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ABSTRACT

Breast cancer detection at an early stage significantly increases the chances of recovery for patients. Mammog-
raphy (MG) is one of the most popular non-invasive and high-resolution imaging allowing radiologists to depict
early signs of the disease. Microcalcifications (MCs) often occupy less than 1mm in size and can represent a
high risk of suspicion depending on the spatial distribution, morphology, and their evolution over time. Their
detection is challenging both the clinicians and computer-aided detection tools. In this work, we propose a
novel annotation-free framework designed specifically for the MCs detection and trained in a self-supervised
manner thanks to the generation of synthetic MCs. Inspired by the UNet3+ architecture, we reduced its number
of parameters to make it applicable in practice and added multi-scale features to enrich fine-grained details
with more global context information. Both multi-channel segmentation and multi-class classification tasks are
implemented in a multi-scale output approach to catch MC of various sizes. We perform a comparison with
several state-of-the-art methods, including different flavors of ResNet-22, ConvNeXt, and UNet3+. An analysis
of classification and segmentation performances has been done, using the Gradient-weighted Class Activation
Mapping method to make classifiers visually explainable. In this study, we used two public datasets, INBreast
and Breast MicroCalcifications Dataset for validation and test purposes. We achieved an AUC score of 0.93 in
the characterization of malignant MCs while having a semantic segmentation precision of 0.70. To the best of
our knowledge, we are the first study claiming segmentation performances on the BMCD dataset.
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1. INTRODUCTION

Breast cancer is the most diagnosed type of cancer, estimated to be one-third of new cancer cases, and the
second leading cause of death amongst women.1 Mammography (MG) is one of the most common medical
imaging techniques used in breast screening programs. It allows the detection of breast tumors at an early stage
of the disease while being non-invasive. MG is therefore a crucial step, as it considerably increases the chances
of survival.2

Breast screening programs generate a large amount of data obtained through different medical imaging
modalities. Hence, radiologists have to review a considerable amount of imaging while keeping their attention to
small areas that could be malignant lesions. Furthermore, these images (i.e., mammograms) are high-dimensional
in which the smallest abnormalities such as micro-calcifications (MCs) could be found within the areas below
1 cm2 (e.g., 100 × 100 pixels in 4000 × 3000 images).3 These MCs are deposits of calcium appearing as small
white spots rounded or with irregularities and may be the first sign of pathology detectable with MG.4

To help radiologists cope with their workload, Computer-Aided Diagnosis (CAD) tools are being developed.
The modern tools are mainly based on deep-learning approaches and aim to collaborate with radiologists to
increase lesion detection rates while reducing the workload on negative exams.5,6 Providing image-wise-only
prediction (e.g., malignancy risk) may not be sufficient to offer optimal guidance for health practitioners. Indeed,
the localization of findings through segmentation or detection tasks is crucial to make the predictions more
comprehensible for radiologists. Localization tasks, though, require pixel-wise labeling or bounding boxes for
fully-supervised training. Nonetheless, collecting those annotations is a laborious and time-consuming task.
Moreover, most of the time only medical reports are available, and collecting ground truths from experts is not
easily feasible.



In this context, the main contribution of this study is a framework based on a novel deep convolutional neural
network (CNN) architecture and a training strategy using image-level annotations only. First, we designed a novel
deep CNN inspired by the UNet3+ proposed by Huang et al.7 and specifically adapted it to the MC detection
problem. Indeed, our architecture profits from multi-scale features mixing global context and fine-grained details
for the optimal decision-making, aiming to catch MCs of various sizes and generate multi-resolution semantic
segmentations.8,9 The multi-task approach brings balanced competition between classification and segmentation
tasks, leading to better performances.10,11 Our training strategy only requires the MG exam malignancy risk,
accessible in the patient’s medical report, as the framework generates its own synthetic MCs with its associated
pixel-wise ground truths.

We evaluate the performances of the proposed framework and compare them to several state-of-the-art
methods: ResNet-22,12 ConvNext,13 and UNet3+.7 We use two public datasets: INBreast14 and Breast Mi-
croCalcifications Dataset (BMCD).15 To the best of our knowledge, we are the first to compute and present
semantic segmentation metrics on the second dataset.

2. RELATED WORKS

In this section, we summarize state-of-the-art methods based on deep-learning approaches for global breast cancer
detection and the specific problem of MCs. One of the most common approaches consists of processing smaller
breast regions of interest (ROI), called patches, aiming to preserve breast resolution. Due to their tiny sizes (e.g.,
100× 100 pixels in 4000× 3000 images),3 keeping the high semantic details of the lesion is crucial to efficiently
identify their morphology and associate a risk of malignancy.16–18 On the contrary, degrading pixel information
may lead to the creation of noise or bright artifacts that can be confused with MCs.

Training deep CNN for a single MC classification task is the simplest and easiest way to deal with the lack
of expert pixel-wise annotations. Shen et al. proposed an image-wise multi-classifier including MCs, trained on
ROI patches and benefiting from the share of weights and locality properties from fully convolutional networks.18

Sakaida et al. designed a 224×224 patch classifier to capture MC’s presence and tested various ResNet architec-
tures.16 Finally, Quintana et al. have studied the impact of patch sizes and MG resolutions on the classification
of breast lesions, including masses and calcifications. The authors conclude that a single size or resolution is
not optimal for catching all lesions.17 They combined patch classifiers of several sizes to generate the global
image risk of malignancy prediction. All those methods focus on the image classification task. However, the
classification alone may not give details about the localization of lesions, leading to less interpretable results.

Some methods proposed in the literature rely on a multi-task approach providing additional information
thanks to segmentation or detection tasks. First, they aim to classify the whole image according to the risk of
malignancy and label breast pixels associated with pathologies. Ouyang et al. introduced a multi-task CNN for
the classification and segmentation of MCs with a self-adversarial approach and an end-to-end training manner.19

However, this work trains and tests the proposed framework on a private dataset composed of experts’ bounding
boxes, which is a scarce and hard-to-find resource. Zhang et al. and Gerbasi et al. trained several CNNs in
cascade for a classification first, and a localization task then.20,21 This strategy creates a difficult workflow as
the training, validation, and test steps depend on the first iteration. Such a design leads to extended processing
times and prevents from taking advantage of concurrent training on multiple task.10,11

3. METHODS

In this section, we introduce the proposed framework, illustrated in Fig. 1. The framework is composed of three
steps: a synthetic lesions generator G(·), a novel CNN architecture C(·), and the losses computation L(·).

3.1 Network architecture

Our novel CNN architecture is based on the UNet3+ architecture proposed by Huang et al.7 designed for small
medical images (320 × 320 pixels). However, our patch-wise approach uses bigger patches to provide as much
context as possible while keeping the capacity to extract fine-grained details. Hence, to improve the computation
efficiency, the number of filters f has been reduced by a factor of 2. Our CNN is composed of an encoder E(·), a
bottleneck B(·), and a decoder D(·). The encoder’s design is identical to the method used by Huang et al.7 while
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Figure 1. Overview of the proposed framework. Synthetic MCs are generated and inserted into a patch extracted from a
negative exam and fed into the network. The CNN is based on multi-task and multi-scale approaches. Multi-classification
and multi-channel segmentation tasks aim to distinguish soft tissues from benign and malignant MCs and are trained
concurrently with Lglobal loss. En(·), B(·), and Dn(·) denote the encoder, bottleneck and decoder at the nth scale with f
being number of filters.

the bottleneck uses the Scale Aware Pyramid Fusion (SAPF) module proposed by Feng et al.22 SAPF aims to
fuse features extracted through the encoder in a multi-scale approach. The decoder differs from the baseline,
as we introduce Atrous Spatial Pyramid Pooling (ASPP) proposed by Chen et al.23 which adds context for
convolution operations with dilation aiming to enlarge receptive fields and catch multi-scale objects.

Moreover, the multi-task and multi-scale output approaches have been implemented to take advantage of
both classification and segmentation tasks. First, the multi-class classification distinguishes soft tissues, benign
calcified, and malignant MCs while the multi-channel segmentation task generates separate benign and malignant
MC pixel-level prediction. Both tasks are designed to detect calcified areas and characterize them according to
their risk of malignancy. To help the detection of MC of various sizes, a multi-scale output approach is used by
generating multi-task predictions from the bottleneck and from each level of decoder.

All novelties introduced in this framework aim to generalize the multi-scale approach introduced by Huang
et al. with full-scale skip connections.7 The proposed CNN efficiently combines multi-scale context, using the
finer-grained details at the top level and deeper features from the bottleneck. We designed our solution for
the specific MC detection problem, segmenting and characterizing lesions thanks to the classification task that
distinguishes benign from malignant calcifications.

3.2 Framework

The pixel-wise labeling of mammograms is not in the common practice of the imaging review process by radi-
ologists. Hence, such annotations, essential for fully supervised methods, are often lacking in mammography
datasets. Moreover, regardless of the high prevalence of cancer, the proportion of normal and benign data is
still considerably higher, leading to a significant imbalance in the datasets. To this end, we propose a training
strategy using negative MG exams, thus requiring an image-wise label only. Such labels are easily recoverable
from clinical reports. We introduce a self-supervised approach generating its own synthetic benign and malignant
MCs, as presented by Tardy et al.24 Synthetic lesions are inserted randomly into the image of negative (i.e.,
normal) breast and an image-wise and pixel-wise ground truth labels are generated. As our framework is fed
with small ROIs, we extract patches around those artificial MCs. To balance the training process, we also extract
normal patches from without synthesizing.

We guide the learning process with a specific loss for each task. We define ŷt and yt respectively as the
predictions and ground truths for a task t. The categorical cross-entropy (CCE) is used as classification loss at
each scale s (Lclss). The CCE formula is defined in the Eq. (1), where x is one of the K classes, in our study
K = 3: 1) soft tissues, 2) benign MCs, and 3) malignant MCs.

CCE = −
K∑

x=1

yclsx log(ŷclsx) (1)



For the segmentation loss at each scale s (Lsegs
), we used two distinct computation approaches depending

on the type of input patch. The first one is applied for patches with pixel-wise ground truths (positive synthetic
patches) and is inspired by Milletari et al.25 The Dice Score Coefficient (DSC) is defined in the Eq. (2) where
the sums run over the n pixels and y, ŷ ∈ RH,W with H and W the dimension of the output.

DSC =
2
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In the case of soft tissue (negative) patches, we computed the mean absolute error (MAE) described in the
Eq. (3).

MAE =
1

n

n∑
i=1

| ŷsegi
− ysegi

| (3)

For each task loss, we averaged on all output scales denoted as S and illustrated in Fig. 1. The global
framework loss (Lglobal) is the mean between the average classification and segmentation losses at each level as
defined in the Eq. (4).

Lglobal =
1

2
(
1

S

S∑
s=1

Lsegs
+

1

S

S∑
s=1

Lclss) (4)

4. EXPERIMENTS

4.1 Data

Our framework was trained with an in-house dataset composed of MG exams. Each exam has a malignancy
classification according to an American College of Radiology (ACR) risk score guidelines.26 In this work, we used
only normal samples (i.e., ACR = 1). To simulate the calcified regions, synthetic lesions were randomly blended
on the full-resolution mammography images: a synthetic malignant cluster of MCs is illustrated in Fig. 1. We
generated a set of 23,000 unique patches balanced between the three classes: 1) soft tissue, 2) benign MC, and 3)
malignant MC. Calcification patches were randomly extracted around the area of blending, with a threshold of
80% lesion pixels required. Normal patches having at least 20% of breast pixels were finally generated randomly
from negative MG inputs.

For validation and testing purposes, we used two public datasets: INBreast14 and Breast MicroCalcifications
Dataset (BMCD).15 Both datasets have pixel-wise annotations from expert radiologists. INBreast contains
various types of findings (i.e., isolated calcifications, MC clusters, masses, and architectural distortions). For this
study, we used MC cluster cases as malignant and cases with isolated calcifications as benign. BMCD contains
annotations only for benign and malignant calcifications. We have therefore retained only those cases where a
biopsy revealed a malignant tumor (’MALIGNANT’ or ’DCIS’ labels only) (more details on labels are available
in the original paper 15).

We extracted a set of 3-class validation and test patches from both datasets with the same strategy. A first
extraction round was applied to get patches centered on malignant MC ground truths, maximizing the context
of the patch. Then, a linear projection from full-resolution MGs into 512 × 512 non-overlapped patches was
done, followed by a sorting phase. Patches with benign calcifications were separated from soft tissues analyzing
pixel-wise ground truths.

The Tab. 1 summarizes the number of patches generated and used in the three stages of experiments: training,
validation, and testing. Approximately 23,000 training, 2,364 validation, and 1,826 test patches have been used
during this study.



Normal Benign Malignant Total
Training Private 7666 7666 7666 23000
Validation INBreast14 1030 1300 34 2364

Test BMCD15 1417 383 26 1826

Table 1. Description of training, validation, and test patches generated for this study. Training patches are extracted
from a private dataset, while validation and testing phases are realized on two public datasets.

4.2 Experimental setup

In this section, we describe the implementation details applied to carry out our experiments and compare our
proposed deep CNN with state-of-the-art CNN architectures. We identified three popular CNN architectures
adapted for medical imaging classification or segmentation: Resnet-22,12 ConvNeXt,13 and UNet3+.7 In addi-
tion, we performed an ablation study on the impact of multi-tasking and multi-scaling outputs. From now on,
we define the following terms: mono-scale (MoS) vs. multi-scale (MuS) and mono-task (MoT) vs. multi-task
(MuT). Our combination with MuT and MoS (MuTMoS-UNet3+) is similar to the method proposed by Ouyang
et al.19

As our UNet3+ has approximately 1.4M trainable parameters, we implemented the optimized version of the
ResNet-22 proposed by Walsh et al.27 The authors use separable convolutions instead of classic ones reducing
the number of parameters from 2.9M to 460K. Similarly, for a fair comparison to the ConvNext architecture
with regard to the number of trainable parameters, we also declined the ConvNeXt-Atto (ConvNeXt-A)13 in two
versions: Zepto (ConvNeXt-Z) and Yocto (ConvNeXt-Y) with 20% and 40% fewer filters respectively. ConvNext-
A, Z, and Y have approximately 3.4M, 2.2M, and 1.2M trainable parameters.

To run the experiments, we randomly initialized the model’s weights and trained from scratch using the set
of 23,000 patches described above. Experiments lasted 500 epochs with a batch size of 3 and a learning rate
of 10−4. Finally, to prevent overfitting, data augmentation techniques were applied. First, the images were
randomly flipped with vertical, horizontal, or transpose flips. Second, intensities augmentations were applied
amongst the following: gaussian blur, gaussian noise, gamma contrast, and intensity inversion.

For neural network implementation, we used Tensorflow 2.10 library. For image processing operations we
used cv2, numpy and scikit-image libraries.

5. RESULTS

5.1 Classification performances

In this section, we present and discuss classification performances of the proposed method. We compared the
following state-of-the-art (SOTA) methods: ResNet-22,12 ResNet-22 optimized,27 ConvNeXt-A,13 ConvNeXt-Z,
ConvNeXt-Y as presented above. Secondly, we realized an ablation study for the comparison of MuT vs. MoT
and MuS vs. MoS.

We computed two different Area Under the ROC Curve (AUC) scores. The first one (AUCMCs) focuses on
the classification of calcified areas (benign and malignant) vs. soft tissues, while the second (AUCmlg) evaluates
the classification of MCs characterized as malignant vs. the rest, i.e., benign calcifications and soft tissues.

The performances of our method and SOTA architectures are presented in the Tab. 2. First, it shows
that the traditional ResNet-2212 performs the worse compared to other methods, and in particular its optimized
version. The ResNet-22 optimized challenges with ConvNeXt architectures which achieved similar performances.
However, we observe an opposite trend, where the lightened version (ConvNeXt-Y) performs less well than
heavier flavors. Overall, SOTA architectures perform better for the characterization of malignant MCs than for
the distinguishing classification of calcification areas vs. soft tissues on the validation dataset while the opposite
is true for the test dataset. Finally, we see in the Tab. 2 that the proposed MuTMuS-UNet3+ outperforms the
SOTA architectures in all but one task. That is, in the task of classification of calcified vs. soft tissues it comes
second best with an AUCMCs = 0.94, leaving the first place to ConvNeXt-Z having AUCMCs0.95.



INBreast (validation) BMCD (test)
AUCMCs AUCmlg AUCMCs AUCmlg

ResNet-22 0.73 0.89 0.79 0.80
ResNet-22 optimized 0.88 0.93 0.94 0.90

ConvNeXt-A 0.87 0.93 0.94 0.90
ConvNeXt-Z 0.89 0.91 0.95 0.88
ConvNeXt-Y 0.84 0.91 0.89 0.88

MuTMuS-UNet3+ 0.90 0.94 0.94 0.93

Table 2. Comparison of AUC scores achieved by our method and various versions SOTA CNN architectures implemented
in the study. Two AUC scores were computed for both validation and test datasets, AUCMCS and AUCmlg. Best AUC
scores are highlighted.

Then, we conducted the ablation study and reported AUC scores in the Tab. 3. The table shows that the
combination of multi-task and multi-scale approaches is beneficial to the framework as it achieved the highest
AUC scores on both datasets. Having a multi-scale approach with a single classification task implementation on
a UNet3+ is the worst combination, due to its particular design for semantic segmentation tasks. On the other
hand, the combination of classification and segmentation outputs on one scale only is not optimal for catching
MCs of different sizes. That is, it prevents each scale from detecting objects according to its proper receptive
field.

INBreast (validation) BMCD (test)
Multi-task Multi-scale AUCMCs AUCmlg AUCMCs AUCmlg

yes yes 0.90 0.94 0.94 0.93
no yes 0.84 0.91 0.92 0.91
yes no 0.79 0.77 0.87 0.87

Table 3. AUC scores comparison table for the ablation study on the framework multi-task and multi-scale. Two AUC
scores were computed for both validation and test datasets, AUCMCS and AUCmlg. Best AUC scores are highlighted.

We note that ResNet-22 optimized, ConvNeXt-A, and ConvNeXt-Z designed for the classification task per-
formed similarly to our network. Nevertheless, our proposed framework based on a modified version of the
UNet3+ with multi-task and multi-scale output approaches not only outperformed classic UNet3+, but also the
SOTA classification CNNs. It shows the importance of catching multi-scale objects as the MC detection task
requires global context and fine-grained details.

5.2 Segmentation and activations maps analysis

To allow more complete understanding of the performances of the proposed method, we evaluated its segmen-
tation performances. To this end, we explored the capacities of CNN classifiers to segment the relevant areas.
To do so, we generated Gradient-weighted Class Activation Mapping (Grad-CAM) based on Selvaraju et al.
method.28 We aim to obtain a visualized explanation of activations generated by the ResNet-22 optimized and
the ConvNext-A and make their decision-making interpretable. We also generated the segmentation predictions
of our proposed framework. All predictions were then binarized using the automatic threshold technique pro-
posed by Li et al. method.29 We purposely excluded other UNet3+ architectures (i.e., MoTMuS and MuTMoS),
as performing badly on the classification task (see Tab. 3).

We computed three different semantic segmentation metrics: Recall (Rec), Precision (Prec), and Dice Score
Coefficient (DSC) defined in the Eq. (5), (6), and (7) respectively. The Recall quantifies the number of relevant
items retrieved, while the Precision quantifies the retrieved elements’ relevance. Finally, the Dice coefficient score
is a similarity statistic indicator between the predictions and the ground truth.



Rec =
TP

TP + FN
(5)

Prec =
TP

TP + FP
(6)

DSC =
2×Rec× Prec

Rec+ Prec
(7)

where TP, FP, and FN denote pixel-wise true positives, false positives, and false negatives respectively.

The metrics are reported in the Tab. 4. Overall, low DSC values are achieved on both datasets for benign
and malignant MCs. It can be explained by the coarseness of annotations, as shown by the two examples
illustrated in the Fig. 2. Well-contoured annotations are not given for benign calcifications as only some pixels
(sometimes only 1 pixel) are labeled, mainly due to the quantity of isolated calcifications to annotate. For
malignant annotations, rough delineations are given for both datasets, which is even more amplified on the
BMCD dataset (cf. Fig. 2). To that end, we slightly dilated benign calcifications with a 10× 10 squared kernel,
making results more interpretable.

Based on the reported metrics, our framework outperformed SOTA methods for the benign MC segmentation
task, with the best DSC, Rec, and Prec performances obtained on both the validation and test datasets. An
example of the generated predictions is illustrated in the Fig. 2, A-D. The classifiers tend to generate noisier
activations compared to our framework’s segmentation which precisely localized the two benign calcifications.
High recall rates are obtained by our framework: 0.57 and 0.68 which signifies that low false negatives are
generated while having a high true positive prevalence. Meanwhile, the precision score is difficult to analyze due
to the small size of annotations. That is, the network generally tends to the over-segmentation.

For the malignant MC’s segmentation task, ResNet-22 and our framework both performed well and challenged
themselves on validation and test datasets. Our framework achieved the best performances on the validation
dataset regarding all metrics, with a Dice of 0.46, a recall of 0.74, and a precision of 0.46. Meanwhile, ResNet-
22 achieved the best performances on tests with the highest Dice 0.49, recall 0.40, and precision 0.70 with the
last one similar to our framework (0.70). The results are consistent with the ground truth discussion above,
and therefore explainable. Indeed, BMCD ground truths are less precise than INBreast producing many false
negatives in annotated areas where not all labelled pixels are truly positives (i.e., depicting calcifications).

INBreast (validation) / BMCD (test)
DSCB RecB PrecB DSCM RecM PrecM

ResNet-22 opt. 0.03 / 0.04 0.46 / 0.60 0.02 / 0.02 0.36 / 0.49 0.74 / 0.40 0.36 / 0.70
ConvNeXt-A 0.02 / 0.04 0.26 / 0.37 0.02 / 0.02 0.18 / 0.33 0.32 / 0.38 0.19 / 0.33
Our framework 0.17 / 0.25 0.57 / 0.68 0.13 / 0.18 0.46 / 0.36 0.74 / 0.27 0.46 / 0.70

Table 4. Semantic segmentation metrics computed on Grad-CAM of classifiers and segmentation predictions or the pro-
posed method. Metrics were computed on both validation and test datasets for benign and malignant MCs respectively
denoted as B and M . The best metrics are highlighted.

6. DISCUSSIONS AND CONCLUSION

Depicting microcalcifications in mammograms is crucial in the early detection of breast cancer as it may be a
sign of malignancy. However, the task remains challenging due to their tiny size, and diversity of shapes essential
to characterizing malignancy.

In this study, we propose a novel framework based on a deep CNN architecture designed for the specific
problem of MC detection and classification. The framework is designed to distinguish soft tissues from benign
and malignant calcified tissues. To achieve this task, we rely on a two-channel segmentation and three-class
classification outputs strategy. Underneath it fuses multi-scale features improving overall performances (see Tab.
3). Moreover, it requires only limited annotations thanks to the use of synthesized data.
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Figure 2. From left to right: (A, E) input patch with ground truth in blue; (B, F) activations heatmaps of ResNet-22
optimized; (C, G) activations of ConvNeXt-A; (D, H) semantic segmentation output of MuTMuS-UNet3+. Top row
(A-D): Benign MCs patch, and Bottom row (E-G): Malignant MCs patch. Blue and red areas denote ground truths and
predictions respectively.

We compare the performances of our method to several flavors of popular state-of-the-art CNN networks, such
as ResNet and ConvNeXt. We also perform an ablation study highlighting the relevance of the proposed multi-
output and multi-scale aspects. We use two popular public datasets for the validation and test: INBreast and
Breast MicroCalcifications Dataset (BMCD). To the best of our knowledge, we are the first to claim semantic
segmentation metrics on the second dataset which is quite recent in the community. Both classification and
segmentation performances are explored and discussed in a patch-wise manner.

We observe that our framework outperforms the state-of-the-art methods in almost all the tasks. The highest
improvement is achieved on BMCD dataset on the task of binary classification of malignant MCs vs. other
tissues (soft and benign calcifications) with a value of AUC=0.93. In addition, our framework generates more
precise semantic segmentation on both channels, in particular with the pixel-wise precision of 0.70 on BMCD.

We want to draw the reader’s attention to an eventual difficulty in the interpretation of the segmentation
metrics due to their approximate nature (see Fig. 2 E.). Hence, the reported DICE scores may appear low
compared to what can usually be found in the literature. While we observe higher precision of the proposed
method, the interpretability of the generated output should be studied further.

In this work, we focused on the patch-wise classification and segmentation analysis. We noted promising
results and consistent improvement compared to the state-of-the-art method. However, to bring a more clinically
relevant guidance, an image-wise approach is expected. We aim to address it in the future.
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