
HAL Id: hal-04636422
https://hal.science/hal-04636422

Preprint submitted on 5 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Narrowing the Gap between Adversarial and Stochastic
MDPs via Policy Optimization

Daniil Tiapkin, Evgenii Chzhen, Gilles Stoltz

To cite this version:
Daniil Tiapkin, Evgenii Chzhen, Gilles Stoltz. Narrowing the Gap between Adversarial and Stochastic
MDPs via Policy Optimization. 2024. �hal-04636422�

https://hal.science/hal-04636422
https://hal.archives-ouvertes.fr


Narrowing the Gap between Adversarial and

Stochastic MDPs via Policy Optimization

Daniil Tiapkin
Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France

Centre de Mathématiques Appliquées — CNRS — École polytechnique
Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau

daniil.tiapkin@polytechnique.edu

Evgenii Chzhen Gilles Stoltz
Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France

{evgenii.chzhen, gilles.stoltz}@universite-paris-saclay.fr

Abstract

In this paper, we consider the problem of learning in adversarial Markov deci-
sion processes [MDPs] with an oblivious adversary in a full-information setting.
The agent interacts with an environment during T episodes, each of which con-
sists of H stages, and each episode is evaluated with respect to a reward function
that will be revealed only at the end of the episode. We propose an algorithm,
called APO-MVP, that achieves a regret bound of order Õ(poly(H)

√
SAT ), where

S and A are sizes of the state and action spaces, respectively. This result im-
proves upon the best-known regret bound by a factor of

√
S, bridging the gap be-

tween adversarial and stochastic MDPs, and matching the minimax lower bound
Ω(

√
H3SAT ) as far as the dependencies in S,A, T are concerned. The proposed

algorithm and analysis completely avoid the typical tool given by occupancy mea-
sures; instead, it performs policy optimization based only on dynamic program-
ming and on a black-box online linear optimization strategy run over estimated
advantage functions, making it easy to implement. The analysis leverages two
recent techniques: policy optimization based on online linear optimization strate-
gies (Jonckheere et al., 2023) and a refined martingale analysis of the impact on
values of estimating transitions kernels (Zhang et al., 2023).

1 Introduction

We study adversarial Markov decision processes [MDPs], introduced by Even-Dar et al. (2009)
and Yu et al. (2009), in an episodic setup with full monitoring. Unlike the standard setup, the re-
ward function is not known to the learner beforehand and is revealed sequentially at the end of each
episode.

To deal with this problem, many earlier works relied on online linear optimization [OLO] strate-
gies (see the monograph by Cesa-Bianchi and Lugosi, 2006 for a survey) in the space of so-called
occupancy measures (Zimin and Neu, 2013). These occupancy measures concern the state-action
pairs within an episode induced by a given policy and transition kernel. This family of algorithms,
known as O-REPS, has been extended to handle unknown transition kernels and bandit feedback
by several studies (Rosenberg and Mansour, 2019a,b; Jin et al., 2020, 2021), using an exploration
mechanism similar to UCRL2 (Auer et al., 2008). However, this type of exploration leads to an addi-
tional

√
S factor in the regret, where S is the number of states, compared to the state of the art in the
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non-adversarial case (Azar et al., 2017; Dann et al., 2017; Jin et al., 2018). Furthermore, O-REPS-
based approaches require solving a high-dimensional convex program at each episode, resulting in
a non-explicit policy update.

A recent line of work has focused on policy-optimization-based approaches for adversarial MDPs
(Cai et al., 2020; Shani et al., 2020; Zanette et al., 2021; He et al., 2022; Lancewicki et al., 2022;
Sherman et al., 2023; Zhong and Zhang, 2024). These algorithms use a more practical approach
combining dynamic programming with optimization directly in the policy space, instead of
working with occupancy measures. This approach actually is related to the well-known TRPO
(Schulman et al., 2015) and PPO (Schulman et al., 2017) algorithms, heavily used by practitioners.
However, to the best of our knowledge, policy-optimization-based approaches also suffer from an
additional

√
S factor in the regret bound when specialized to finite MDP settings.

To date, the question of whether dependency on the number of states can be matched between
adversarial and stochastic cases remains open. We take the first step towards unifying these rates.

In this work, we use a black-box policy optimization approach, departing from the current state-
of-the-art algorithms based on occupancy measures. This approach of policy optimization based
on running online linear optimization strategies in a black-box way on estimated advantage func-
tions was recently introduced by Jonckheere et al. (2023). The dynamic programming counterpart
of our algorithm, as well as a part of the analysis, relies on the Monotonic Value Propagation [MVP]
algorithm of Zhang et al. (2021, 2023), which allowed to achieve optimal regret bounds up to second-
order terms. However, since we do not yet target the lower-order terms, we significantly simplify
their approach and provide an arguably more transparent exposition thereof. All in all, our policy-
optimization-based algorithm achieves a Õ(poly(H)

√
SAT ) regret, where A is the number of ac-

tions and T is the number of episodes, and where we recall thatH is the length of an episode and S is
the number of states. This result improves on the previous regret bound of Rosenberg and Mansour
(2019a) by a factor of

√
S, although it introduces an additional poly(H) factor. It also matches the

minimax lower bound derived for the stochastic case (Jin et al., 2018; Domingues et al., 2021) in all
parameters except H .

Therefore, we demonstrate that while policy optimization is already known to be practical, it is also
more sample-efficient in large state spaces compared to existing O-REPS-based methods.

Contributions. This paper puts forward the following contributions, in the setting of adversarial
episodic MDPs with full information: i) we introduce a algorithm called Adversarial Policy Opti-
mization based on Monotonic Value Propagation (APO-MVP) that relies on a black-box online linear
optimization solver and on dynamic programming, making it easier to implement in practice; ii) we
demonstrate that the proposed algorithm is able to achieve a Õ(poly(H)

√
TSA) regret, improving

on the previously best-known dependency on the number of states S and achieving the minimax
lower bound Ω(

√
H3SAT ) in all parameters, except H ; iii) our analysis is modular and rather

general, providing high flexibility and providing new tools for the study of adversarial MDPs with
policy optimization.

Notation. For any positive integerN , we denote by [N ]
def
= {1, . . . , N} and [N ]∗

def
= {0, 1, . . . , N}

the sets of the first positive and non-negative integers not greater than N , respectively. For a, b ∈ R,
we denote by a ∨ b and a ∧ b the maximum and the minimum between a and b, respectively. For
a finite set E , we denote by ∆(E) the set of probability distributions over E . We refer to natural
logarithms by log and to logarithms in base 2 by log2. When we write Õ( · ), we hide all absolute
constants and polylog multiplicative terms.

2 Problem formulation

An H–episodic (obliviously) adversarial Markov decision process (MDP), where H > 1, is deter-
mined by a finite set of states S, with cardinality S, a finite set of actions A, with cardinality A,
a sequence P = (Ph)h∈[H−1] of Markov transition kernels Ph : S × A → ∆(S), and by a (po-
tentially adversarially chosen) fixed-in-advance sequence (rt)t>1 of bounded time-inhomogeneous
H–episodic reward functions. Each reward function is of the form rt = (rt,h)h∈[H], where
rt,h : S×A → [0, 1]. For simplicity (and with no loss of generality, up to resorting to some doubling
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trick), we assume that the number T of episodes is fixed and known. We set some initial state s1 for
each episode. At each episode t and at each stage h, based on past observations, the learner picks a
stage policy πt,h : S → ∆(A) to draw the action. The interaction with the environment is therefore
governed by the following protocol. For each episode t = 1, . . . , T :

1. Reset state st,1 = s1;
2. Start new episode — for each stage h = 1, . . . , H :

• Pick a policy πt,h and sample at,h ∼ πt,h( · | st,h);
• If h 6 H − 1, move to the next state st,h+1 ∼ Ph( · | st,h, at,h);

3. Observe the reward function rt = (rt,h)h∈[H].

We compare the performance of the policies πt = (πt,h)h∈[H] picked to the one achieved by resort-
ing to a static policy π = (πh)h∈[H] in each episode, in terms of value functions. We define the
value function of a policy π, at episode t ∈ [T ], and started from step h ∈ [H ], as

V π,rt,P
h (s)

def
= Eπ,P




H∑

j=h

rt,j(st,j , at,j)

∣∣∣∣ st,h = s


 ;

we recall the environment (reward functions, transition kernels) in the notation for value functions
and expectations, as environments will vary in the algorithm and analysis. The regret of the learner
is defined as the difference between the accumulated value of the best static policy in hindsight and
the gained value of the learner, that is,

RT
def
= max

π

T∑

t=1

(
V π,rt,P
1 (s1)− V πt,rt,P

1 (s1)
)
. (1)

The goal of the learner is to design policies (πt)t∈[T ] minimizing the above-defined regret.

Additional notation. For the analysis, we define Q–value functions and remind Bellman’s equa-
tions. For any policy π, we define the Q–value function at episode t ∈ [T ], and started from step
h ∈ [H ], as

Qπ,rt,P
h (s, a)

def
= Eπ,P




H∑

j=h

rt,j(st,j , at,j)

∣∣∣∣ st,h = s, at,h = a


 .

The advantage function is in turn defined as Aπ,rt,P
h (s, a)

def
= Qπ,rt,P

h (s, a)− V π,rt,P
h (s).

We use the usual convention that for a transition kernelK : S×A → ∆(S), a policy π : S → ∆(A),
and two functions f : S → R and g : S ×A → R,

K ·f(s, a) def
=

∑

s′∈S

K(s′ | s, a) f(s′) and π ·g(s) def
=

∑

a∈A

π(a | s) g(a, s) .

Then, Bellman’s equations read for all episodes t ∈ [T ], steps h ∈ [H − 1], and policies π, as

Qπ,rt,P
h (s, a) = rt,h(s, a) + Ph ·V π,rt,P

h+1 (s, a) and V π,rt,P
h (s) = πt,h ·Qπ,rt,P

h (s) ,

while for h = H , one has Qπ,rt,P
H (s, a) = rt,H(s, a) as well as V π,rt,P

H (s) = πt,H ·Qπ,rt,P
H (s).

3 Algorithm and main result

In this section, we first describe our algorithm, APO-MVP, which stands for Adversarial Policy Opti-
mization based on Monotonic Value Propagation, and then state the performance bound obtained.

3.1 Algorithm APO-MVP

Let us start with a high-level description of the proposed algorithm, and details will be provided
below. Similarly to Rosenberg and Mansour (2019a), our algorithm proceeds in random epochs
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Ee ⊆ [T ] indexed by e = 1, 2, . . . ,m(T ) of random lengths denoted by E1, . . . , Em(T ) ∈ [T ],

i.e., Ee
def
= |Ee|. At the beginning of each epoch e,

estimates P̂
(e)

=
(
P̂

(e)
h

)
h∈[H−1]

and bonus functions b(e) =
(
b
(e)
h

)
h∈[H]

,

where b(e)h : S × A → [0, H ], are computed and will be used during the entire epoch e, as detailed

in (3)–(4) and in Fact 2. Actually, b(e)H will be identically null, but we consider it so that the bonus
functions b(e) may be added to reward functions rt.

Within-epoch statement. We now explain the updates and choices made at each episode t ∈ [T ].
First, the policies πt are picked, as indicated below. Then, denoting by et the epoch such that t ∈ Eet ,
at the end of episode t, i.e., once rt is revealed, we build optimistic estimates of the Q–value and
value functions in a backward fashion, based on Bellman’s equations: for h = H ,

Q̂t,H(s, a)
def
= rt,H(s, a) and V̂t,H(s)

def
= πt,H ·Q̂t,H(s)

and for h ∈ [H − 1],

Q̂t,h(s, a)
def
= rt,h(s, a) + b

(et)
h (s, a) + P̂

(et)
h ·V̂t,h+1(s, a) and V̂t,h(s)

def
= πt,h ·Q̂t,h(s) .

For all h ∈ [H ], estimated advantage functions are defined by Ât,h(s, a)
def
= Q̂t,h(s, a) − V̂t,h(s),

and we denote Ât,h(s, · ) def
=

(
Ât,h(s, a)

)
a∈A

.

The policies πt = (πt,h)h∈[H] are picked based on an online linear optimization [OLO] strategy
ϕ = (ϕt)t>1, which is a sequence of functions ϕt : (R

A)t−1 → ∆(A) satisfying some performance
guarantee stated in Definition 1. (The functionϕ1 is constant.) We run SH such strategies in parallel
as follows: for all s ∈ S and h ∈ [H ],

πt,h( · | s) = ϕt

((
Âτ,h(s, · )

)
τ∈Eet∩[t−1]

)
. (2)

Note that these choices indeed exploit information available at the beginning of episode t (at the end
of episode t− 1), and rely only on the estimated advantage functions of the current epoch. One may
see ϕ as an adaptive version of PPO- or TRPO-like updates (Schulman et al., 2015, 2017). We will
consider, for the sake of concreteness, the polynomial-potential- and exponential-potential-based
strategies (see Examples 1 and 2 and references therein), but many other OLO strategies would
work. Appendix A states closed-form expressions of the policies constructed with these strategies.

Remark 1 (Two technical remarks). The kernel estimate and the bonus functions are fixed within
a given epoch, which is the main reason why we are able to provide a black-box treatment of the
problem relying on any OLO strategy satisfying Definition 1.

As the reward function takes values in [0, 1], the Q–value functions are bounded by H , and
it is a common practice in the case of non-adversarial reward functions to clip the estimates
to [0, H ] (see, e.g., Azar et al., 2017), which only helps. Unfortunately, our adversarial analy-
sis related to the OLO part of the proof heavily relies on the so-called performance-difference
lemma (Kakade and Langford, 2002), which does not hold once clipping is involved. Thus, we
opt out from clipping, paying an additional H factor at the eventual regret bound of Theorem 1 but
still improving the dependency on S. Successful incorporation of clipping could improve the regret
by an H multiplicative factor.

Epoch switching. The epoch-switching conditions below were also considered and analyzed by
Zhang et al. (2023). We introduce the following empirical counts, for all episodes t ∈ [T ], stages
h ∈ [H − 1], state–action pairs (s, a) ∈ S ×A, and states s′ ∈ S:

nt,h(s, a, s
′)

def
=

t∑

τ=1

I
{
(sτ,h,, aτ,h, sτ,h+1) = (s, a, s′)

}
and nt,h(s, a)

def
=

∑

s′∈S

nt,h(s, a, s
′) .

We start at epoch e = 1. When for some (t, h, s, a) ∈ [T ]× [H − 1]× S × A, the count nt,h(s, a)
equals 2ℓ−1 for some integer ℓ > 1, the next epoch is started at episode t+ 1.
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Now, for each episode t ∈ [T ], stage h ∈ [H − 1], and state–action pair (s, a) ∈ S ×A, we denote
by

swt,h(s, a)
def
=

{
0 if nt,h(s, a) = 0 ,

max
{
τ ∈ [t] : nτ,h(s, a) is of the form 2ℓ−1, for ℓ > 1

}
if nt,h(s, a) > 0 ,

the last episode when an epoch switch took place because, among others, of (s, a). We refer to the
largest value of ℓ in the maximum defining swt,h(s, a) by

ℓt,h(s, a)
def
=

{
0 if nt,h(s, a) = 0 ,

max
{
ℓ > 1 : nt,h(s, a) > 2ℓ−1

}
if nt,h(s, a) > 0 .

The values ℓt,h(s, a) index local epochs for a given state–action pair (s, a), while the global epochs
et are defined based on all local epochs. (More details may be found in Section 4.2.)

Fact 1. By design, the functions swt−1,h and ℓt−1,h defined above (note the subscripts t − 1 here)
are identical for all episodes t ∈ Ee of a given epoch e.

We may now define the estimated transition kernels P̂ t and bonus functions bt: for all (s, a) ∈ S×A
and s′ ∈ S, first for all h ∈ [H − 1],

P̂t,h(s
′ | s, a) def

=





1/S if nτ,h(s, a) = 0 ,

nτ,h(s, a, s
′)

nτ,h(s, a)
if nτ,h(s, a) > 1 ,

with τ = swt−1,h(s, a) , (3)

bt,h(s, a)
def
=





H if ℓ = 0 ,
√

2H2 log
(
2SATH log2(2T )/δ

)

2ℓ−1
∧H if ℓ > 1 ,

with ℓ = ℓt−1,h(s, a) ;

(4)

we also set, by convention, bt,H(s, a) = 0. In particular, P̂t,h( · | s, a) corresponds to an empirical
frequency vector based on 2ℓt−1,h(s,a)−1 values when ℓt−1,h(s, a) > 1.

Fact 2. By Fact 1, the above-defined P̂ t and bt are indeed identical over all episodes t ∈ Ee of a
given epoch e.

Summary. The strategy described above is summarized in an algorithm box in Appendix A.

3.2 Main result

We may now state our main result and discuss its relation to previously known bounds.

Theorem 1 (Main theorem). Algorithm APO-MVP, used, for instance, with the OLO strategies based
on polynomial or exponential potential (see Examples 1 and 2), satisfies, with probability at least
1− 3δ,

RT 6
√
H7SAT log2(2T )

(
2 log2(2T ) + 8

√
log(A)

)

+ 3
√
H4SAT log

(
2SATH log2(2T )/δ

)
+ 2

√
2H5 T log2(2T ) ln(2/δ) + 2H3SA .

Proof. The result follows the decomposition stated in the introduction of Section 4 together with
Lemmas 1–5–6–7 located therein.

Theorem 1 shows that the regret is Õ(
√
H7SAT ), matching the minimax lower bound

Ω(
√
H3SAT ) for stochastic MDPs in terms of dependencies on S, A, and T , up to logarithmic

factors (Jin et al., 2018; Domingues et al., 2021). To the best of our knowledge, it is the first result
that achieves the minimax optimal dependency on the number of states S in the adversarial setting.

Comparison to Rosenberg and Mansour (2019a). Algorithm UC-O-REPS by
Rosenberg and Mansour (2019a) achieves Õ(

√
H4S2AT ) regret bound in our setting and
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with our notation (taking L = H and |X | = HS since a state-space layer X may be represented
as H independent copies of S). In particular, our result improves upon the previous best known
bound in the regime of large state spaces S > H3. We suspect that—perhaps through successful
incorporation of clipping, see Remark 1—the regret bound could be improved to Õ(

√
H5SAT ).

We plan to investigate this in future works, and it remains an open problem to fully match the
minimax lower bound Ω(

√
H3SAT ).

Finally, our analysis in Section 4.3 relies significantly on the fact that the adversary is oblivious,
while UC-O-REPS can handle fully adversarial setups. However, due to the exploration mechanism
used, this algorithm is not able to take advantage of the oblivious adversary and would still pay the
same

√
S factor.

Comparison to Cai et al. (2020). Our algorithm shares similarities with the online proximal policy
optimization [OPPO] approach of Cai et al. (2020) and Shani et al. (2020), which also uses dynamic
programming and policy optimization through online mirror descent. However, our approach in-
corporates the doubling trick to stabilize value updates, enabling us to: i) employ any online linear
optimization strategy in a black-box manner without unnecessary adaptations; and ii) improve the
dependency on S by a multiplicative factor

√
S, by leveraging the analysis of Zhang et al. (2023).

4 Proof sketch for Theorem 1

We decompose the regret into four terms that are treated separately. Denoting by π⋆ as the policy
that achieves the maximum in (1), we decompose the regret, following ideas of Auer et al. (2008)
and Azar et al. (2017), as:

RT =
T∑

t=1

(
V π⋆,rt,P
1 (s1)− V π⋆,rt+bt,P̂ t

1 (s1)
)

def
= (A)

+

T∑

t=1

(
V π⋆,rt+bt,P̂ t

1 (s1)− V πt,rt+bt,P̂ t

1 (s1)
)

def
= (B)

+

T∑

t=1

(
V πt,rt+bt,P̂ t

1 (s1)− V πt,rt+bt,P
1 (s1)

)
def
= (C)

+

T∑

t=1

V πt,bt,P
1 (s1) ,

def
= (D)

where we used the linearity of the value functions: V π,g+g′,Q
1 ≡ V π,g,Q

1 + V π,g′,Q
1 . We provide a

high-level overview of the techniques used for each term.

For (A) we leverage the careful choice of the bonuses bt to show that on a properly chosen high-
probability event, (A) is non-positive.

For (B), we crucially use that within each epoch the considered transition kernels are constant (see
Fact 2), so that we may resort to the adversarial-learning technique by Jonckheere et al. (2023),
which consists of running SH independent OLO strategies.

Term (C) is the most involved part of the analysis from the probabilistic standpoint: we resort to
the machinery developed by Zhang et al. (2023), which relies greatly on a doubling trick that we
mimicked in the definition of the APO-MVP algorithm.

Finally, (D) is the least involved term, it can be controlled by some lines of elementary calculations.

In what follows, each section provides additional details of the analysis per term, in the order: (B) –
additional technical concepts – (A) – (D) – (C).

4.1 Term (B): OLO analysis

The goal of this section is to prove the following result, which also holds for other OLO strategies
satisfying the performance guarantee of Definition 1.
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Lemma 1. Among others, the OLO strategies based on polynomial or exponential potentials (see
Examples 1 and 2) satisfy

(B) 6 8
√
H7SAT log2(2T ) log(A) .

Before proving this result, let us briefly recall what online linear optimization [OLO] consists of; see
the monograph by Cesa-Bianchi and Lugosi (2006) for a more detailed exposition. We take some
generic notation for now but will later connect OLO to constructions of policies; in particular, we
consider for now reward vectors of length K > 2, but will later replace [K] by the action space A.

Online linear optimization. At each round t > 1 and based on the past, a learning strategy
ϕ = (ϕt)t>1 picks a convex combination wt = (wt,1, . . . , wt,K) ∈ ∆

(
[K]

)
while an opponent

player picks, possibly at random, a vector gt = (gt,1, . . . , gt,K) of signed rewards. Both wt and gt
are revealed at the end of the round. By “based on the past”, we mean, for the learning strategy, that
wt = ϕt

(
(gτ )τ6t−1

)
. The initial vector w1 is constant.

Definition 1. A learning strategy ϕ controls the regret in the adversarial setting with rewards
bounded by M > 0 if there exists a sequence (BT,K)T>1 with BT,K/T → 0 such that, against

all opponent players sequentially picking reward vectors gt in [−M,M ]K , for all T > 1,

max
k∈[K]

T∑

t=1

gt,k −
T∑

t=1

∑

j∈[K]

wt,j gt,j 6M BT,K .

The optimal orders of magnitude of BT,K are
√
T lnK. In Definition 1, the strategy may know M

and rely on its value. Also, the strategy should work for any optimization horizon T (see the final
“for all T > 1” in the definition above): this is because the lengths Ee of the global epochs Ee are
not known in advance. There exist several strategies meeting the requirements of Definition 1; we
provide two examples below.

Example 1. The potential-based strategies by Cesa-Bianchi and Lugosi (2003) are defined based
on a non-decreasing function Φ: R → [0,+∞). They resort to w1,k = 1/K and for t > 2,

wt,k =
vt,k∑

j∈[K] vt,j
, where vt,k = Φ




t−1∑

τ=1

gτ,k −
t−1∑

τ=1

∑

j∈[K]

wτ,jgτ,j


 . (5)

For the polynomial potential Φ: x 7→
(
max{x, 0}

)2 lnK
, Cesa-Bianchi and Lugosi (2003, Sec-

tion 2) show that the strategy satisfies the performance guarantee of Definition 1 with BT,K =√
6T lnK.

Example 2. Auer et al. (2002) studied the use of exponential potential with time-varying learning

rates ηt = (1/M)
√
(lnK)/t, i.e., using Φt(x) = exp(ηtx) in (5) to define the weights at round t.

This strategy satisfies the performance guarantee of Definition 1 with BT,K =
√
T lnK .

There exist adaptive versions of the two previous strategies: ML-Poly in Gaillard et al. (2014),
AdaHedge in Erven et al. (2011), de Rooij et al. (2014), Orabona and Pál (2015).

Appendix A states closed-form expressions of the policies (2) constructed with the strategies of
Examples 1 and 2, as well as AdaHedge.

Connection between OLO and the construction of policies. Jonckheere et al. (2023) prove the
following. Let r′t,h : S × A → [0,M ] be a sequence of reward functions. Define a sequence of
policies (π′

t)t>1 as: for each t > 1, for each s ∈ S, for each h ∈ [H ],

π′
t,h( · |s) = ϕt

((
A

π′

τ ,r
′

τ ,P
′

h (s, · )
)
τ6t−1

)
, where A

π′

τ ,r
′

τ ,P
′

h (s, · ) =
(
A

π′

τ ,r
′

τ ,P
′

h (s, a)
)
a∈A

.

Lemma 2 (Jonckheere et al., 2023). If the learning strategy satisfies the conditions of Definition 1,
then the sequence of policies defined right above is such that, for all fixed policies π = (πh)h∈[H],
for all T > 1,

T∑

t=1

(
V

π,r′

t,P
′

1 (s1)− V
π′

t,r
′

t,P
′

1 (s1)
)
6MH2BT,A .
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For the sake of completeness, the proof of Lemma 2 is provided in Appendix B. We are now ready
to prove Lemma 1.

Proof of Lemma 1. We apply Lemma 2 in each global epoch Ee, with P ′ = P̂ t (see Fact 2) and
r′
t = rt + bt for all t ∈ Ee. Since rt,h ∈ [0, 1] and bt,h ∈ [0, H ], we can pick M = 1 +H 6 2H .

Decomposing term (B) into a summation over the global epochs and using the bound of Lemma 2
for each of them, we deduce that, for both strategies of Examples 1 and 2,

(B) 6 2H3

m(T )∑

e=1

BEe,A 6 2H3

m(T )∑

e=1

√
6Ee log(A) 6 8H3

√
Tm(T ) log(A) , (6)

where we applied Jensen’s inequality to the root. Lemma 3 below then yields the claimed result.

4.2 Additional technical concepts

To deal with the remaining terms (A) – (D) – (C), we will not need anymore to pay attention to
global epochs Eet , only local epochs ℓt,h(s, a) will be of interest.

We review two concepts which have been successfully used by Zhang et al. (2023) to derive minimax
optimal regret bounds in the case of stochastic MDPs.

The first concept: epoch-switching conditions and profiles. The functions indicating local
epochs ℓt,h(s, a) were called a profile by Zhang et al. (2023); they take bounded values:

ℓt,h : S ×A →
[
⌈log2(T )⌉

]∗
, and let ℓt = (ℓt,h)h∈[H−1] (7)

with the agreement that ℓ0,h( · , · ) ≡ 0 for all h ∈ [H − 1]. We also introduce ℓ<t = (ℓτ )06τ6t−1.
Using the above-defined profiles, we note that the global epoch et of a given episode t ∈ [T ] may
be obtained as a function of ℓ<t, namely,

et = Ψ
(
ℓ<t

) def
=

t−1∑

τ=1

min





∑

(s,a,h)

(
ℓτ,h(s, a)− ℓτ−1,h(s, a)

)
, 1



 . (8)

Indeed, if the counter of no triplet (s, a, h) has reached a value of the form 2r for some integer r
by passing from episode τ − 1 to τ , then the summation in the minimum is zero, meaning that the
episodes τ and τ + 1 belong to the same global epoch. On the contrary, if the counter of at least
one (s, a, h) reached such a value, then this sum is at least 1 (there can be more than one triplets
satisfying this), meaning that τ and τ + 1 belong to different global epochs. Thus, thanks to the
minimum, the above quantity counts the number of (global) epoch switches from τ = 1 to τ = t. In
other words, the global epoch et is uniquely determined by the preceding profiles.

Since there are SA(H − 1) different triplets (s, a, h) and each such triplet is associated with at most
⌈log2(T )⌉ doubling conditions, we obtain the following bound.
Lemma 3. There are at most m(T ) 6 SAH log2(2T ) global epochs.

The second concept: optional skipping for estimated transition kernels. The trick detailed here
is standard in the bandit and reinforcement-learning literature. The original reference is Theorem 5.2
of Doob (1953, Chapter III, p. 145); one can also check (Chow and Teicher, 1988, Section 5.3) for
a more recent reference. A pedagogical exposition of the trick and of its uses in the bandit literature
may be found in (Garivier et al., 2022, Section 4.1), which we adapt to the setting of reinforcement
learning.

For each triplet (h, s, a) ∈ [H ]× S ×A and each integer j > 1, we denote by

Nh,s,a,j
def
= inf

{
t > 1 : nt,h(s, a) = j

}

(with the convention that the infimum of an empty set equals +∞) the predictable stopping time
whether and when (s, a) occurs for the j–th time. We are interested in the distribution of the states
st,h+1 drawn at rounds t when (st,h, at,h) = (s, a); these rounds are given by the stopping times
Nh,s,a,j introduced above. It turns out that these states are i.i.d. with distribution Ph( · | s, a).
We also have independence across sequences of states. All these results are formally stated in the
following lemma: to do so, one needs to set the values of the number of times nt,h(s, a) each triplet
(h, s, a) was encountered till a given round.
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Lemma 4 (Doob’s optional skipping). Fix t > 1 and consider sequences of integers Jh,s,a > 1 and
the intersection of events

C =
⋂

h∈[H−1]

⋂

(s,a)∈S×A

{
nt,h(s, a) = Jh,s,a

}
.

It holds that

on C, each of the sequences (s̃h,s,a,j)j∈[Jh,s,a]
def
=

(
sNh,s,a,j ,h+1

)
j∈[Jh,s,a]

is formed by i.i.d. variables, with common distribution Ph( · | s, a). In addition, these sequences are
independent from each other as (h, s, a) vary in [H − 1]× S ×A.

One of our applications of Lemma 4 will be the following, to handle term (A). The proof consists
of noting first that on

{
ℓt−1,h(s, a) = ℓ

}
, the distribution P̂t,h( · | s, a) corresponds to the empirical

measure of the i.i.d. variables s̃h,s,a,j with 1 6 j 6 2ℓ−1, and second, by dropping the indicator
function.

Notation-wise, we will be using s̃h,s,a,j (as in Lemma 4) for random variables generated by the
MDP interactions and σh,s,a,j (as in Corollary 1) for random variables independent from everything
else and that are representations of the former.

Corollary 1. Fix h ∈ [H − 1] and (s, a) ∈ S × A and let (σh,s,a,j)j>1 be a sequence of i.i.d.
variables with distribution Ph( · | s, a). For all functions ψ : R → [0,+∞), all functions g : S → R,
and all integers ℓ > 1,

E

[
ψ
(
P̂t,h ·g(s, a)

)
I
{
ℓt−1,h(s, a) = ℓ

}]
6 E


ψ

(
1

2ℓ−1

2ℓ−1∑

j=1

g(σh,s,a,j)

)
 .

4.3 Term (A): Optimism

Term (A) is handled thanks to a result already present in the analysis of the UCBVI algo-
rithm (Azar et al., 2017, Lemma 18), relying on an induction, and thanks to applications of Ho-
effding’s inequalities together with optional skipping. Appendix C provides the (straightforward)
details of the proof of the following lemma.

Lemma 5. With probability at least 1− δ, for all t ∈ [T ] and all (s, a, h) ∈ S ×A× [H ],

Qπ⋆,rt,P
h (s, a) 6 Qπ⋆,rt+bt,P̂ t

h (s, a) and V π⋆,rt,P
h (s) 6 V π⋆,rt+bt,P̂ t

h (s) .

In particular, with probability at least 1− δ, we have (A) 6 0.

4.4 Term (D): Bonus summation

Without the doubling trick, the exploration bonuses summed up along the trajectory can be classi-
cally bounded by a O(

√
T ) term. The doubling trick introduces only minor changes to this classical

step. Appendix D provides the (straightforward) details of the proof of the following lemma, based
on the Hoeffding–Azuma inequality together with simple controls of the form, for all h ∈ [H − 1]
and (s, a) ∈ S ×A,

T∑

t=1

1√
nt,h(s, a)

I
{
(st,h,, at,h) = (s, a)

}
I
{
nt,h(s, a) > 2

}
=

nT,h(s,a)∑

n=2

1√
n
6 2

√
nT,h(s, a) .

Lemma 6. With probability at least 1− δ, we have

(D) 6 3
√
H4SAT log(2SATH log2(2T )/δ) +H2SA .

4.5 Term (C): Concentration

Let us start by formally stating the result, whose detailed proof may be found in Appendix E; below,
we only sketch that proof. The analysis is essentially borrowed from Zhang et al. (2023) with minor
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technical modifications but a much simplified exposition (as we do not target optimized bounds yet).
Also, we explain in Remark 2 of Appendix E that the dependency in H of the leading term in the
upper bound of Lemma 7 could be improved to

√
H5 with some more efforts, but that there is no

point in doing so, given the bound of Lemma 1, which also scales with H as
√
H7.

Lemma 7. With probability at least 1− δ, it holds that

(C) 6 2

√
H7SAT

(
log2(2T )

)3
+ 2

√
2H5 T log2(2T ) ln(2/δ) + SAH3 .

Proof sketch. An application of the performance-difference lemma in case of different transition
kernels (see, e.g., Russo, 2019, Lemma 3) together with the Hoeffding–Azuma inequality first shows
that with probability at least 1− δ/2,

(C) =

T∑

t=1

E

[
H−1∑

h=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h)

∣∣∣∣πt, bt, P̂ t

]

6

H−1∑

h=1

T∑

t=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h)

︸ ︷︷ ︸
= ξT,h

+
√
2H5T ln(2/δ) .

We bound the quantities ξT,h for each fixed h ∈ [H − 1]. We apply optional skipping in a careful
way on the event Cℓ,j,h,s,a,t when (s, a) ∈ S × A is played for the (2ℓ−1 + j)–th time in stage h at
episode t:

on Cℓ,j,h,s,a,t,
(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h)

behaves like
1

2ℓ−1

∑

j∈[2ℓ−1]

(
Ṽs,a,h+1(σh,s,a,j)− PhṼs,a,h+1(s, a)

)
,

for some random variable Ṽs,a,h+1, where the σh,s,a,j are i.i.d. according to Ph( · | s, a) and are
independent from Ṽs,a,h+1.

The argument also extends between pairs (s, a) so that a careful application of the Hoeffding-Azuma
inequality (this is the delicate part of the proof), together with the consideration of all values for ℓ
and j, then shows that, with probability at least 1− δ/2,

ξT,h 6

⌈log2 T⌉∑

ℓ=1

2ℓ−1∑

j=1

√√√√2H4
1

2ℓ−1

∑

(s,a)

I
{
nT,h(s, a) > 2ℓ−1 + j

}
ln

1

δ′
,

where δ′ equals δ/2 divided by the number of times we applied the union bound over ℓ, j, H , and
in the course of optional skipping; we bound this number of times by 4H(T + 1)1+SAH⌈log2(T )⌉.

We conclude the proof by two consecutive applications of Jensen’s inequality for the root:

⌈log2 T⌉∑

ℓ=1

2ℓ−1∑

j=1

√√√√2H4

2ℓ−1

∑

(s,a)

I
{
nT,h(s, a) > 2ℓ−1 + j

}
ln

1

δ′

6

√√√√√√√√
2H4 ⌈log2 T ⌉

∑

(s,a)

⌈log2 T⌉∑

ℓ=1

2ℓ−1∑

j=1

I
{
nT,h(s, a) > 2ℓ−1 + j

}

︸ ︷︷ ︸
6

∑
(s,a) nT,h(s,a) =T

ln
1

δ′
,

together with some algebra.
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5 Conclusion and limitations

In this work, we proposed an algorithm called APO-MVP that extends algorithm MVP of Zhang et al.
(2023) and its analysis to the case of adversarial reward functions, thanks, in particular, to a black-
box adversarial aggregation mechanism due to Jonckheere et al. (2023) that takes care of the adver-
sarial nature of reward functions. Algorithm APO-MVP is easy to implement in practice as it relies
on OLO learning strategies in the policy space combined with dynamic programming; it does not at
all rely on so-called occupancy measures. Furthermore, it achieves a better regret bound compared
to previous approaches based on the occupancy measures, reducing their regret bounds by a

√
S

multiplicative factor and narrowing the gap between the adversarial and stochastic regret bounds,
which are both shown to be of order

√
SAT up to logarithmic factors, as far as dependencies on S,

A, and T are concerned.

We believe that this work opens many interesting follow-up questions. The two main open questions
are inevitably linked with the main limitations of this paper and are discussed below.

Limitations. The main limitation is rather a high dependency of our regret bound on the length
H of the episodes, of order

√
H7. Improving this dependency while maintaining a regret of order√

SAT up to logarithmic terms is one of the remaining open questions. Also, as it is common in the
literature, we have only considered full monitoring cases so far; extending our approach to bandit
monitoring seems to be non-trivial. It is still unknown if a

√
SAT order of magnitude for the regret

is possible in the adversarial case with bandit feedback.
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A Detailed algorithm description

In this section, we first provide a an algorithmic description of the strategy introduced in Section 3.1,
and we then write closed-form expressions of the policy constructions 2 based on the strategies of
Examples 1 and 2, as well as AdaHedge.

Algorithm 1: Adversarial Policy Optimization based on Monotonic Value Propagation
(APO-MVP)
Data: Number of rounds T , number of states, actions and horizon S,A,H , confidence level δ,

online linear optimization strategy ϕ = (ϕt)t>1

Result: Sequence of policies πt = (πt,h)h∈[H], for t ∈ [T ]

1 Initialize kernels P̂h(s
′|s, a) = 1/S for all (s′, s, a, h) ∈ S × S ×A× [H − 1];

2 Initialize counters nh(s, a, s
′) = nh(s, a) = 0 for all (s′, s, a, h) ∈ S × S ×A× [H − 1];

3 Initialize histories Hh,s = ∅ for all h ∈ [H ] and s ∈ S;
4 Initialize π1,h( · | s) = ϕ1(∅) for all h ∈ [H ] and s ∈ S;
5 Select initial state s1 ∈ S;
6 for rounds t = 1, . . . , T do

/* Interaction */
7 Set st,1 = s1;
8 for h = 1, . . . , H do
9 Play action at,h ∼ πt,h( · | st,h);

10 Receive next state st,h+1 ∼ Ph( · | st,h, at,h);
11 Update counters nh(st,h, at,h) += 1 and nh(st,h, at,h, st,h+1) += 1;

/* Trigger, update the model */

12 if nh(st,h, at,h) = 2ℓ−1 for some ℓ > 1 then

13 P̂h(s
′|st,h, at,h) =

nh(st,h, at,h, s
′)

2ℓ−1
for all s′ ∈ S;

14 bh(st,h, at,h) =

√
2H2 log(2SATH log2(2T )/δ)

2ℓ−1
∧H ;

15 Activate trigger;
16 end

17 end
18 Receive a reward function rt = (rt,h)h∈[H];
19 if trigger then
20 Drop all histories, i.e., set Hh,s = ∅ for all h ∈ [H ] and s ∈ S;
21 Set πt+1,h( · | s) = ϕ1(∅) for all h ∈ [H ] and s ∈ S;
22 Deactivate trigger;
23 else

/* Compute first the advantage functions via Bellman’s equations */
24 Let QH(s, a) = rt,H(s, a) and Vh(s) = πt,H ·QH(s) for each (s, a) ∈ S ×A;
25 for h = H − 1, H − 2, . . . , 1 do

26 Let Qh(s, a) = rt,h(s, a) + bh(s, a) + P̂h ·Vh+1(s, a) and Vh(s) = πt,h ·Qh(s)
27 for each (s, a) ∈ S ×A;
28 end
29 Let Ah(s, a) = Qh(s, a)− Vh(s) for all (s, a, h) ∈ S ×A× [H ];
30 Add

(
Ah(s, a)

)
a∈A

to the history Hh,s for each (h, s) ∈ [H ]× S;
/* Next, obtain πt+1 via the learning strategy */

31 Let πt+1,h( · | s) = ϕ(Hh,s) for all (h, s) ∈ [H ]× S;
32 end

33 end

Closed-form expressions of the policy constructions. We first recall the statement (2) for the
construction of policies: for all t > 1, all h ∈ [H ], and s ∈ S,

πt,h( · | s) = ϕt

((
Âτ,h(s, · )

)
τ∈Eet∩[t−1]

)
.
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We now illustrate this definition with the strategies of Examples 1 and 2, as well as with AdaHedge.
A key observation to do so will be that, by definition of advantage functions and since Âτ,h(s, · ) is
based on the policy πτ,h,

∀τ ∈ [T ], ∀s ∈ S,
∑

a∈A

πτ,h(a | s) Âτ,h(s, a) = 0 .

Polynomial potential (Example 1). We denote by (x)+ = max{x, 0} the non-negative part of
x ∈ R. We have ϕ1 ≡ (1/A, . . . , 1/A) and for t > 2, whenever Eet ∩ [t − 1] contains at least one
element,

πt,h(a | s) =


 ∑

τ∈Eet∩[t−1]

Âτ,h(s, a)−
∑

a′′∈A

πτ,h(a
′′ | s) Âτ,h(s, a

′′)




2 lnA

+

∑

a′∈A


 ∑

τ∈Eet∩[t−1]

Âτ,h(s, a
′)−

∑

a′′∈A

πτ,h(a
′′ | s) Âτ,h(s, a

′′)




2 lnA

+

=




∑

τ∈Eet∩[t−1]

Âτ,h(s, a)




2 lnA

+

∑

a′∈A




∑

τ∈Eet∩[t−1]

Âτ,h(s, a
′)




2 lnA

+

.

Exponential potential (Example 2). Similarly to above, we have ϕ1 ≡ (1/A, . . . , 1/A) and for
t > 2, whenever Eet ∩ [t− 1] contains at least one element,

πt,h(a | s) =

exp


ηt

∑

τ∈Eet∩[t−1]

Âτ,h(s, a)




∑

a′∈A

exp


ηt

∑

τ∈Eet∩[t−1]

Âτ,h(s, a
′)




where ηt =
1

H + 1

√
lnA∣∣Eet ∩ [t− 1]

∣∣

are time-varying learning rates, based on the cardinality
∣∣Eet ∩ [t− 1]

∣∣ of Eet ∩ [t− 1].

Adaptive versions of exponential-potential-based strategies. The literature proposed many
ways of setting the learning rates for exponential potentials based on past information—a series
of work initiated by Auer et al. (2002), whose learning rates were used in the paragraph above.
One may cite, among (many) others, Cesa-Bianchi et al. (2007), Erven et al. (2011), de Rooij et al.
(2014), Orabona and Pál (2015); sometimes, the resulting strategy is called AdaHedge. For instance,
Orabona (2019, Section 7.6) summarizes this literature by the following learning rates:

ηt =
max{4, 2−1/4

√
logA}√ ∑

τ∈Eet∩[t−1]

max
a′∈A

(
Âτ,h(s, a

′)
)2 .

These updates correspond to an OLO strategy satisfying the bound of Definition 1 with a perfor-
mance bound BT,K = 4

√
T logK .
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B Term (B)

It only remains to prove Lemma 2, which we restate below. For the sake of completeness, we copy
the proof by Jonckheere et al. (2023).

Lemma 2 (Jonckheere et al., 2023). If the learning strategy satisfies the conditions of Definition 1,
then the sequence of policies defined right above is such that, for all fixed policies π = (πh)h∈[H],
for all T > 1,

T∑

t=1

(
V

π,r′

t,P
′

1 (s1)− V
π′

t,r
′

t,P
′

1 (s1)
)
6MH2BT,A .

Proof. As the reward function takes values in [0,M ], we have that
∣∣Aπ′

τ

τ,h(s, a)
∣∣ 6 M(H − h + 1).

By the definition of advantage functions (for the equality to 0) and by Definition 1 (for the upper
bound), we have, for all s ∈ S,

max
a∈A

T∑

t=1

A
π′

t,r
′

t,P
′

h (s, a)−
T∑

t=1

∑

a∈A

π′
t,h(a|s)A

π′

t,r
′

t,P
′

h (s, a)

︸ ︷︷ ︸
=0

6M(H − h+ 1)BT,A . (9)

Now, the so-called performance difference lemma (see, e.g., Kakade and Langford (2002) for the
result in the discounted setting) shows that

V
π,r′

t,P
′

1 (s1)− V
π′

t,r
′

t,P
′

1 (s1) =

H∑

h=1

∑

s∈S

µπ,P ′,s1
h (s)

∑

a∈A

πh(a|s)Aπ′

t,r
′

t,P
′

h (s, a)

where µπ,P ′,s1
h is the distribution of st,h induced in the h–th episode by π given the state transitions

P ′ and the initial state s1. Summing this equality over t and rearranging, we get

T∑

t=1

(
V

π,r′

t,P
′

1 (s1)− V
π′

t,r
′

t,P
′

1 (s1)
)
=

H∑

h=1

∑

s∈S

µπ,P ′,s1
h (s)

∑

a∈A

πh(a|s)
T∑

t=1

A
π′

t,r
′

t,P
′

h (s, a)

6

H∑

h=1

∑

s∈S

µπ,P ′,s1
h (s) max

a∈A

T∑

t=1

A
π′

t,r
′

t,P
′

h (s, a)

︸ ︷︷ ︸
6M(H−h+1)BT,A

6MH2BT,A ,

where we substituted (9). Here, we crucially used that the convex combination with weights
µπ,P ′,s1
h (s) is independent of t and only depends on the fixed benchmark policy π, on the state

transitions P ′, and on the initial states s1 (identical for all t).
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C Term (A)

We start with the following consequence of Hoeffding’s inequality.

Lemma 8. For each t ∈ [T ], for each h ∈ [H − 1], for each (s, a) ∈ S × A, for each ℓ ∈[
⌈log2(T )⌉

]
,

P





∣∣∣∣∣
1

2ℓ−1

2ℓ−1∑

j=1

V π⋆,rt,P
h+1 (σh,s,a,j)− Ph ·V π⋆,rt,P

h+1 (s, a)

∣∣∣∣∣

>

√
2H2 log(2SATH log2(2T )/δ)

2ℓ−1
∧H

}
6

δ

SATH log2(2T )
,

where (σh,s,a,j)16j62ℓ−1 is a sequence of i.i.d. variables with distribution Ph( · | s, a).

Proof. The policy π⋆ is fixed, as it only depends on the rt and P , which are all fixed beforehand.
The function g = V π⋆,rt,P

h+1 is therefore a fixed deterministic function. The expectation of g(σh,s,a,j)
is indeed, given our notation,Ph·g. By the boundedness of rewards in [0, 1], and thus the boundedness
of values in the range [0, H ], we may therefore apply Hoeffding’s inequality: we do so for each
t ∈ [T ], each (s, a, h) ∈ S ×A× [H− 1], and each ℓ ∈

[
⌈log2(T )⌉

]
, and get that for all δ′ ∈ (0, 1),

with probability at least 1− δ′,
∣∣∣∣∣

1

2ℓ−1

2ℓ−1∑

j=1

V π⋆,rt,P
h+1 (σh,s,a,j)− Ph ·V π⋆,rt,P

h+1 (s, a)

∣∣∣∣∣ 6
√

2H2 log(2/δ′)

2ℓ−1
.

The proof is concluded by keeping in mind that the left-hand side necessarily belongs to [0, H ] by
boundedness of values in [0, H ].

We are now ready to prove Lemma 5, which we restate below; we do so by mimicking the proof of
Azar et al. (2017, Lemma 18).

Lemma 5. With probability at least 1− δ, for all t ∈ [T ] and all (s, a, h) ∈ S ×A× [H ],

Qπ⋆,rt,P
h (s, a) 6 Qπ⋆,rt+bt,P̂ t

h (s, a) and V π⋆,rt,P
h (s) 6 V π⋆,rt+bt,P̂ t

h (s) .

In particular, with probability at least 1− δ, we have (A) 6 0.

Proof. We proceed by backward induction, for each given t ∈ [T ]; more precisely, we consider, for
h ∈ [H ], the induction hypothesis

∀(s, a) ∈ S ×A, Qπ⋆,rt,P
h (s, a) 6 Qπ⋆,rt+bt,P̂ t

h (s, a) (Hh)

and V π⋆,rt,P
h (s) 6 V π⋆,rt+bt,P̂ t

h (s) .

For h = H , we note that for all (s, a),

Qπ⋆,rt,P
H (s, a) = rH,t(s, a) = rt,H(s, a) + bt,H(s, a) = Qπ⋆,rt+bt,P̂ t

H (s, a) ,

so that (HH ) is trivially satisfied. For h ∈ [H − 1], by Bellman equations,

Qπ⋆,rt+bt,P̂ t

h (s, a)−Qπ⋆,rt,P
h (s, a) = bt,h(s, a) + P̂t,h·V π⋆,rt+bt,P̂ t

h+1 (s, a)−Ph·V π⋆,rt,P
h+1 (s, a) ,

where by the induction hypothesis (Hh+1), we have V π⋆,rt+bt,P̂
t

h+1 (s′) > V π⋆,rt,P
h+1 (s′) for any s′.

Thus,

Qπ⋆,rt+bt,P̂ t

h (s, a)−Qπ⋆,rt,P
h (s, a) > bt,h(s, a) +

(
P̂t,h − Ph

)
·V π⋆,rt,P

h+1 (s, a) , (10)

and a similar inequality for values, as the latter are obtained as convex combinations of Q–values,
where the convex weights are determined solely by the common policy π⋆ used. Therefore, (Hh)
holds at least on the event

Gt,h
def
=

{
∀(s, a) ∈ S ×A,

∣∣∣
(
P̂t,h − Ph

)
·V π⋆,rt,P

h+1 (s, a)
∣∣∣ 6 bt,h(s, a)

}
.
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All in all, the inequalities required in the statement of the lemma thus hold on the intersection of the
events Gt,h over t ∈ [T ] and h ∈ [H − 1].

To conclude the proof, it suffices to show that this intersection is of probability at least 1 − δ. By
considering the complements and by a union bound, it suffices to show that any event

Gt,h,s,a
def
=

{∣∣∣
(
P̂t,h − Ph

)
·V π⋆,rt,P

h+1 (s, a)
∣∣∣ > bt,h(s, a)

}

is of probability at most δ/(SATH). We partition the probability space based on the value of
ℓt−1,h(s, a), resort to optional skipping and Corollary 1, with the deterministic function g =

V π⋆,rt,P
h+1 (see the proof of Lemma 8), to get the first inequality below, and to Lemma 8 for the

second inequality below. We also use the definition (4) of bt,h:

P
(
Gt,h,s,a

)
=

[⌈log2(T )⌉]∑

ℓ=0

P

(
Gt,h,s,a ∩

{
ℓt−1,h(s, a) = ℓ

})

=

[⌈log2(T )⌉]∑

ℓ=1

P

{∣∣∣
(
P̂t,h − Ph

)
·V π⋆,rt,P

h+1 (s, a)
∣∣∣ >

√
2H2 log(2SATH log2(2T )/δ)

2ℓ−1
∧H

and ℓt−1,h(s, a) = ℓ

}

6

[⌈log2(T )⌉]∑

ℓ=1

P





∣∣∣∣∣
1

2ℓ−1

2ℓ−1∑

j=1

V π⋆,rt,P
h+1 (σh,s,a,j)− Ph ·V π⋆,rt,P

h+1 (s, a)

∣∣∣∣∣

>

√
2H2 log(2SATH log2(2T )/δ)

2ℓ−1
∧H

}

6 ⌈log2(T )⌉
δ

SATH log2(2T )
6

δ

SATH
,

where we used the fact that bt,h(s, a) = H is a trivial upper bound on the difference of values at
hand in the case ℓ = 0, which is why the element ℓ = 0 gets dropped in the summation in the second
equality.
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D Term (D)

We first restate and then prove Lemma 6.

Lemma 6. With probability at least 1− δ, we have

(D) 6 3
√
H4SAT log(2SATH log2(2T )/δ) +H2SA .

Proof. Since bt,h(s, a) ∈ [0, H ], the Hoeffding–Azuma inequality implies that with probability at
least 1− δ,

T∑

t=1

V πt,bt,P
1 (s1)−

T∑

t=1

∑

h∈[H]

bt,h(st,h, at,h) 6

√
(H2)2 T log(1/δ)

2
; (11)

we crucially use here that the policies πt only depend on information gathered during previous
episodes τ 6 t− 1 and that the stochastic environment P considered in the definition of (D) is the
true underlying environment.

We fix h ∈ [H − 1] (recall that bt,H ≡ 0) and a pair (s′, a′) ∈ S ×A, and show that

T∑

t=1

bt,h(st,h, at,h) I
{
(st,h,, at,h) = (s′, a′)

}
6 H+

√
2H2 log(2SATH log2(2T )/δ)nT,h(s′, a′) .

(12)
Indeed, there can only be at most one t such (st,h,, at,h) = (s′, a′) and nt,h(s

′, a′) = 1; for this t, we
use the upper bound bt,h(st,h, at,h) 6 H . For t such thatnt,h(s

′, a′) > 2, we have, by the definitions
in Section 3.1, that nt,h(s

′, a′) > nt−1,h(s
′, a′) > 2ℓt−1,h(s

′,a′)−1. Therefore, substituting this
inequality in the definition (4) of bt,h, we obtain

T∑

t=1

bt,h(st,h, at,h) I
{
(st,h,, at,h) = (s′, a′)

}

6 H +
T∑

t=1

√
2H2 log(2SATH log2(2T )/δ)

nt,h(s′, a′)
I
{
(st,h,, at,h) = (s′, a′)

}
I
{
nt,h(s

′, a′) > 2
}
,

where, using that the counters nt,h(s
′, a′) vary (by +1) if and only if (st,h,, at,h) = (s′, a′), we also

have

T∑

t=1

1√
nt,h(s′, a′)

I
{
(st,h,, at,h) = (s′, a′)

}
I
{
nt,h(s

′, a′) > 2
}
=

nT,h(s
′,a′)∑

n=2

1√
n
6 2

√
nT,h(s′, a′) .

We conclude the proof by noting first that for each (s′, a′) ∈ S ×A, by concavity of the root,
∑

(s′,a′)

√
nT,h(s′, a′) 6

√
SAT ,

so that summing (12) over h ∈ [H − 1] and (s′, a′) ∈ S ×A yields

T∑

t=1

∑

h∈[H]

bt,h(st,h, at,h) 6 H2SA+ 2H
√
2H2SAT log(2SATH log2(2T )/δ) .

We combine this inequality with (11) and note that
√
H4 T log(1/δ)

2
6

√
H4SAT log(2SATH log2(2T )/δ)

to get the claimed bound.
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E Term (C)

This section is devoted to the analysis of the term (C), which is the most involved part of the proof.
We leverage the recently developed techniques of Zhang et al. (2023). We start by restating the
claimed bound.
Lemma 7. With probability at least 1− δ, it holds that

(C) 6 2

√
H7SAT

(
log2(2T )

)3
+ 2

√
2H5 T log2(2T ) ln(2/δ) + SAH3 .

The proof starts with an application of the performance-difference lemma in case of different transi-
tion kernels (see, e.g., Russo, 2019, Lemma 3):

V πt,rt+bt,P̂ t

1 (s1)− V πt,rt+bt,P
1 (s1) = Eπt,P

[
H−1∑

h=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (s′h, a
′
h)

]
,

where the piece of notation Eπt,P indicates (as in Section 2) that the expectation is taken over
trajectories (s′1, a

′
1, . . . , s

′
H , a

′
H) started at s′1 = s1 and induced by the policies πt and the transition

kernels P . Actually, one such trajectory is exactly (st,1, at,1, . . . , st,H , at,H) and we could rewrite
the considered expectation as a conditional expectation:

Eπt,P

[
H−1∑

h=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (s′h, a
′
h)

]

= E

[
H−1∑

h=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h)

∣∣∣∣πt, bt, P̂ t

]
.

Next, we apply the Hoeffding–Azuma inequality, by resorting to a lexicographic order on pairs (t, h)
and by noting that the random variables at hand satisfy

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h) ∈ [−H2, H2] ;

indeed, the sums rt,h + bt,h lies in [0, H + 1] and the value functions are weighted sums of at most
H − 1 such terms. We obtain that with probability at least 1− δ/2,

(C) =
T∑

t=1

V πt,rt+bt,P̂ t

1 (s1)− V πt,rt+bt,P
1 (s1)

6

T∑

t=1

H−1∑

h=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h) +
√
2H5T ln(2/δ) . (13)

We fix h ∈ [H − 1] and use the decomposition
T∑

t=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h)

6 SAH2 +

T∑

t=1

∑

(s,a)

⌈log2 T⌉∑

ℓ=1

2ℓ−1∑

j=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (s, a) I
{
(st,h, at,h) = (s, a)

}
(14)

× I
{
nt,h(s, a) = 2ℓ−1 + j

}
;

the term SAH2 comes from the fact that for each pair (s, a), there is at most once round t when
(st,h, at,h) = (s, a) and nt,h(s, a) = 1. We prove below the following lemma.

Lemma 9. For each pair (ℓ, j), where ℓ ∈
[
⌈log2 T ⌉

]
and j ∈ [2ℓ−1], with probability at least

1− δ/(4TH),

T∑

t=1

∑

(s,a)

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (s, a) I
{
(st,h, at,h) = (s, a)

}
I
{
nt,h(s, a) = 2ℓ−1 + j

}

6

√√√√2H4
1

2ℓ−1

∑

(s,a)

I
{
nT,h(s, a) > 2ℓ−1 + j

}
ln

4H(T + 1)1+SAH⌈log2(T )⌉

δ
.
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Remark 2. The result of Lemma 9 could be extended to taking also a sum over all h ∈ [H − 1]

instead of considering a fixed h ∈ [H − 1], which would result in a factor
√
2H5 instead of

√
2H4

in the upper bound. Below, we will rather sum the bound of Lemma 9 over h ∈ [H − 1], which will

result in a
√
2H6 factor in the final upper bound. While this is sub-optimal, we do so for the sake

of simplicity and because the control of term (B) leads anyway to a factor
√
H7 in the final regret

bound.

We conclude the proof of Lemma 7 based on Lemma 9. There are at most 2T different pairs (ℓ, j)
considered, so that all events considered in Lemma 9 hold simultaneously with probability at least
1 − δ/(2H). In addition, a first application of Jensen’s inequality guarantees that for each 1 6 ℓ 6
⌈log2 T ⌉,

2ℓ−1∑

j=1

√√√√ 1

2ℓ−1

∑

(s,a)

I
{
nT,h(s, a) > 2ℓ−1 + j

}
6

√√√√√
∑

(s,a)

2ℓ−1∑

j=1

I
{
nT,h(s, a) > 2ℓ−1 + j

}
,

and a second application yields

⌈log2 T⌉∑

ℓ=1

2ℓ−1∑

j=1

√√√√ 1

2ℓ−1

∑

(s,a)

I
{
nT,h(s, a) > 2ℓ−1 + j

}

6

√√√√√√√
⌈log2 T ⌉

∑

(s,a)

⌈log2 T⌉∑

ℓ=1

2ℓ−1∑

j=1

I
{
nT,h(s, a) > 2ℓ−1 + j

}

︸ ︷︷ ︸
=nT,h(s,a)−1

6
√
T ⌈log2 T ⌉ .

Therefore, substituting the bound above (together with Lemma 9) into (14), we proved so far that
with probability at least 1− δ/2,

T∑

t=1

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (st,h, at,h)

6 SAH2 +

√
2H4 T ⌈log2 T ⌉ ln

4H(T + 1)1+SAH⌈log2(T )⌉

δ

6 SAH2 + 2

√
H5SAT

(
log2(2T )

)3
+
√
2H4 T ⌈log2 T ⌉ ln(1/δ) .

Summing this bound over h ∈ [H − 1] and combining the outcome with (13) leads to

(C) 6 SAH3 + 2

√
H7SAT

(
log2(2T )

)3
+
√
2H4 T ⌈log2 T ⌉ ln(1/δ) +

√
2H5T ln(2/δ) ,

and thus to the upper bound claimed in Lemma 7.

It therefore only remains to prove Lemma 9.

Proof. We denote by

τℓ,j,h(s, a)
def
=

{
t if (st,h, at,h) = (s, a) and nt,h(s, a) = 2ℓ−1 + j ,

+∞ if nT,h(s, a) 6 2ℓ−1 + j − 1 ,

the stopping time whether and when (s, a) was reached in stage h for the (2ℓ−1 + j)–th time, with
the convention τℓ,j,h(s, a) = +∞ if (s, a) was reached fewer times than that. To apply optional skip-
ping, we will partition the underlying probability space according to the values of all the ℓt′,h′(s′, a′)
as t′, h′, s′, a′ vary and of the τℓ,j,h(s′, a′) as s′, a′ only vary.

Part 1: Hoeffding–Azuma inequality. We fix consistent sequences kt′,h′(s′, a′) ∈ [T ] and
κℓ,j,h(s

′, a′) of values for the ℓt′,h′(s′, a′) and the τℓ,j,h(s′, a′); in particular, kκℓ,j,h(s,a)−1,h(s, a) =
ℓ. The notation in the display below is heavy but the high-level idea is simple to grasp: only rounds
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t = κℓ,j,h(s, a) matter, and we know to which global epoch each of these rounds belongs and, in
particular, we know which averages are in the components P̂t,h( · | s′, a′) of P̂t,h.

We rewrite the quantity at hand on the event associated with the sequences fixed:

T∑

t=1

∑

(s,a)

(
P̂t,h − Ph

)
·V πt,rt+bt,P̂ t

h+1 (s, a) I
{
(st,h, at,h) = (s, a)

}
I
{
nt,h(s, a) = 2ℓ−1 + j

}

×
∏

(s′,a′)∈S×A


I

{
τℓ,j,h(s

′, a′) = κℓ,j,h(s
′, a′)

} T∏

t′=1

∏

h′∈[H−1]

I
{
ℓt′,h′(s′, a′) = kt′,h′(s′, a′)

}



6
∑

(s,a):κℓ,j,h(s,a)6T

(
P̂κℓ,j,h(s,a),h − Ph

)
·V̂κℓ,j,h(s,a),h+1(s, a)

×
∏

(s′,a′)∈S×A

∏

h′∈[H−1]

I
{
ℓκℓ,j,h(s,a)−1,h′(s′, a′) = kκℓ,j,h(s,a)−1,h′(s′, a′)

}
,

(15)

where we used the short-hand notation V̂t,h+1
def
= V πt,rt+bt,P̂ t

h+1 .

We are now ready to apply optional skipping—a concept recalled in Section 4.2. On the events

C′ def
=

⋂

(s′,a′)∈S×A

⋂

h′∈[H−1]

{
ℓκℓ,j,h(s,a)−1,h′(s′, a′) = kκℓ,j,h(s,a)−1,h′(s′, a′)

}

considered, the empirical averages P̂κℓ,j,h(s,a),h′( · | s′, a′) have the same distributions as the empir-
ical frequency vectors associated with the i.i.d. random variables

σh′,s′,a′,j , j ∈
[
2
kκℓ,j,h(s,a)−1,h′−1]

,

and are independent from each other as h′, s′, a′ vary. In particular, P̂κℓ,j,h(s,a),h( · | s, a) is dis-
tributed as the empirical frequency vector of 2ℓ−1 i.i.d. random variables σh,s,a,j , with j ∈ [2ℓ−1].
In addition, Bellman’s equations (see the beginning of Section 3.1) show that on the events C′ consid-
ered to apply optional skipping, V̂κℓ,j,h(s,a),h+1 only depends on the πκℓ,j,h(s,a),h′ with h′ > h+ 1,

on the P̂κℓ,j,h(s,a),h′( · | s′, a′) with h′ > h+1, and on state-action pairs relative to stages h′ > h+1.
Given the form of the adversarial learning strategy used, we conclude that on the events C′ consid-
ered to apply optional skipping, all the V̂κℓ,j,h(s,a),h+1, as s, a vary, only depend on state-action pairs

of stages h′ > h+ 1 and are therefore independent from all the P̂κℓ,j,h(s′,a′),h, as s′, a′ vary.

Put differently, optional skipping entails here that for all ε > 0,

P



{

∑

(s,a):κℓ,j,h(s,a)6T

(
P̂κℓ,j,h(s,a),h − Ph

)
·V̂κℓ,j,h(s,a),h+1(s, a) > ε

}
∩ C′




6 P

{
∑

(s,a):κℓ,j,h(s,a)6T

1

2ℓ−1

∑

j∈[2ℓ−1]

(
Ṽs,a,h+1(σh,s,a,j)− PhṼs,a,h+1(s, a)

)
> ε

}
, (16)

for some Ṽs,a,h+1 independent from all the σh,s,a,j as s, a, j vary (and h is fixed). We recall that the
σh,s,a,j are independent from each other as s, a, j vary (and h is fixed).

By the independencies noted above, and by boundedness of the values functions in the interval
[0, (H − h)(H + 1)] ⊆ [0, H2], the Hoeffding–Azuma inequality guarantees that for all δ′ ∈ (0, 1),

P





∑

(s,a):κℓ,j,h(s,a)6T

1

2ℓ−1

∑

j∈[2ℓ−1]

(
Ṽs,a,h+1(σh,s,a,j)− PhṼs,a,h+1(s, a)

)

>

√√√√ 1

2× 2ℓ−1

∑

(s,a):κℓ,j,h(s,a)6T

H4 ln
1

δ′





= δ′ . (17)
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We summarize what we proved so far. Denoting by

∆T,ℓ,j
def
=

T∑

t=1

∑

(s,a)

(
P̂t,h−Ph

)
·V πt,rt+bt,P̂ t

h+1 (s, a) I
{
(st,h, at,h) = (s, a)

}
I
{
nt,h(s, a) = 2ℓ−1+j

}

the target quantity, and by

C def
=

⋂

(s′,a′)∈S×A


{

τℓ,j,h(s
′, a′) = κℓ,j,h(s

′, a′)
} ⋂

t′=∈[T ]

⋂

h′∈[H−1]

{
ℓt′,h′(s′, a′) = kt′,h′(s′, a′)

}



the event associated with the values fixed, the bounds (15)–(16)–(17) show that for all δ′ ∈ (0, 1),

P



{
∆T,ℓ,j >

√√√√2H4
1

2ℓ−1

∑

(s,a)

I
{
nT,h(s, a) > 2ℓ−1 + j

}
ln

1

δ′

}
∩ C




= P



{
∆T,ℓ,j >

√√√√ 1

2ℓ

∑

(s,a):κℓ,j,h(s,a)6T

H2 ln
1

δ′

}
∩ C


 6 δ′ . (18)

Part 2: Union bound and counting the sequences. The proof is concluded by counting how many
different sets C may be obtained. We do so in a rough way, that will be sufficient for our purposes.
First, we need to count the profile values (7). There are T (H − 1) functions ℓt,h : S × A →[
⌈log2(T )⌉

]∗
, satisfying some monotonicity constraints, as well as some other constraints which we

ignore. The monotonicity constraints imply that for each (s, a) and h ∈ [H − 1], it is sufficient to
determine the at most ⌈log2(T )⌉ time steps t among [T ] when ℓt,h increases by 1. Thus, there are at
most

(T + 1)⌈log2(T )⌉

possible sequences of values for the ℓt,h(s, a) as t varies and h, s, a are fixed. All in all, the profile
part in the number of different sets C is smaller than

(
(T + 1)⌈log2(T )⌉

)SA(H−1)
.

For stopping times, we need to determine, for each (s, a), a single value, in a set included in [T ] ∪
{+∞}. We neglect other constraints and see that there are therefore at most (T +1)SA such choices.

As a conclusion, there are at most

M = (T + 1)SAH⌈log2(T )⌉

different possible values for the sets C. The proof of Lemma 9 is concluded by a union bound over
the events (18), with δ′ = δ/(4HTM).
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