Matlab using a Runge-Kutta RK4(5) scheme (ode45 solver). The
computational time (CPU time) was 0.02 s.

To validate the computation we have compared the total output power to the value obtained
when solving the non-linear equation (27) (under Matlab using the fsolve solver). The results
are as follows:

CPU Time = 0.02 s.

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 2.0623e-14
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0.08

Pump power
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Figure 4: The co-propagative case.

In the contra-propagating case, the pump and signal powers along the fiber are depicted in
Fig. 5. The boundary value problem formed by the non-linear ODE system (29) with boundary
conditions (109) was solved under Matlab using the shooting method described in the previous
section. It is worthily to notice that the Secant method converges with only seven iterations.
The computational time (CPU time) was 0.06 s. The method is accurate: We have compared
the total output power to the value obtained when solving the non-linear equation (27) (under
Matlab using the fsolve solver). The results are as follows:

Iterate 3 - Root approx = 0.058992 - Value of the function = 0.0010291

Iterate 4 - Root approx = 0.058064 - Value of the function = -4.2842e-05

Iterate 5 - Root approx = 0.058101 - Value of the function = 3.766e-08

Iterate 6 - Root approx = 0.058101 - Value of the function = 1.3869e-12

Iterate 7 - Root approx = 0.058101 - Value of the function = -1.3878e-17

CPU Time = 0.06 s.
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Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 1.4363e-13
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Figure 5: The contra-propagative case.

We have also use the second Shooting method described in Section 3.3. to compute the
pump and source powers in the contra-propagating case. We obtained an accurate solution after
7 round trips and a last solving of the forward problem, that is to say after 15 solving of a
Cauchy problem by Matlab ode45 solver. The computation time (CPU time) was 0.03 s.

>> main_contrapropag_shooting_laas

CPU Time = 0.03 s.

Number of iterations = 15

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 4.9717e-14

3.5.2 Using the Relaxation approach

We have compared various Relaxation approaches to solve the contra-propagating problem.

• RK2 + Newton-Raphson + our specific algorithm

The first Relaxation approach we have tested uses the RK2 scheme as Method A, Newton-
Raphson method as Method B and our specific algorithm introduced in Section 3.4.4 to solve the
linear system (122). We have made simulations for the following values of K: K = 10,K = 100
and K = 1000 and here again we have compared the total output power to the value obtained
when solving the non-linear equation (27) (under Matlab using the fsolve solver). Results
are as follows:
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>> main_newton

Number of sub-intervals in the subdivision of [0,L] = 10

CPU time of the simulation = 0.03 s.

Number of iteration of Newton-Raphson method = 7

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 3.7114e-07

>> main_newton

Number of sub-intervals in the subdivision of [0,L] = 100

CPU time of the simulation = 0.04 s.

Number of iteration of Newton-Raphson method = 6

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 3.6866e-09

>> main_newton

Number of sub-intervals in the subdivision of [0,L] = 1000

CPU time of the simulation = 0.47 s.

Number of iteration of Newton-Raphson method = 5

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 3.6843e-11

One can notice that the error is divided by 102 when K is multiplied by 10 as expected since
the RK2 scheme is second order accurate. We would like to point out that the Jacobian matrix
is stored in a full storage since we have observed that using Matlab sparse storage increases
the computation time. For instance, when K = 1000, computation time is 0.75 s. when using
the sparse storage whereas it is 0.47 s. using a full storage. However, memory space available
quickly becomes a limitation when K increases when the Jacobian matrix is stored in a full
storage.

To obtain the same accuracy as the one obtained with the Shooting method (a relative error
closed to 10−13), we must chose K = 104 and the computational time increases to 4.67 s. for this
Relaxation method compared to 0.06 s. for the Shooting method (roughly speaking a hundred
time more).

>> main_newton

Number of sub-intervals in the subdivision of [0,L] = 10000

CPU time of the simulation = 4.67 s.

Number of iteration of Newton-Raphson method = 5

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 3.6919e-13

• RK2 + Newton-Raphson + Matlab mldivide

In order to evaluate the gain in efficiency provided by our specific algorithm introduced in
Section 3.4.4 to solve the linear system (122), we have compared the previous results for the
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solving of the contra-propagating problem to a simulation with the linear system (122) solved
by Matlab mldivide routine.

When a full storage for the Jacobian matrix is used, for K = 103, the CPU time when using
Matlab mldivide routine is 1.97 s. (to be compared to 0.47 s. when our specific algorithm is
used). However, when a sparse storage for the Jacobian matrix is used, for K = 103, the CPU
time when using Matlab mldivide routine falls to 0.26 s. This surprising results (our specific
algorithm is optimized for the Jacobian matrix we have) can be explained by the fact that
Matlab mldivide routine is probably implemented in the Matlab kernel whereas our specific
algorithm is provided in the Matlab interpreted language (and must therefore be translated
before execution (on the contrary to Matlab mldivide routine).

• RK4+ Secant+ Matlab mldivide

When Method A used to discretized the non-linear ODE system is the RK4 scheme, as explained
before it is a very hard job to obtain an explicit expression for the Jacobian matrix JH . This
difficulty can be overcome by using the Secant method rather than Newton-Raphson method.
In the Secant method, approximations of the Jacobian matrix JH are computed, and these
approximations only require the expression of H. However, one should be aware of the fact
that these approximations of the Jacobian matrix JH are not anymore sparse matrices. As a
consequence, it is not possible to use our specific algorithm introduced in Section 3.4.4 to solve
the linear system (63) anymore and Gaussian elimination algorithm is used (through Matlab
mldivide routine). This induces an important increase of the computation time compensated
however by the fact that to reach a given accuracy, the size of the linear system (2K) is much
lower when using the RK4 scheme than when using the RK2 method.

For instance an accuracy of 10−14 is reached when using the RK4 scheme for a discretization
of the fiber length in K = 100 sub-intervals whereas the same accuracy with the RK2 scheme
requires to have K ≈ 1000.

>> main_secante

RK4 scheme

CPU time of the simulation = 0.53 s.

Number of iteration of the Secant method = 6

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 2.2833e-14

• RK2+ Secant+ Matlab mldivide

For comprehensiveness, we have made simulations using a discretization of the non-linear ODE
system by the RK2 scheme and a solving of the resulting non-linear system by the Secant
method. The results are reported below.

>> main_secante

rk2 method

Number of sub-intervals in the subdivision of [0,L] = 10

CPU time of the simulation = 0.03 s.

Number of iteration of the Secant method = 6

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 3.7114e-07
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>> main_secante

rk2 method

Number of sub-intervals in the subdivision of [0,L] = 100

CPU time of the simulation = 0.49 s.

Number of iteration of the Secant method = 6

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 3.6866e-09

>> main_secante

rk2 method

Number of sub-intervals in the subdivision of [0,L] = 1000

CPU time of the simulation = 19.7 s.

Number of iteration of the Secant method = 6

Comparison of the value of the total power out :

By solving the nonlinear ODE systeme P_out = 0.075367

By solving the nonlinear equ. P_out = 0.075367

Relative error = 3.6843e-11

One can observe that the method is second order accurate as expected: increasing the number
of subdivision steps by 10 results in a decrease of the error by a factor 100.

In conclusion, for solving the contra-propagative problem with the simple model without
ASE, our numerical experiments have shown that the most efficient method is the Shooting
method.
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4 A model including amplified spontaneous emission

4.1 The model

The treatment outlined in the previous sections neglects an important factor present in all
optical amplifiers, that of spontaneous emission. All the excited ions can spontaneously relax
from the upper state to the ground state by emitting a photon that is uncorrelated with the
signal photons. This spontaneously emitted photon can be amplified as it travels down the
fiber and stimulates the emission of more photons from excited ions, photons that belong to
the same mode of the electromagnetic field as the original spontaneous photon. This parasitic
process, which can occur at any frequency within the fluorescence spectrum of the amplifier
transitions, obviously reduces the gain from the amplifier. It robs photons that would otherwise
participate in stimulated emission with the signal photons. It is usually referred to as ASE
(amplified spontaneous emission). Ultimately, it limits the total amount of gain available from
the amplifier.

The total ASE power at a point z along the fiber is the sum of the ASE power from the other
locations along the fiber and the added local noise power P 0

A (corresponding to the spontaneous
emission power at the given point z). For a single transverse mode fiber with two independent
polarizations for a given mode at frequency ν, the noise power in a bandwidth δν corresponding
to spontaneous emission, is equal to

P 0
A(ν) = 2hνδν. (74)

This local noise power will stimulate the emission of photons from excited erbium ions, propor-
tionally to the product σ(e)(ν)N2(z), where σ(e)(ν) is the stimulated emission cross section at
frequency ν. The propagation equation for the ASE power propagating in a given direction is
thus

∂PA

∂z
(z, t, ν) =

(
N2(z, t)σ

(e)(ν)−N1(z, t)σ
(a)(ν)

)
PA(z, t, ν) + P 0

A(ν)N2(z, t)σ
(e)(ν) (75)

where σ(a)(ν) denotes the stimulated absorption cross section at frequency ν.
The modeling of the ASE can be done by dividing the ASE into J small frequency intervals

of width δν much smaller than the transition bandwidth. We denote by ν1, . . . , νJ the center of
these frequency intervals. The ASE power PA(νj) within each frequency interval centered in νj ,
j = 1, . . . , J , can be considered to propagate as an independent signal. An added complication
is that the ASE can actually propagate in both directions along the fiber, both co-propagating
and counter-propagating with the pump. Each ASE power PA(νj) is then decomposed into a
forward-traveling ASE component P+

A (νj) and a backward-traveling ASE component P−
A (νj)

such that
PA(νj) = P+

A (νj) + P−
A (νj). (76)

In addition to the propagation equations for the pump and signal powers given by (10), we now
have for each ASE power PA(νj) two propagation equations, one for the forward traveling ASE
component P+

A (νj) and one for the backward traveling ASE component P−
A (νj). We also allow

for possible intrinsic background loss in the fiber by means of the parameters α
(0)
p , α

(0)
s and α

(0)
j .

The model is then composed of the following propagation equations for all z ∈ [0, L] and for all
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t ∈ R+

∂Ps

∂z
(z, t) =

((
σ(e)
s + σ(a)

s

)
N2(z, t)− σ(a)

s N
)
Γs Ps(z, t)− α(0)

s Ps(z, t)

∂Pp

∂z
(z, t) =u

((
σ(e)
p + σ(a)

p

)
N2(z, t)− σ(a)

p N
)
Γp Pp(z, t)− α(0)

p Pp(z, t)

∂P+
A

∂z
(z, t, νj) =

((
σ(e)(νj) + σ(a)(νj)

)
N2(z, t)− σ(a)(νj)N

)
Γs P

+
A (z, t, νj)

+ 1
2 P

0
A(νj) ΓsN2(z, t)σ

(e)(νj)− α
(0)
j P+

A (z, t, νj)

∂P−
A

∂z
(z, t, νj) =−

((
σ(e)(νj) + σ(a)(νj)

)
N2(z, t)− σ(a)(νj)N

)
Γs P

−
A (z, t, νj)

− 1
2 P

0
A(νj) ΓsN2(z, t)σ

(e)(νj) + α
(0)
j P−

A (z, t, νj)

(77a)

(77b)

(77c)

(77d)

where the index j ranges from 1 to J and where we have used the notations introduced in
Section 3.

Taking into account the ASE, the rate equations (7) now read

∂N2

∂t
(z, t) =− Γ21N2(z, t) +

(
σ(a)
s N1(z, t)− σ(e)

s N2(z, t)
)
ϕs(z, t)

+
(
σ(a)
p N1(z, t)− σ(e)

p N2(z, t)
)
ϕp(z, t)

+

J∑
j=1

(
σ(a)(νj)N1(z, t)− σ(e)(νj)N2(z, t)

)
ϕA(z, t, νj)

∂N1

∂t
(z, t) =Γ21N2(z, t) +

(
σ(e)
s N2(z, t)− σ(a)

s N1(z, t)
)
ϕs(z, t)

+
(
σ(e)
p N2(z, t)− σ(a)

p N1(z, t)
)
ϕp(z, t)

+

J∑
j=1

(
σ(e)(νj)N2(z, t)− σ(a)(νj)N1(z, t)

)
ϕA(z, t, νj)

(78a)

(78b)

where for all j = 1, . . . , J , ϕA(z, t, νj) denotes the ASE signal intensity flux at frequency νj at
position z along the fiber and at time t.

In the steady-state regime, the rate equations (78) can be solved analytically. We have
N = N1(z, t) +N2(z, t) for all t ∈ R+ and we deduce from (78a) that

N2(z, t) =

σ(a)
s ϕs(z, t) + σ(a)

p ϕp(z, t) +

J∑
j=1

σ(a)(νj)ϕA(z, t, νj)

Γ21 + (σ(a)
s + σ(e)

s )ϕs(z, t) + (σ(a)
p + σ(e)

p )ϕp(z, t) +

J∑
j=1

(σ(a)(νj) + σ(e)(νj))ϕA(z, t, νj)

N

(79)

Note that this relation coincides with (6.2) in [1].
The expression of the ion population in Level 2 can also be expressed in terms of the field

powers. From relations (9), we have

ϕs(z, t) =
Γs

hνsAeff
Ps(z, t), ϕp(z, t) =

Γs

hνpAeff
Pp(z, t) (80)

and

ϕA(z, t, νj) =
Γj

hνjAeff
PA(z, t, νj) (81)

where PA = P+
A +P−

A , Aeff is the cross-sectional area of the erbium ion distribution in the fiber,
Γs (resp. Γp and Γj) is the overlap factor representing the overlap between the erbium ions and
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the mode of the source (resp. pump and ASE) field and Ps (resp. Pp and PA(·, ·, νj)) is the
signal (resp. pump and ASE) field power. We deduce from (79) that

N2(z, t) =
τ2
Aeff

α
(a)
p

hνp
Pp(z, t) +

α
(a)
s

hνs
Ps(z, t) +

∑J
j=1

α
(a)
A (νj)
hνj

PA(z, t, νj)

1 + Ps(z,t)
P sat
s

+
Pp(z,t)
P sat
p

+
∑J

j=1
PA(z,t,νj)

P sat
A (νj)

(82)

where τ2 = 1
Γ21

is the lifetime of level 2, the pomp attenuation constant α
(a)
p and the signal

attenuation constant α
(a)
s are defined respectively in (13a) and (13b), the ASE attenuation

constants α
(a)
A (νj) are given by

α
(a)
A (νj) = N Γj σ(a)(νj), (83)

the saturation powers for the pump and for the signal denoted respectively by P sat
p and P sat

s are
defined in (14a) and (14b) and the saturation powers for the ASE signal is given by

P sat
A (νj) =

AeffΓ21hνj

(σ(a)(νj) + σ(e)(νj)) Γj
. (84)

The propagation equations (77) then read, for all z ∈ [0, L] and for all t ∈ R+,

∂Ps

∂z
(z, t) =Gs[(z, t), Ps, Pp, PA]

Ps(z, t)

P sat
s

− (α(a)
s + α(0)

s )Ps(z, t)

u
∂Pp

∂z
(z, t) =Gp[(z, t), Ps, Pp, PA]

Pp(z, t)

P sat
p

− (α(a)
p + α(0)

p )Pp(z, t)

∂P+
A

∂z
(z, t, νj) =

Γs

Γj
Gj [(z, t), Ps, Pp, PA]

(
P+
A (z, t, νj)

P sat
A (νj)

+
1

2

P 0
A(νj)

P
sat,(e)
A (νj)

)
− (α

(a)
A (νj) + α

(0)
A (νj))P

+
A (z, t, νj)

∂P−
A

∂z
(z, t, νj) =−

Γs

Γj
Gj [(z, t), Ps, Pp, PA]

(
P−
A (z, t, νj)

P sat
A (νj)

+
1

2

P 0
A(νj)

P
sat,(e)
A (νj)

)
+ (α

(a)
A (νj) + α

(0)
A (νj))P

−
A (z, t, νj)

(85a)

(85b)

(85c)

(85d)

where the index j ranges from 1 to J and where we have set

Gs[(z, t), Ps, Pp, PA] =
α
(a)
s Ps(z, t) +

νs
νp
α
(a)
p Pp(z, t) +

∑J
k=1

νs
νk
α
(a)
A (νk)PA(z, t, νk)

1 + Ps(z,t)
P sat
s

+
Pp(z,t)
P sat
p

+
∑J

k=1
PA(z,t,νk)
P sat
A (νk)

(86a)

Gp[(z, t), Ps, Pp, PA] =

νp
νs
α
(a)
s Ps(z, t) + α

(a)
p Pp(z, t) +

∑J
k=1

νp
νk
α
(a)
A (νk)PA(z, t, νk)

1 + Ps(z,t)
P sat
s

+
Pp(z,t)
P sat
p

+
∑J

k=1
PA(z,t,νk)
P sat
A (νk)

(86b)

Gj [(z, t), Ps, Pp, PA] =

νj
νs
α
(a)
s Ps(z, t) +

νj
νp
α
(a)
p Pp(z, t) +

∑J
k=1

νj
νk
α
(a)
A (νk)PA(z, t, νk)

1 + Ps(z,t)
P sat
s

+
Pp(z,t)
P sat
p

+
∑J

k=1
PA(z,t,νk)
P sat
A (νk)

(86c)

and

P
sat,(e)
A (νj) =

AeffΓ12hνj

σ(e)(νj)Γj
. (87)

4.2 Analytical expression of the total output power

Let us denote by P in
s and P out

s the input and output powers of the signal field at the fiber ends
z = 0 and z = L respectively; Namely Ps(z = 0, t) = P in

s (t) and Ps(z = L, t) = P out
s (t) for all
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time t ≥ 0. Similarly, we denote by P in
p and P out

p the input and output powers of the pump field

at the fiber ends. If the pump field is co-propagating (u = +1), we have Pp(z = 0, t) = P in
p (t)

and Pp(z = L, t) = P out
p (t) for all time t ≥ 0 whereas if the pump field is contra-propagating

(u = −1), we have Pp(z = L, t) = P in
p (t) and Pp(z = 0, t) = P out

p (t) for all time t ≥ 0. Finally, we

denote by P in
A (νj) and P out

A (νj) the input and output powers of the ASE field for the frequency
νj at the fiber ends, i.e.

P in
A (νj) = P+

A (z = 0, νj) + P−
A (z = L, νj), P out

A (νj) = P+
A (z = L, νj) + P−

A (z = 0, νj).

In order to find an analytical expression for the total output power, we make the following
assumptions:

(H1) The intrinsic background losses in the fiber are zero: α
(0)
p = α

(0)
s = α

(0)
A = 0;

(H2) The noise power P
(0)
A is zero;

(H3) The overlap factor Γj between the Erbium ions and the mode of the ASE is equal to the
overlap factor Γs between the Erbium ions and the mode of the source: Γj = Γs.

In a first step, we consider the sum of equation (85a), equation (85b) multiplied by νs
νp
, equations

(85c) for j = 1, . . . , J multiplied by νs
νj

and we subtract the sum of equations (85d) for j = 1, . . . , J

multiplied by νs
νj
. Schematically, we consider

(85a) +
νs
νp
× (85b) +

J∑
j=1

νs
νj
×
(
(85c)− (85d)

)
.

After a tedious calculation, we obtain that Gs defined in (86a) is such that

−Gs[(z, t), Ps, Pp, PA] =
∂Ps

∂z
(z, t)+

νs
νp

u
∂Pp

∂z
(z, t)+

J∑
j=1

νs
νj

(∂P+
A

∂z
(z, t, νj)−

∂P−
A

∂z
(z, t, νj)

)
. (88)

In a second step, we consider the sum of equation (85b), equation (85a) multiplied by
νp
νs
,

equations (85c) for j = 1, . . . , J multiplied by
νp
νj

and we subtract the sum of equations (85d)

for j = 1, . . . , J multiplied by
νp
νj
. Schematically, we consider

(85b) +
νp
νs
× (85a) +

J∑
j=1

νp
νj
×
(
(85c)− (85d)

)
.

After a new tedious calculation, we obtain that Gp defined in (86b) is such that

−Gp[(z, t), Ps, Pp, PA] = u
∂Pp

∂z
(z, t)+

νp
νs

∂Ps

∂z
(z, t)+

J∑
j=1

νp
νj

(∂P+
A

∂z
(z, t, νj)−

∂P−
A

∂z
(z, t, νj)

)
. (89)

In a last step, we consider the sum of equation (85a) multiplied by νk
νs
, equation (85b) multiplied

by νk
νp
, equations (85c) for j = 1, . . . , J multiplied by νk

νj
and we subtract the sum of equations

(85d) for j = 1, . . . , J multiplied by νk
νj
. Schematically, we consider

νk
νs

(85a) +
νk
νp
× (85b) +

J∑
j=1

νk
νj
×
(
(85c)− (85d)

)
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for all k = 1, . . . , J . This leads this time to the following relation for Gj defined in (86c)

−Gj [(z, t), Ps, Pp, PA] =
νj
νs

∂Ps

∂z
(z, t) +

νj
νp

u
∂Pp

∂z
(z, t) +

J∑
ℓ=1

νj
νℓ

(∂P+
A

∂z
(z, t, νℓ)−

∂P−
A

∂z
(z, t, νℓ)

)
.

(90)
Finally, combining (88), (89) and (90) with (85), taking into account assumptions (H1), (H2)
and (H3), we obtain that

∂Ps

∂z
(z, t) =−

(
α(a)
s +

1

P sat
s

(
∂Ps

∂z
(z, t) +

νs
νp

u
∂Pp

∂z
(z, t)

+
J∑

j=1

νs
νj

(∂P+
A

∂z
(z, t, νj)−

∂P−
A

∂z
(z, t, νj)

)))
Ps(z, t)

u
∂Pp

∂z
(z, t) =−

(
α(a)
p +

1

P sat
p

(
νp
νs

∂Ps

∂z
(z, t) + u

∂Pp

∂z
(z, t)

+
J∑

j=1

νp
νj

(∂P+
A

∂z
(z, t, νj)−

∂P−
A

∂z
(z, t, νj)

)))
Pp(z, t)

∂P+
A

∂z
(z, t, νj) =−

(
α
(a)
A +

1

P sat
A (νj)

(
νj
νs

∂Ps

∂z
(z, t) +

νj
νp

u
∂Pp

∂z
(z, t)

+

J∑
ℓ=1

νj
νℓ

(∂P+
A

∂z
(z, t, νℓ)−

∂P−
A

∂z
(z, t, νℓ)

))
P+
A (z, t, νj)

∂P−
A

∂z
(z, t, νj) =

(
α
(a)
A +

1

P sat
A (νj)

(
νj
νs

∂Ps

∂z
(z, t) +

νj
νp

u
∂Pp

∂z
(z, t)

+

J∑
ℓ=1

νj
νℓ

(∂P+
A

∂z
(z, t, νℓ)−

∂P−
A

∂z
(z, t, νℓ)

))
P−
A (z, t, νj)

(91a)

(91b)

(91c)

(91d)

Let us now divide (91a) by Ps and integrate both sides of the equation from z = 0 to z = L.
We obtain in the two cases u = ±1

ln

(
P out
s (t)

P in
s (t)

)
= −α(a)

s L− 1

P sat
s

(
P out
s (t)− P in

s (t) +
νs
νp

(P out
p (t)− P in

p (t))

+

J∑
j=1

νs
νj

(
P+,out
A (t, νj)− P+,in

A (t, νj) + P−,out
A (t, νj)− P−,in

A (t, νj)
))
(92)

where P out
s = Ps(z = L), P out

p = Pp(z = L) if u = 1 and P out
p = Pp(z = 0) if u = −1,

P±,out
A (νj) = P±

A (z = L, νj) with similar relations for the incoming powers. Let us introduce the
following energies:

Ein
s = ν−1

s P in
s Eout

s = ν−1
s P out

s

Ein
p = ν−1

p P in
p Eout

p = ν−1
p P out

p

Ein
A (νj) = ν−1

j

(
P+,in
A (νj) + P−,in

A (νj)
)

Eout
A (νj) = ν−1

j

(
P+,out
A (νj) + P−,out

A (νj)
)

Esat
s = ν−1

s P sat
s Esat

p = ν−1
p P sat

p

(93)

and

Ein = Ein
s + Ein

s +
J∑

j=1

Ein
A (νj) Eout = Eout

s + Eout
s +

J∑
j=1

Eout
A (νj) (94)
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We deduce from (92) that

Eout
s = Ein

s e−α
(a)
s L e

−Eout−Ein

Esat
s . (95)

Similarly, we can divide (91b) by Pp and integrate both sides of the equation from z = 0 to
z = L. This time, we obtain in the two cases u = ±1

Eout
p = Ein

p e−α
(a)
p L e

−Eout−Ein

Esat
p . (96)

Then, we divide (91c) by P+
A (νj) and integrate both sides of the equation from z = 0 to z = L.

We obtain

P+,out
A (νj) = P+,in

A (νj) e
−α

(a)
A L e

−Eout−Ein

Esat
A . (97)

Finally, dividing (91c) by P−
A (νj) and integrating both sides of the equation from z = 0 to z = L,

we obtain

P−,out
A (νj) = P−,in

A (νj) e
−α

(a)
A L e

−Eout−Ein

Esat
A . (98)

Summing (97) and (98) and dividing by νj , we obtain

Eout
A (νj) = Ein

A (νj) e
−α

(a)
A L e

−Eout−Ein

Esat
A . (99)

To conclude, we add relations (95), (96) and (99) for all j = 1, . . . , J . We obtain

Eout = Ein
s e−α

(a)
s L e

−Eout−Ein

Esat
s + Ein

p e−α
(a)
p L e

−Eout−Ein

Esat
p +

J∑
j=1

Ein
A (νj) e

−α
(a)
A L e

−Eout−Ein

Esat
A . (100)

We can solve (numerically) the non-linear equation (100) to obtain the values of Eout for all
t ∈ R+. This provides a reference case to test the accuracy of a purely numerical approach to
solve the non-linear system of ODE (85).

4.3 General framework for numerical simulation

Computation of the pump, signal and ASE powers along the fiber, i.e. computation of Ps(z, t),
Pp(z, t) and P±

A (z, t, νj), j = 1, . . . , J , for all z ∈ [0, L], requires the solving of the non-linear
system of ODE (85). This non-linear system of ODE can not be solved analytically and a
numerical approach is mandatory. This autonomous non-linear system of ODE can be expressed
as

Y ′
t (z) = −AYt(z) + F (Yt(z))

def
= G(Yt(z)) (101)

where for any fixed t ∈ R+ the unknown function Yt is defined as

Yt : z ∈ [0, L] 7−→



Ps(z, t)
Pp(z, t)

P+
A (z, t, ν1)

...
P+
A (z, t, νJ)

P−
A (z, t, ν1)

...
P−
A (z, t, νJ)


∈ R2(J+1), (102)

A denotes a diagonal matrix such that

A = A(a) +A(0) (103)
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where

A(a) =



α
(a)
s

uα
(a)
p

α
(a)
A (ν1)

. . .

α
(a)
A (νJ)

−α(a)
A (ν1)

. . .

−α(a)
A (νJ)


and

A(0) =



α
(0)
s

uα
(0)
p

α
(0)
A (ν1)

. . .

α
(0)
A (νJ)

−α(0)
A (ν1)

. . .

−α(0)
A (νJ)


and F is the mapping

F : X = (x1, . . . , x2J+2) ∈ R2J+2 7−→



Gs(X)
x1

P sat
s

uGp(X)
x2

P sat
p

Γs

Γ1
G1(X)

(
x3

P sat
A (ν1)

+ 1
2

P 0
A(ν1)

P
sat,(e)
A (ν1)

)
...

Γs

ΓJ
GJ(X)

(
x2+J

P sat
A (νJ )

+ 1
2

P 0
A(νJ )

P
sat,(e)
A (νJ )

)
−Γs

Γ1
G1(X)

(
x3+J

P sat
A (ν1)

+ 1
2

P 0
A(νj)

P
sat,(e)
A (ν1)

)
...

− Γs

ΓJ
GJ(X)

(
x2+2J

P sat
A (νJ )

+ 1
2

P 0
A(νJ )

P
sat,(e)
A (νJ )

)



∈ R2J+2 (104)

where

Gs(X) =
α
(a)
s x1 +

νs
νp
α
(a)
p x2 +

∑J
k=1

νs
νk
α
(a)
A (νk) (x2+k + x2+J+k)

1 + x1
P sat
s

+ x2
P sat
p

+
∑J

k=1
x2+k+x2+J+k

P sat
A (νk)

(105a)

Gp(X) =

νp
νs
α
(a)
s x1 + α

(a)
p x2 +

∑J
k=1

νp
νk
α
(a)
A (νk) (x2+k + x2+J+k)

1 + x1
P sat
s

+ x2
P sat
p

+
∑J

k=1
x2+k+x2+J+k

P sat
A (νk)

(105b)

Gj(X) =

νj
νs
α
(a)
s x1 +

νj
νp
α
(a)
p x2 +

∑J
k=1

νj
νk
α
(a)
A (νk) (x2+k + x2+J+k)

1 + x1
P sat
s

+ x2
P sat
p

+
∑J

k=1
x2+k+x2+J+k

P sat
A (νk)

(105c)

Note that one can assume that the overlap parameter for the signal and ASE are equal as
they are both near 1.5µm, see [1], i.e.

Γj = Γs ∀j = 1, . . . J. (106)

Here again, we have to distinguish the two cases of co-propagating fields (u = +1) and
contra-propagating fields (u = −1). In the co-propagating case, the boundary conditions for the
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signal and pump powers are

Ps(z = 0, t) = P in
s (t) and Pp(z = 0, t) = P in

p (t) ∀t ∈ R+ (107)

where P in
s and P in

p are the incoming given signal and pump powers at the fiber entry located at
z = 0. The ASE power in the frequency sub-interval centered at the frequency νj is propagated
as one signal with an input power of 0 at z = 0 for forward-propagating ASE and another signal
with an input power of 0 at z = L for the backward-propagating ASE. Thus the boundary
conditions for the ASE powers read

P+
A (z = 0, t, νj) = 0 and P−

A (z = L, t, νj) = 0 ∀t ∈ R+ ∀j = 1, . . . , J. (108)

In the contra-propagating case, the boundary conditions for the signal and pump powers
become

Ps(z = 0, t) = P in
s (t) and Pp(z = L, t) = P in

p (t) ∀t ∈ R+ (109)

and the boundary conditions for the ASE powers remains unchanged and are given by (108).

4.4 Simulation using a Shooting method

Note that in both cases, co-propagating and contra-propagating, we do not have a Cauchy
problem but a boundary value problem because of the boundary conditions for the ASE powers
given by (108) at the two ends of the fiber. Thus, the non-linear ODE system (101) can be solved
either by one of the shooting methods described in Section 3.2 and in Section 3.3. Alternatively,
we can use one of the relaxation methods described in Section 3.4. Its implementation is however
a little more tricky and we provide in the next Section some results required to implement a
relaxation method for the non-linear ODE system (101).

4.5 Simulation using a Relaxation method

To solve (108) with the boundary conditions (107)–(108) (co-propagating case) or (109)–(108)
(contra-propagating case), let us introduce a subdivision (zk)k=0,...,K of the interval [0, L] cor-
responding to the fiber. Let us consider a sub-interval [zk, zk+1] for k ∈ {0, . . . ,K − 1}. We
denote by hk = zk+1 − zk its length and by Yk (resp. Yk+1) the approximation of Y at node
zk (resp. zk+1). We can approach equation (108) in [zk, zk+1] by a standard numerical scheme
for an ODE system such as Runge-Kutta scheme for instance. As shown in Section 4.5, such a
scheme reads

Yk+1 − Yk − hk Ψ(Yk) = 0, ∀k = 0, . . . ,K − 1 (110)

where, when using Runge-Kutta scheme RK2,

Ψ(Yk) = G
(
Yk +

hk
2 G(Yk)

)
(111)

and when using the fourth order Runge-Kutta scheme RK4,

Ψ(Yk) =
1

6

(
K1 + 2K2 + 2K3 +K4) (112)

where 
K1 = G(Yk) = F (Yk)−AYk

K2 = G(Yk +
hk
2 K1) = F (Yk +

hk
2 K1)−A(Yk +

hk
2 K1)

K3 = G(Yk +
hk
2 K2) = F (Yk +

hk
2 K2)−A(Yk +

hk
2 K2)

K4 = G(Yk + hkK3) = F (Yk + hkK3)−A(Yk + hkK3)
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From the boundary conditions, we have in the co-propagating case (u = 1)

Y0 =



P in
s (t)

P in
p (t)

0
...
0

Y0,J+3
...

Y0,2J+2


and YK =



YK,1

YK,2

YK,3
...

YK,J+2

0
...
0


(113)

Finally, equation (47) (resp. (48)) with (70) form a non-linear system of 2(J + 1)K equa-
tions with 2(J + 1)K unknowns: Y0,J+3, . . . , Y0,2J+2, Yk,1, Yk,2J+2 for k = {1, . . . ,K − 2} and
YK,1, . . . , YK,J+2.

In the contra-propagating case (u = −1), we deduce from the boundary conditions

Y0 =



P in
s (t)
Y0,2
0
...
0

Y0,J+3
...

Y0,2J+2


and YK =



YK,1

P in
p (t)

YK,3
...

YK,J+2

0
...
0


(114)

and we also have a non-linear system of 2(J + 1)K equations with 2(J + 1)K unknowns:
Y0,2, Y0,J+3, . . . , Y0,2J+2, Yk,1, Yk,2J+2 for k = {1, . . . ,K − 2} and YK,1, YK,3, . . . , YK,J+2.

We will only detail in the following the co-propagating case.
In both case, when a Runge-Kutta schemes (RK2 or RK4) is used, we obtain the following

non-linear system of equations
Y1 − Y0 − h0Ψ(Y0) = 0

Yk+1 − Yk − hk Ψ(Yk) = 0, ∀k = 1, . . . ,K − 2

YK − YK−1 − hK−1Ψ(YK−1) = 0

(115)

We introduce as unknown Y ∈ R2(J+1)K such that

Y =
(
Y0,J+3 . . . Y0,2J+2 Y1,1 . . . YK−1,2J+2 YK,1 YK,2 YK,3 . . . YK,J+2

)⊤
(116)

def
=
(
Y1 . . . Y2(J+1)K

)⊤
that is to say, for all k = 0, . . . ,K and for all j = 1, . . . , J , we have

Yk,j = Y2k(J+1)−(J+2)+j (117)

The non-linear system (116) can be recast as

H(Y) = 0 (118)

where the mapping H : R2(J+1)K → R2(J+1)K is defined as

H(Y) =

H1(Y)
...

HK(Y)

 (119)
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where

H1(Y) =



YJ+1 − P in
s − h0Ψ1(Y0)

YJ+2 − P in
p − h0Ψ2(Y0)

YJ+3 − h0Ψ3(Y0)
...

Y2J+2 − h0ΨJ+2(Y0)
Y2J+3 − Y1 − h0ΨJ+3(Y0)

...
Y3J+2 − YJ − h0Ψ2J+2(Y0)


with Y0 = (P in

s , P in
p , 0, . . . , 0,Y1, . . . ,YJ)

⊤ and, for k = 1, . . . ,K − 2,

Hk+1(Y) =

Y2k(J+1)+J+j − Y2k(J+1)−(J+2)+j − hk Ψj(Yk)


j=1,...,J

with Yk = (Y2k(J+1)−J−1, . . . ,Y2k(J+1)+J)
⊤ and

HK(Y) =



Y2(K−1)(J+1)+J+1 −Y2(K−1)(J+1)−(J+1) − hK−1Ψ1(YK−1)
...

...
Y2K−(J+1) −Y2(K−1)(J+1)−1 − hK−1ΨJ+2(YK−1)

−Y2(K−1)(J+1) − hK−1ΨJ+3(YK−1)
...

−Y2(K−1)(J+1)+J − hK−1Ψ2J+2(YK−1)


with YK−1 = (Y2(K−1)(J+1)−J−1, . . . ,Y2(K−1)(J+1)+J)

⊤.
The expressions of the Ψj depend on the choice made for Method A in the relaxation ap-

proach. For instance, when using the RK2 scheme, we have for X = (X1, . . . , X2J+2) ∈ R2J+2

Ψi(X) = Gi

(
X+

hk
2
G(X)

)
i = 1, . . . , 2J + 2 (120)

where Gi denotes the i-th component of the mapping G defined in (101).

The more natural choice for a numerical method for solving the non-linear system (118)
is Newton-Raphson method. Starting from an initial guess Y(0) ∈ R2K(J+1), Newton-Raphson
method defines a sequence (Y(n))n∈N such that

Y(n) = Y(n−1) + δ(n−1) ∀n ≥ 1 (121)

where δ(n) denotes the solution to the linear system

JH(Y(n−1)) δ(n−1) = −H(Y(n−1)) (122)

where JH(Y(n−1)) is the Jacobian matrix of the mapping H evaluated in Y(n−1), that is to say

JH(Y(n−1)) =

 ∂1H1(Y(n−1)) . . . ∂2(J+1)KH1(Y(n−1))
...

...

∂1H2(J+1)K(Y(n−1)) . . . ∂2(J+1)KH2(J+1)K(Y(n−1))

 (123)
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Because of the expression of the mapping H in this study, see (119) and the expressions
below, the matrix JH is sparse and it has the following block expression in Y ∈ R2K(J+1)

JH(Y) =



D0 I2J+2

D1 I2J+2

D2 I2J+2

. . .
. . .

DK−2 I2J+2

DK−1 Ĩ


(124)

where the blocks not represented out of the two diagonals are all zeros, I2J+2 denotes the identity
matrix inM2J+2(R) and for k = 1, . . . ,K − 1

Dk = −I2J+2 − hk JΨ(Yk)

where Yk = (Y2k(J+1)−J−1, . . . ,Y2k(J+1)+J)
⊤ and

Ĩ =

(
IJ+2

O

)
∈M2J+2,J+2(R)

D0 = −
(
O
IJ

)
− h0

 ∂J+3Ψ1(Y0) . . . ∂2J+2Ψ1(Y0)
...

...
∂J+3Ψ2J+2(Y0) . . . ∂2J+2Ψ2J+2(Y0)


where Y0 = (P in

s , P in
p , 0, . . . , 0,Y1, . . . ,YJ).

It remains to express the Jacobian matrix of Ψ. We only consider the case of a RK2 scheme
where Ψ is expressed in (120). From the chain rule, we obtain

JΨ(Yk) = JG(Yk +
hk
2 G(Yk)) ×

(
I2J+2 +

hk
2 JG(Yk))

)
(125)

and we have
JG(Yk) = −A+ JF (Yk) (126)

where the matrix A is defined in (103). To conclude this computation, we have to express the
Jacobian of F where F is given in (104). For all Y = (Y1, . . . , Y2J+2)

⊤ ∈ R2J+2, we can express
F (Y) as

F (Y) =



gs(Y)
d(Y)

Y1
P sat
s

u
gp(Y)
d(Y)

Y2
P sat
p

Γ1
Γs

g1(Y)
d(Y)

(
Y3

P sat
A (ν1)

+ 1
2

P
(0)
A (ν1)

P
sat,(e)
A (ν1)

)
...

ΓJ
Γs

gJ (Y)
d(Y)

(
YJ+2

P sat
A (νJ )

+ 1
2

P
(0)
A (νJ )

P
sat,(e)
A (νJ )

)
−Γ1

Γs

g1(Y)
d(Y)

(
Y3

P sat
A (ν1)

+ 1
2

P
(0)
A (ν1)

P
sat,(e)
A (ν1)

)
...

−ΓJ
Γs

gJ (Y)
d(Y)

(
YJ+2

P sat
A (νJ )

+ 1
2

P
(0)
A (νJ )

P
sat,(e)
A (νJ )

)



(127)

where

d(Y) = 1 +
Y1
P sat
s

+
Y2
P sat
p

+
J∑

k=1

Y2+k + Y2+J+k

P sat
A (νk)
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and

gs(Y) = α(a)
s Y1 +

νs
νp

α(a)
p Y2 +

J∑
k=1

νs
νk

α
(a)
A (νk) (Y2+k + Y2+J+k)

gp(Y) =
νp
νs

α(a)
s Y1 + α(a)

p Y2 +

J∑
k=1

νp
νk

α
(a)
A (νk) (Y2+k + Y2+J+k)

gj(Y) =
νj
νs

α(a)
s Y1 +

νj
νp

α(a)
p Y2 +

J∑
k=1

νj
νk

α
(a)
A (νk) (Y2+k + Y2+J+k)

For all Y = (Y1, . . . , Y2J+2)
⊤ ∈ R2J+2, the Jacobian of F in Y can be expressed as

JF (Y) =
1

d(Y)
M1 +M2 ×M3 (128)

where M1 ∈M2J+2(R) is a diagonal matrix with diagonal entries(
gs(Y)
P sat
s

,
u gp(Y)
P sat
p

, Γ1
Γs

g1(Y)
P sat
A (ν1)

, · · · ΓJ
Γs

gJ (Y)
P sat
A (νJ )

, −Γ1
Γs

g1(Y)
P sat
A (ν1)

, · · · −ΓJ
Γs

gJ (Y)
P sat
A (νJ )

)
(129)

M2 ∈M2J+2(R) is a diagonal matrix with diagonal entries(
Y1
P sat
s

, uY2
P sat
p

, Γ1
Γs

Y3

P sat
A (ν1)

, · · · ΓJ
Γs

YJ+2

P sat
A (νJ )

, −Γ1
Γs

Y3+J

P sat
A (ν1)

, · · · −ΓJ
Γs

Y2J+2

P sat
A (νJ )

)
(130)

and

M3 =
1

d(Y)
M3,1 −

1

d2(Y)
M3,2 (131)

where M3,1 and M3,2 are the matrix ofM2J+2(R) defined as the following matrix product of a
column matrix by a row matrix

M3,1 =



νs
νp
ν1
...
νJ
ν1
...
νJ


×
(
α
(a)
s
νs

α
(a)
p

νp

α
(a)
A (ν1)
ν1

· · · α
(a)
A (νJ )
νJ

α
(a)
A (ν1)
ν1

· · · α
(a)
A (νJ )
νJ

)

M3,2 =



gs(Y)
gp(Y)
g1(Y)

...
gJ(Y)
g1(Y)

...
gJ(Y)


×
(
∂1d(Y) · · · ∂2J+2d(Y)

)

Note that we have

∂jd(Y) =


1

P sat
s

if j = 1
1

P sat
p

if j = 2
1

P sat
A (νj−2)

if j ∈ {3, . . . , J + 2}
1

P sat
A (νj−2−J )

if j ∈ {J + 3, . . . , 2J + 2}
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4.6 Numerical experiments

We have considered a Erbuim fiber amplifier with the following properties:

• Fiber length L = 2m

• Erbium ions density N = 1.4 1025m−3

• λs = 1.55 10−6
, m

• λp = 0.976 10−6
, m

• Γp = 0.785

• Γs = 0.43

• Aeff = 5.64 10−12m2

• α
(a)
p = 1.3816 10−3m−1

• α
(a)
s = 1.3816 10−3m−1

• α
(0)
p = 0m−1

• α
(0)
s = 0m−1

• Metastable level 2 lifetime τ2 = 10−2 s

• σ
(a)
p = 2.1841 10−25m2

• σ
(e)
p = 0m2

• σ
(a)
s = 2.6656 10−25m2

• σ
(e)
s = 3.9178 10−25m2

• P in
s = 10−7W

• P in
p = 810−2W

The amplified spontaneous emission (ASE) phenomenon, its features are as follows. The spectral
bandwidth for the ASE ranges from 1.52 to 1.58 µm. The variations of the absorption and
emission cross sections along the wavelength bandwidth of interest, obtained from experimental
data, are depicted in Fig. 6. The spectral resolution was set to 0.4 nm, that is to say we have
J = 150.

4.6.1 Simulation by the Shooting method

We first provide results obtained by the Shooting method variant described in Section 3.3. The
Cauchy problem at each iteration of the Shooting method is solved by Matlab ode45 solver
with a tolerance set to 10−6. The stopping criterium for the Shooting method is that( J∑

j=1

(
P−
A (νj , z = L)

)2) 1
2 ≤ τs

where the tolerance τs was set to 10−8. (We recall that the boundary condition at the fiber end
(z = L) reads P−

A (νj , z = L) = 0 for all j = 1, . . . , J .)

When we assume a noise power such that P
(0)
A (νj) = 0 in order to be in the situation where

we have obtained the analytical expression of the total power leaving the fiber in Section 4.2,
we obtain the following results.
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Figure 6: Variations of the absorption and emission cross sections (in m2) along the wavelength
bandwidth of interest.

CPU Time = 0.32 s.

Number of iterations = 5

Comparison of the value of the total power out :

By solving the nonlinear ODE system P_out = 0.076333

By solving the nonlinear equ. P_out = 0.076333

Relative error = 8.537e-11

This validates the computer program: the relative error in this special case is around 10−10.

We then simulate light-wave propagation in the amplifier under the assumption that the
noise power is given by (74). CPU time is then 0.22 s. and the Shooting method converges to
the prescribed tolerance in 5 iterations. We have depicted in Fig. 7 the variations of the pump,
source and total ASE powers along the fiber and the variations of the forward and backward
ASE powers in log scale (dbm) as a function of the wavelength.

4.6.2 Simulation by the Relaxation method

We provide in this Section results obtained by the Relaxation method described in Section 3.4.
We have used a Runge-Kutta RK2 scheme for method A and the Newton-Raphson method
(method B) to solve the non-linear system. In the Newton-Raphson method, the Jacobian
matrix is handled in Matlab sparse form and the mldivide command is used to solve the
linear system at each iteration of the Newton-Raphson algorithm.

When we assume a noise power such that P
(0)
A (νj) = 0 in order to be in the situation where

we have obtained the analytical expression of the total power leaving the fiber in Section 4.2,
we obtain the following results.

CPU time of the simulation = 22.47 s.

Number of iteration of Newton-Raphson method = 14

Comparison of the value of the total power out :
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Figure 7: Variations of the pump, source and total ASE powers along the fiber (left) and
variations of the forward and backward ASE powers in log scale (dbm) as a function of the
wavelength (right).

By solving the nonlinear ODE systeme P_out = 0.076333

By solving the nonlinear equ. P_out = 0.076333

Relative error = 9.3097e-09

This validates the computer program: the relative error in this special case is around 10−8.
Note that the computation time is much higher than the computation time of the Shooting
method variant.

We then simulate light-wave propagation in the amplifier under the assumption that the
noise power is given by (74). CPU time is then 207 s. and the Relaxation method converges
to the prescribed tolerance in 20 iterations. The result obtained for the variations of the pump,
source and total ASE powers along the fiber and the variations of the forward and backward
ASE powers in log scale (dbm) as a function of the wavelength are identical to the ones obtained
by the Shooting method and depicted in Fig. 7.
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