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Abstract—The last decade has witnessed the rise of Network
Function Virtualization (NFV). Despite its benefits, resource
allocation and traffic scheduling are still challenging. A practical
issue is where to place Virtual Network Functions (VNFs) in
the network to sustain long-term optimal objectives and when
to reallocate resources given the dynamics of the substrate
network. Most prior works either consider static settings or
work in reactive fashions. This paper proposes a dual-window
algorithm for proactive service redeployment and traffic routing.
Specifically, our algorithm employs an entropy measure to
gauge the uncertainty in the substrate network and cognitively
updates the service redeployment interval to avoid unnecessary
data collection overhead. Our algorithm is lightweight, intuitive,
requires no offline training, and achieves the best overall
effectiveness and efficiency compared with three state-of-the-art
solutions.

Index Terms—Network Function Virtualization, Entropy, VNF
placement, Service Deployment

I. INTRODUCTION

In recent years, modern telco networks have undergone
tremendous transformations with the emergence of Network
softwarization, which embodies a large assemblage of concepts
and technologies to drive traditional hardware-based network
architectures toward software-based ones. One of the pivotal
components is Network Function Virtualization (NFV). Unlike
traditional networks that heavily rely on high-end, proprietary
middleboxes, NFV decouples network functions from dedicated
hardware and deploys them as Virtual Network Functions
(VNFs) on commodity hardware. This paradigm transition
enables agile and scalable service provisioning [1].

Despite the multitudinous benefits, applying NFV in practice
still faces many problems, especially the deployment &
management of network services and resources. One of the
most challenging problems is VNF Placement and Traffic
Routing (VPTR), which involves finding the optimal VNF
placement and traffic routing schemes without violating the
service and resource constraints [2]. As network traffic must
traverse the VNFs in a specific order, which is implemented
as Service Function Chains (SFCs), VPTR is inherently
a more daunting undertaking than the traditional service
placement problems [3]–[5]. The ever-increasing scale and
complexity of modern telco infrastructures further compound
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the situation. Over the last decade, many research endeavors
aim to address this problem [2], [6]. Although these solutions
can optimize resource allocation in static settings, most struggle
to sustain similar performance in dynamic environments, where
the network and resource status continuously evolve [7].
Contemporary ISP and data center networks are permeated
with intermittent evolvements and uncertainties, such as traffic
fluctuation, performance contention, and component failure.
The software nature of the NFV paradigm only expands the
sphere of uncertainty. Some solutions aim to implement the
dynamic SFC provisioning, defined as the VNF Redeployment
and Traffic Routing (VRTR) problem. Still, their approaches are
mostly reactive and can only be triggered by specific network
conditions/events. Consequently, they fail to enable proactive
adjustments, subjecting them to high setup latency and Quality
of Service (QoS) degradation [8]. In essence, there is an urgent
need for a time-aware, proactive resource allocation method
capable of capturing network uncertainties and delivering long-
term, high-quality services.

This work leverages the concept of entropy to capture
network uncertainties and address the VRTR problem. Al-
though entropy-based resource scheduling has shown great
promise in point-to-point communication (e.g. [9]) and ad-hoc
networks (e.g. [10]), its value is severely underappreciated in
NFV domain [11]. We aim to optimize the service acceptance
ratio by proactively adjusting the VNF placement and traffic
routing schemes based on the measured network uncertainty.
The contributions of this work are as follows:

• We formulate the VPTR problem with a compact matrix
representation, which can be efficiently solved, even in
large-scale networks with high traffic loads.

• We further model the VRTR problem based on VPTR.
We define an entropy metric to inspect network stability
and propose a novel dual-window algorithm to address
the VRTR problem proactively.

• Our algorithm is evaluated against three state-of-the-art
solutions, and It achieves the best overall performance in
maximizing the service acceptance ratio while presenting
the highest computation efficiency.

The rest of the paper is organized as follows: Sec. II and Sec. III
present the related works and our system model, respectively.
We formulate the VPTR and VRTR problems in Sec. IV.



Then, we present our entropy-based algorithm to address the
VRTR problem in Sec. V and evaluate its effectiveness in
Sec. VI. Finally, we draw the conclusion and discuss the future
directions in Sec. VII.

II. RELATED WORK

We devote this section to reviewing the previous research
efforts toward solving the VRTR problem.

A. The VPTR problem

Since the inception of NFV, resource scheduling & allocation
have always been a relevant topic [6]. In practical NFV settings,
it is crucial to optimally decide where to deploy the involved
VNFs and how to route the traffic to form the intended network
services (as SFCs), which is commonly known as the VPTR
problem [2], Compared to traditional service provisioning
problems, VPTR is more challenging as the VNFs must be
traversed in a predefined order without violating the service
and resource constraints. Existing studies propose two variants
to simplify the VPTR problem. The first direction is VNF
Placement (VNFP), which seeks optimal VNF placement by
assuming fixed routing schemes [6]. The second direction
is Traffic Rerouting (TRR), which explores the best traffic
steering schemes given fixed VNF placements [12]. Although
these solutions can achieve optimal service provisioning in
static networks, they have limitations in capturing substrate
networks’ time-varying dynamics and uncertainties [7].

B. The VRTR problem

Some works dig further and aim at solving the VNF
Redeployment and Traffic Routing (VRTR) problem, which
aims to dynamically redeploy VNFs and reconfigure the routing
schemes in response to the dynamics of substrate networks.
For instance, Liu et al. [7] employ the column generation
technique to optimize the SFC deployment dynamically. Eramo
et al. [13] propose three algorithms for VNF placement, SFC
routing, and VNF migration to minimize the joint cost of
energy consumption and QoS degradation. Ruiz et al. [14]
and Nsga et al. [15] employ genetic algorithms for dynamic
VNF provisioning to maximize the service acceptance ratio.
Recently, researchers actively explored machine learning (ML)
techniques, especially Deep Reinforcement Learning (DRL),
to solve the VRTR problem [16]–[18]. Although these works
account for the dynamic nature of NFV-enabled networks, they
either over-simplify the routing process, which leads to sub-
optimal outcomes, or operate reactively, resulting in long setup
latencies and SLA violations [8].

To cope with modern networks’ dynamic and uncertain
nature, service providers require proactive service provision,
which only a few prior works address. In particular, Wahab
et al. [8] formulate the VRTR problem as an Integer Linear
Programming (ILP) problem and propose a semi-supervised
learning algorithm to accelerate the ILP solver by intelligently
removing the redundant cost functions. Nonetheless, they
omit the problem of traffic rerouting, which is essential for
resource and QoS optimization. Pei et al. [19] propose a

DRL-based algorithm to forecast the network conditions and
adjust SFC deployment accordingly. While this algorithm can
capture network uncertainties and make proactive adjustments,
it requires massive agent-environment interactions to derive
the optimal model, which is not always feasible. Also, the
algorithm faces large convergence latency, which offsets the
benefit of proactive SFC provisioning. Worse still, the actions
derived by DRL cannot be readily interpreted by network
operators, making its applicability questionable.

To realize dynamic, proactive SFC provisioning, we address
the VRTR problem with a dual-window approach, which
accounts for the dynamic traffic patterns and network conditions
by proactively collecting network states and assessing the real-
time entropy. Entropy, originating from information theory,
has been widely applied across various disciplines [20].
Entropy-based models, e.g., Von Neumann entropy [21] and
Shannon entropy [22], can effectively capture the inherent
network uncertainty (or unpredictability). Our algorithm utilizes
entropy to quantify the uncertainty of the IP links’ transient
qualities and proactively 1) pruning the nodes and links with
high uncertainties; 2) releasing the VNF instances with no
corresponding SFC demanding; 3) instantiate SFC provisioning
by constructing and solving binary matrices. Compared to state-
of-the-art solutions, our algorithm is intuitive, efficient, and
requires no interactions with the network.

III. SYSTEM AND TRAFFIC MODEL
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Fig. 1: VRTR problem in NFV-enabled networks

A. System model

Our work targets the standard NFV architecture, which
consists of the NFV Infrastructure (NFVI), Service plane, and
Management and Orchestration (MANO) plane, as illustrated
in Fig. 1. The NFVI comprises heterogeneous network equip-
ment, such as Commodity Off-The-Shelf (COTS) servers and
programmable devices. VNFs are instantiated as SFCs in the
Service Plane to form the desired network services. The MANO
plane contains various modules for network management and
service provisioning. The relevant modules for our work include
monitoring, placement, and scheduling.

We propose a dual discrete time window algorithm to assess
network stability and proactively adjust the SFC provisioning
whenever necessary. Time is slotted equally as timesteps. We
define M as the grand observation window and T ≪ M as
the short, configurable window. Every T timesteps, each node
updates the local network states to our algorithm residing in the



MANO plane via the Virtualized Infrastructure Manager (VIM).
Our algorithm makes adjustments to optimize the M long-term
service acceptance ratio. Our algorithm also designates the
most suitable value of T whenever applicable.
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Fig. 2: An illustration of the VRTR problem.

A toy case of VRTR: Fig. 2 illustrates a simple scenario of
the VRTR problem in a seven-node ISP network. The goal
is to maximize the service acceptance ratio with dynamic
traffic arrivals and unstable network conditions. We consider
link quality degradations, which can occur independently due
to component failures, software malfunctions, and resource
contentions. In period m, to achieve the most suitable SFC
provisioning, requests for SFC1, SFC2, and SFC3 are routed
via path (A-B-C-D), (A-F-E-D), and (F-E-D), respectively. In
the subsequent period m+1, due to the varied service requests
and network conditions, a new round of SFC provisioning is
required. Specifically, as the requests for SFC3 have terminated,
its associated resources are released. Due to the degradation
on (C-D), SFC1’s path is rerouted via (A-B-G-D), with VNF2
redeployed at node G, to ensure transmission quality. SFC4 is
also deployed along the path (B-G-D) to serve new requests.

B. Service traffic definitions

We model the network as a graph (V, E), where V and E
stand for the sets of nodes and physical links. The parameter
u, v represents two physical nodes, and uv ∈ E stands for a
physical link between node u ∈ V and v ∈ V . We use Cbw

uv to
represent the capacity of link uv, Cmem

u the memory of node u,
and Ccpu

u the units of available computing resource of node u.
The set of network services is denoted as S = {1, 2, · · · , S},
where s ∈ S represents a specific type of service. The set
of available VNFs is denoted by F = {1, 2, · · · , F}, where
f ∈ F stands for a specific type of VNF. Each service s
corresponds to a chain of ordered VNFs and is formalized as:

s :=
(
Fs, ψ

bw
s , ψmem

sf , ψcpu
sf

)
,∀s ∈ S (1)

where Fs = {f1s , · · · , fns } denotes the ordered set of its
constituent VNFs, ψbw

s the required bandwidth, ψmem
sf the

memory footprint, and ψcpu
sf the units of computing resources

demanded by the VNF type f of service s.
Various factors, such as failures of network components,

resource contention, or malfunctioning software, can impact
the availability of an SFC, which is described as:∏

ps∈Ps

αps

∏
fs∈Fs

αfs ≤
∏

ps∈Ps

αps
(2)

where αfs is availability of the constituent VNF fs, and αps

is the availability of the physical network component ps ∈ Ps.
Moreover, we assume every SFC can serve an aggregated

set of users [23], for example, when multiple users require the
same service between the two endpoints. We define the SFC
request (SFCR) set as R and r ∈ R stands for an SFC request
with specific ingress and egress. We have r := (s, zri , z

r
e),

where s is defined in Eq. (1), and zri , z
r
e are the ingress and

egress nodes of SFCR r.

IV. VNF REPLACEMENT AND TRAFFIC ROUTING (VRTR)

This section provides problem formulations. We first formu-
late the VPTR problem and then address the VRTR problem.

Our first assumption is that network states are updated
every T timesteps, where the initial timestep is allocated for
network reconfiguration, and the subsequent T−1 timesteps are
dedicated to network service, as described in [10]. We assume
a value of one for the entropy at the initial update timestep to
capture the fact that no knowledge of network state is assumed
during network state updates. Let Rm be the SFCRs set in the
next time interval [mT, (m+ 1)T ). The objective is to devise
an optimal solution based on Rm.

A. VPTR formulation

Upon each network state update, the MANO plane must
release the impacted VNFs and decide where to place them.
We now formulate our VPTR problem with the following
variables:

- zru: a binary variable which returns 1 if the SFCR r
traversed node u ∈ V , and 0 otherwise.

- zruv: a binary variable which returns 1 if the SFCR r
traversed link uv ∈ E , and 0 otherwise.

- zruf : a binary variable which returns 1 if the VNF f
requested by r is placed on node u ∈ V , and 0 otherwise.

- qrs : a binary variable which returns 1 if SFCR r belongs
to service type s, and 0 otherwise. Noted that

∑
s q

r
s = 1.

For a given period [mT, (m+1)T ), the objective is to find a
VNF placement and traffic routing scheme to jointly optimize
the service acceptance ratio and the number of required nodes,
which is formulated as follows:

max
zr
u,z

r
uv,z

r
uf ,k

r
uf

α
1

|Rm|
∑

r∈Rm

Ar − β
∑

r∈Rm

∑
u∈V

zru (3)

where α and β are weighting parameters. Ar is the availability
of SFCR r, which is formulated as

Ar = 1

 ∏
u∈Vr

zru
∏

uv∈Er

zruv

∑
s∈S

qrs
∏

fi∈Fs

zruf

 (4)

In (4), 1(·) is an indicative function,
∏

u∈V z
r
u denotes the

availability of all the intermediate nodes,
∏

uv∈E z
r
uv indicates

the availability of all the traversed links. And
∏

fi∈Fs
zruf

represents required VNFs availabilities, where zruf indicates
the availability of a specific VNF instance.



The objective of the second part of (3) is to minimize
the number of required nodes and, whenever applicable,
consolidate VNFs associated with the same SFCR on a single
function node (server), which reduces the operational cost.

We consider several constraints. In particular, the SFCRs’
resource footprints, e.g., memory and bandwidth, should not
exceed the resource capacity of individual link (∀uv ∈ E) and
node (∀u ∈ V), which is formulated as follows:∑

s∈S

∑
f∈F

∑
r∈Rm

qrsψ
mem
sf (zru − ẑru) ≤ wmem

u Cmem
u (5)∑

s∈S

∑
r∈Rm

qrsψ
bw
s (zruv − ẑruv) ≤ wbw

uvC
bw
uv (6)

In Eqs. (5)-(6), wmen
u , wbw

u ∈ [0, 1] represent the available
memory share of node u and the available bandwidth share of
link uv, respectively. ẑruv and ẑru represent the values of zruv
and zru at the previous time interval. Thus, their differences
indicate the node- and link-level resource variation.

The VNFs collectively guarantee the SFC’s availability.
However, there is a limitation in the number of VNFs due to
the physical node’s resource constraint. The aggregated CPU
share of the VNFs can not exceed a node’s CPU capacity:∑

s∈S

∑
f∈F

∑
r∈Rm

qrsψ
cpu
sf ≤ C

cpu
u (7)

For all r ∈ Rm, u ∈ V , single path flow balance constraints
must be enforced:

∑
v:(u,v)∈E

zruv−
∑

v:(u,v)∈E

zrvu=


1, if u is ingress
−1, if u is egress
0, otherwise

(8)

Note that while physical links are undirected, SFCRs possess
a specific direction. Consequently, zruv ̸= zrvu.

If a physical link is traversed, the nodes connected by this
physical link should be traversed as well:

zruz
r
v =

{
1, if zruv = 1,∀u, v ∈ Vr, uv ∈ Er
0, otherwise

(9)

Each required VNF f ∈ Fs can only be placed on one node:∑
v∈V

zruf = 1,∀r ∈ Rm, f ∈ Fs (10)

Each node hosting a required VNF f ∈ Fs must be active:

zru ≥ zruf ,∀r ∈ Rm, f ∈ F (11)

The total delay of each request does not exceed D. We consider
the processing delay at nodes and propagation delay at links,
∀r ∈ Rm:∑

u∈V

∑
f∈F

qrsz
r
ufd

processing
suf +

∑
uv∈Er

zruvq
r
sd

link
s,uv ≤ D (12)

where dprocessing
suf is the processing latency when service s ∈ S

using VNF of type f ∈ F is hosted by node u ∈ V ; and dlink
s,uv

is the propagation delay of service s traversing link uv ∈ E .
The established model is an integer linear programming with

objective (3) and constraints (5)-(12).
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Fig. 3: Link states and their transition probability

B. VNF redeployment and traffic rerouting (VRTR)

We formalize the VRTR problem based on the preceding
formulation of the VPTR problem. The crucial question is
when to initiate SFC provisioning. To address this, we employ
a dual discrete time window methodology, where M denotes
a long-term observation window and T is the short time
window. We update the network states for every T duration to
adjust the SFC provisioning schemes and optimize the long-
term objective. In a static network with constant traffic, link,
and node conditions, the time interval for updating network
states aligns with the long-term observation window, namely
T=M . In a dynamic network with evolving topologies, traffic
fluctuations, component failures, or resource contentions, the
challenge of determining the optimal timing for resource
reallocation necessitates strategic planning. Note that given
T ≪M , the long-term optimization goal is formulated as:

max
T,zr

u,z
r
uv,z

u
rf ,k

u
rf

α
1

M

M∑
t=1

Ar − β
1

M

M∑
t=1

∑
u∈V

zru (13)

s.t. constraints (5)− (12)

V. ALGORITHM DESIGN

This section presents our algorithm for dynamic, proactive
SFC provisioning. Entropy, a metric for measuring network
uncertainty, is central to our algorithm. By employing a dual
time window strategy, our algorithm solves the VPTR problem
under static network settings and addresses the VRTR problem
under time-varying network conditions.

A. Network uncertainty quantification

We quantify the overall network uncertainty using two
metrics, i.e., link entropy and network connectivity.

1) Link entropy: Link entropy can capture all the (nuanced)
quality drift of a physical link in NFV-enabled systems.
Specifically, component failures (hardware or software) can
directly render a link unavailable. Traffic congestion, resource
contentions, and malfunctioning software can severely degrade
the quality of a connection, even if it is still available. We
formulate link quality drifts using a two-state Markov model,
which represents the quality of a physical link as either "per-
fect" (fully available) or "degraded (partially available)". The
"degraded" state is predefined based on QoS level requirements,
such as 70%, 50%, or full degradation, as shown in Fig. 3. We
uniformly refer to various levels of degradation as "degraded".



At each timestep, the probability of a link remaining in the
"perfect" state is denoted as p, and the probability of transition
from a "degraded" to a "degraded" state is denoted as q.

To define an entropy-based measure of network uncertainty,
let Eperfect

t be the set of perfect links at time t and let Eperfect
t+i ⊂

Eperfect
t be the subset of those links remaining perfect at time

t+ i. Let lt+i be a random variable representing whether an
arbitrary link in Eperfect

t is perfect or degraded at time t + i.
Then the probability that an arbitrary link in Eperfect

t is perfect
at time t+ i, is computed as

P (lt+i = perfect|lt = perfect) =
|Eperfect

t+i |
|Eperfect

t |
(14)

Based on (14), we collect and record each link’s state (perfect
or done) at regular intervals. Then, we count the number of
transitions occurring from each state to the same and the
other state. Subsequently, the transition probabilities p and
q are derived by dividing the counts of "perfect-to-perfect"
and "degraded-to-degraded" transitions by the total transitions
originating from "perfect" and "degraded" states, respectively.
Then, the link-perfect entropy is

H(lt+i|lt)=−
∑

y={perfect,degraded}

P (lt+i=y|lt=perfect)

× logP (lt+i=y|lt=perfect)

The average link-perfect entropy h over T timesteps is:

h =
1

T

T∑
j=1

H(lj+1|l0) (15)

Where l0 is the most recent timestep at which an entropy update
occurred. We condition on the links found when network states
are updated, i.e., l0 = perfect, because it is only those links
that will be used in traffic routing. The links that are not
consistently perfect are not useful for routing, so we do not
include their entropy contribution in calculating h.

Further, we can also analytically evaluate h First, the t-step
transition probability for a link (see, e.g., Ch.1 of [24]) as
follows:

ptuu =

{ 1−q
2−p−q + 1−p

2−p−q(p+q−1)t if p+ q < 2

1 if p+ q = 2

ptdd =

{ 1−p
2−p−q + 1−q

2−p−q(p+q−1)t if p+ q < 2

1 if p+ q = 2

The notation ptud is the probability that a link is in the state
"degraded" after t transitions and having started in the state
"up". We assume p0uu=p

0
dd=1 and p0ud=p

0
du=0. From the

(p+ q − 1)t term, when p+ q − 1 < 0 links tend to oscillate.
The network is thus stable when p+ q − 1 = 1 and bi-stable
when p+ q − 1 = −1. The link-up entropy H(lt+i|lt) is then

H(lt+i|lt) =
∑

y=perfect,degraded

pt+i
uy log pt+i

uy (16)

As h decreases, the network becomes more predictable; as h
goes to 1, the network becomes less predictable.
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Fig. 4: Network measurements depend on p and q

2) Measure of network connectivity: To better capture the
uncertainties, we further measure network connectivity using al-
gebraic connectivity, defined as the second-smallest eigenvalue
of the normalized Laplacian matrix of a graph [25]. The larger
the value, the more well-connected is the network topology. The
network is disconnected when algebraic connectivity equals 0.

Fig. 4 examine how p and q affect link entropy and
connectivity in a random network topology with i.i.d links.
The network connectivity is better when p > 0.5 and q is
small and is a monotonically increasing (decreasing) function
of p (q). Next, the link entropy, h, is minimized when q is
very large, and p is very small, or q is very small, and p is very
large: this is because links are very likely to stay degraded (or
up), respectively, and so links are very predictable. Similarly,
when p and q are both small, h is again low because links may
be frequently breaking and recovered, links are predictably
breaking. Finally, observe that the region where h is maximized
corresponds to the region where p = q.

B. Long-term updating scheduling for VRTR

The basic steps of the proposed algorithm are given in
Algorithm. 1. The input parameters include the long-term
optimization life-cycle M , topology (V, E), initial requests
R0 where r : (s, zri , z

r
e) ∈ R0. The output parameters include

the optimized parameters of VNF redeployment and traffic
routing strategies Addressing the placement of VNF ("where")
and the corresponding transmission strategies, the algorithm
incorporates a matrix-based method, as specified in lines 10-13
of Algorithm 1. Besides, the timing for VNF placement and
routing ("when") is determined through the monitoring of link
states and the computation of link entropy and connectivity
and achieved using Algorithm 2. For each time interval t ∈
[mT, (m+1)T ], Step 10 involves adjusting the current topology
by pruning nodes and links, particularly those with high link
entropy or insufficient connectivity. In step 11, the algorithm
updates the available resources at nodes and links. This update
includes the release of VNF instances in cases where there
are no longer corresponding SFCs within the current period.
We keep the VPTR strategies for traffic belonging to the last
interval, i.e., Rm∪Rm−1, and only deploy for the new demand
Based on 10-13, we model the current ILP problem as (3) and
solve it using the CPLEX optimizer.



1) VPTR solver: To accelerate the solver, we construct a
binary matrix with the following form:

z11 · · · z1|V| z11,f1 · · · z1|V|,f|F|
z1edge1 · · · z1edgeE

z21 · · · z2|V| z21,f1 · · · z2|V|,f|F|
z2edge1 · · · z2edgeE

...
...

...
...

...
...

...
...

...
zr1 · · · zr|V| zr1,f1 · · · zr|V|,f|F|

zredge1 · · · zredgeE
...

...
...

...
...

...
...

...
...

zR1 · · · zR|V| zR1,f1 · · · zR|V|,f|F|
zRedge1 · · · zRedgeE



ALGORITHM 1: VNF Redeployment and Traffic
Routing (VRTR)

Input: Life-cycle M , topology (V, E), initial requests R0 where
r:(s, zri , z

r
e)∈R0

Output: VNF redeployment and traffic routing strategies
1: for each u ∈ V , uv ∈ E do
2: (a) Cbw

uv ← collect the bandwidth capacity of each link;
3: (b) Cmem

u , Ccpu
u ← collect the node memory capacity and CPU

computing capacity of each node;
4: (c) Initialize ωmem

u , ωbw
uv , ω

cpu
u =1 for all u ∈ V, uv ∈ E ;

5: (d) m=0
6: end for
7: for t = 1 · · ·M do
8: for t ∈ [mT, (m+ 1)T ) do
9: if t = mT then

10: (a) Update topology: (V, E)← pruning the nodes, links with
high entropy and low connectivity;

11: (b) Update ωmen
u , ωbw

u , ωcpu
u : releasing VNF instances if

there is no-more demand;
12: (c) Update new resource demand based on Rm;
13: (d) Model and solve current ILP Eq.(3);
14: else
15: (e) Transmit based on current VPTR strategy;
16: end if
17: end for
18: m←m+ 1;
19: Monitor and collect the average link entropy h;
20: if h deviates then
21: Apply update rules using Alg. 2 for T ← T ∗;
22: end if
23: end for

where each row represents a cluster of users with the same
ingress/egress and SFC type. For a given SFCR r, zr1 to
zr|V| indicate the traversed nodes, zr1,f1 to zr|V|,f|F|

indicate
how VNFs are placed at function nodes, and zredge1 to zredgeE
uniquely determine the routing strategy. We note that the size
of binary matrix is |R|(|V|+ |F|||Vfunction|+ 2|E|). We define
a table for edges for notation convenience and reduce the
Integer programming problem to a binary problem: edges
{edgeID : node_src, node_dst}. Binary constraints
can more efficiently prune the search space in the LP relaxation
step and identify feasible solutions faster Once the matrix
elements are solved, the placement of the VNFs and routing
policy of the SFCRs are uniquely determined. As demonstrated
in Sec. VI, our CPLEX solver can efficiently solve the VPTR
problem, even with many requests and large-scale networks.

2) The optimal small window T ∗: To find the best small
window T ∗, we devise a stochastic gradient descent (SGD)
algorithm as in Alg. 2.

In SGD, the possible range of the small window T duration
is T ∈ (0,M ]. The initial values, T0 and T1, are set at 0 and an
arbitrary value less than M , respectively. The objective function
W (T ), related to T and derived from Eq. (13), represents the
overall average service acceptance across the window M . The
gradient for the optimization process is 1

k (W (Tk)−W (Tk−1)).
This iteration rate decreases as the number of iterations
increases, guiding the algorithm towards convergence in its
final stages. The update process for T is iterative: Tk+1 is
computed by step 4, and the iterations continue as long as
|Tk+1 − Tk| ≥ ϵ. The iteration counter k is incremented in
each loop, and W (Tk) is updated accordingly. Alg. 2 typically
converges within 10 iterations. Upon convergence, the optimal
small window duration will be the one that results in the best
performance metric value within the grand time window M .

ALGORITHM 2: Stochastic Gradient Descent (SGD)
for computation T ∗.

1: Initialize T0 = 0, ϵ < T1 < M , k = 0, ϵ≪ 1
2: while |Tk+1 − Tk| ≥ ϵ do
3: k ← k + 1
4: W (Tk)← α 1

M

∑M
t=1Ar − β 1

M

∑M
t=1

∑
u∈V z

r
u

5: Tk+1 ← Tk + 1
k (W (Tk)−W (Tk−1))

6: end while
7: Return T ∗ ← Tk+1 and W (T ∗)

VI. EXPERIMENTAL EVALUATION

A. Simulation settings

All the experiments are executed on a laptop equipped with
an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz and 4 GB
memory. We consider two test scenarios to assess our algorithm:
(1) static scenario with constant link quality; (2) dynamic
scenarios with time-varying link quality. Following previous
studies [26], we consider the real-world network topologies of
the Internet topology zoo [27]. For space’s sake, we only present
the results for 4 out of the 250 topologies, namely Abilene (11

VNF type Description RAM CPU
(MHz)

Firewall Click-based classifier (250 sequential rules) 1GB 2000
Auth/ftp FTP Authentication services 3GB 3000
Billing Click-based billing system 1GB 3500

Encoder Compressing or encrypting data streams 2GB 1500
LPM Click-based IP router pipeline 1GB 4000

STATS Click-based flow stats collection 4GB 2000
IPsec Click-based IPsec tunnel using IPsec 3GB 2000

MazuNAT Click-based NAT pipeline by Mazu Networks 2GB 3000

TABLE I: The selected VNFs with their resource profiles

Type Computational Resources
High-end server 36×Intel(R) Core(TM) i9 CPU @3.00GHz,

RAM 263GB
Low-end server 32×Intel(R) Xeon(R) Silver CPU @2.10GHz,

RAM 97GB

TABLE II: Node resource distribution
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Fig. 5: Four of the ISP Network topologies used for evaluation.

nodes), Nesfnet (14 nodes), AttMples (25 nodes), and Interoute
(110 nodes), as illustrated in Fig. 5. These topologies are chosen
based on increasing scale and complexity. The yellow nodes
can host VNFs, and the rest are switch nodes. We select eight
prevalent VNFs from prior works [28], [29]. Their resource
profiles are listed in Table I. The resource specification of each
node is listed in Table. II by referring to the most commonly
used servers in a small-scale enterprise data center. The link
bandwidth is set to 100 Gbps to emulate the high-bandwidth
settings. We optimally solve the VPTR model using CPLEX
and iteratively execute the proposed Algorithm (Algorithm. 1)
to address the VRTR problem over M timesteps.

B. Static network evaluation

We first evaluate our VPTR solver in the static network
scenario. We generate 1000 trials for each experiment. In each
run, we instantiate an SFC request between randomly selected
ingress-egress pairs in the network. We construct two SFCs,
each with three randomly selected VNFs from Table I. Users
request either SFC at each timestep with a probability of 50%.
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Fig. 6: VNF placement in AttMples topology

1) The number of VNFs placed on each node: We specif-
ically select four VNFs, i.e., firewall (VNF1), FTP (VNF2),
encoder (VNF3), and billing (VNF4), and fix the two SFCs
to (VNF1 - VNF2 - VNF4) and (VNF1 - VNF3 - VNF4).
Fig. 6 shows the average number of VNFs across the AttMples
network under 50 and 150 requests/s. We sorted all the nodes
based on their node degrees in descending order and selected
the first five nodes as function nodes, which are denoted as
Vfunction = {3, 0, 9, 10, 2}. The number of VNFs per node is

5 20 50 80 100 150
Requests/s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

im
um

 li
nk

 u
til

iza
tio

n

Abilene
Nsfnet
AttMples
Interoute

Fig. 7: Link utilization depend on traffic and topology

5 20 50 100 150
Requests/s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ac
tiv

e 
no

de
 ra

tio

Abilene, Multi
Nsfnet, Multi
AttMples, Multi

Interoute, Multi
Abilene, Single 
Nsfnet, Single 

AttMples, Single 
Interoute, Single 

Fig. 8: The ratio of active nodes with varied traffic load

proportional to the traffic load. Notably, nodes 3 and 0, with
the highest node degree of 9, necessitate more VNFs than
other nodes due to their relatively heavier traffic load. This
underscores the significance of deploying more VNFs to heavily
loaded nodes. Besides, the results indicate that the requirement
for different VNF types is proportional to the total service
demand, achieving optimal SFC deployment.

2) The average resource utilization in different topologies:
In Fig. 7, we compared the maximal link utilization under
varied traffic loads. The results highlight that (i) the number
of nodes does not fully indicate resource efficiency, and (ii)
node degree is equally crucial. For instance, despite having
fewer nodes and links, Abilene consistently showed high link
utilization. In contrast, mesh-like topologies like AttMples
distributed traffic more evenly. Based on our observation of all
the topologies, radially structured networks with many central
nodes generally exhibit higher link utilization.

3) The benefit of VNF consolidation: In Fig. 8, we explore
the ratio of active nodes, calculated as the average active nodes
over total nodes under different traffic loads. We consider two
modes for our VPTR solver: "Single" - only preserving the
first part of Equation (3), and "Multi" - the involvement of the
second part. We specifically consider scenarios where at least
95% service requests are satisfied. We observe that introducing
the second objective of active node minimization reduces
resource utilization by about 40% while maintaining service
quality. This efficiency stems from avoiding unnecessary
traversals of redundant nodes and links, solving the VPTR
problem. Additionally, Fig. 8 reveals that small-scale networks
(e.g., Abilene) exhibit a higher active node ratio compared to
larger networks (e.g., Interoute). This is attributed to the more
distributed traffic in larger networks, leading to fewer active
nodes to support equivalent traffic levels.



Abilene Nsfnet AttMples Interoute
0

20

40

Ex
cu

tio
n 

tim
e 

(s
)

0.1 0.2 0.3 0.30.1 0.3 0.4 0.40.6 0.8 1.2 3.21.3 1.5 2.3

12.3

1.7 2.4 3.4

20.4

4.7 6.7
10.6

50.6
5 request/s
20 request/s
50 request/s

80 request/s
100 request/s
150 request/s

Fig. 9: Comparison of execution time under different loads

4) The execution efficiency under different network scales:
We evaluate the network scales as the size of the binary
matrix |R|(|V| + |F|||Vfunction| + 2|E|). Note that the time
needed to solve the ILP problem in different scenarios varies
from 1 to 50 seconds. The formulated ILP problem in large-
scale networks contains up to 74,400 variables and 5,000
constraints. Several factors contributed to the observed high
efficiency. First, employing matrix operations greatly boosts
performance by reducing nested loops and leveraging the speed
of binary matrix calculations. Second, by integrating the traffic
routing problem and the VNF placement problem in a single
matrix, our approach avoids the problem of obtaining two local
sub-optimalities in two different phases in the conventional
approach, thus ensuring a globally optimal solution while
maintaining execution efficiency.

C. Dynamic network evaluation

This part evaluates our algorithm’s effectiveness in solving
the VRTR problem under dynamic network settings.

1) The benefit of dynamic resource rescheduling: We first
demonstrate the importance of dynamic resource scheduling.
For the two-state Markov model proposed in Sec. V-A, starting
from p = 1, we decrease it by 0.1 per 100 timesteps till 0
and fix q at 0.1, 0.5, 0.8 and 0.9, respectively. T is fixed
to 100. We compare our algorithm with a baseline algorithm
that excludes the part of dynamic resource rescheduling. The
results are shown in Fig. 10. First, we observe a maximal
20% improvement in the service acceptance ratio compared to
non-scheduling. Second, higher q (lower p) indicates lower link
connectivity, hence lower service acceptance ratio. Besides, as
p decreases, the gap between scheduling and non-scheduling
initially increases and decreases to zero. Notably, the link
entropy shows the same trend as t increases. This phenomenon
can be interpreted as reallocating resources does not make much
difference in a stable network (p is high). When there is a high
link uncertainty (link entropy is high), resource reallocation
can improve performance by up to 20%. If p drops significantly
and network connectivity declines, reallocating resources does
not improve performance either.

2) The impact of the small time window size T : Fig. 11
shows the results obtained by fixing q = 0.1 and varying p
from [0, 1]. The network unpredictability increases initially,
then decreases, reaching its maximum at p = 0.5. Network
connectivity monotonically increases with p. We let M=100
and update T every 5, and 10, respectively. As p increases, the
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service acceptance ratio gradually improves. When p=1, the
network is fully connected and highly predictable, enabling
maximum transmission rates. When T = 10, periodic states
updates improve the service acceptance ratio for p<0.7, while
without scheduling is more effective for p>0.7. This suggests
that frequent updates of the network states allow network
operators to reallocate network resources promptly for better
SFC provisioning.

3) The optimal small time window T : In Fig. 12, we depict
two fixed settings for p and q, namely (p = 0.9, q = 0.1)
and (p=0.5, q=0.5). The former exhibits high connectivity
and low unpredictability, whereas the latter demonstrates high
unpredictability. When p=0.9 and q=0.1, the optimal network
states update time exceeds 80 timesteps, i.e., T ∗=80, whereas
for p=q=0.5, T ∗=10, which implies that high network state
update frequency enhances the service acceptance ratio when
the network is less predictable.

D. Comparison with state-of-the-art algorithms

We compare our algorithm with three state-of-the-art solu-
tions: Genetic Algorithm (GA) [14], NSGA-II [15], and Linear-
multi-objective deep reinforcement Learning (MODRL) [19]
The MODRL algorithm solves weight uniformly distributed
sub-objectives, i.e., the weight factor for each objective is
set to 1; GA and NSGA have 100 populations for 100
generations. These two algorithms are customized for our
problem formulation, and their initial populations are equally
generated by randomly placing VNFs at function nodes. We



only present the results on specific topologies for space’s sake.

Fig. 13: Performance comparison on the AttMples Topology

Topology GA NSGA-II DRL Our algorithm
Abilene (11-node) 320s 240s 20s 4.6s

AttMples (25-node) 860s 760s 60s 10.6s

TABLE III: Execution efficiency of different algorithms

1) Performance: Fig. 13 shows their service acceptance
ratio under different request rates on the AttMples topology.
All algorithms achieve good results when low traffic loads
(e.g., 5 or 20 request/s). GA and NSGA-II fail to sustain
good performance as the traffic load increases because they
heavily rely on the initial feasible population to find the
optimum. For instance, GA performs the worst in all cases, as
it can only find neighbor solutions from the initial population.
Also, they only consider VNF placement and neglect the
importance of traffic routing. Our algorithm and MODRL
consistently achieve high acceptance ratios because both can
proactively capture the network uncertainty and reallocate the
resources. MODRL employs a sophisticated neural network
and requires adequate interactions with the substrate network
to attain optimal performance. Unlike MODRL, our algorithm
is lightweight, transparent, and requires no offline training.

2) Efficiency: Table III shows the execution time for all
the algorithms on Abilene and AttMples. In both scenarios,
GA and NSGA-II take a similar time to run 100 iterations,
and MODRL only takes < 10% of time than them. When
the network scale increases from Abilene to AttMples, the
execution time for all the algorithms also rises. In particular,
when running on AttMples, the execution times of GA, NSGA-
II, and MODRL increase by ≥ 3 times. Our algorithm takes
only 10.6 seconds to find the best solution.

VII. CONCLUSION

Despite the proliferation of NFV in recent years, resource
allocation remains daunting. While the VPTR problem has
been well-studied in the literature, network operators still
require a lightweight, proactive approach to address the more
complicated VRTR problem. This paper proposes a novel
algorithm that employs real-time network entropy to capture
unstable network conditions and proactively address the VNF
redeployment & traffic routing. Based on extensive evaluation,
our algorithm outperforms two of three state-of-the-art solutions
and achieves the best computation efficiency. In future work, we
plan to deploy our algorithm in a real testbed for proactive VNF
and traffic orchestration. We will also extend our algorithm to
support state migration for stateful VNFs.
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