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1 Introduction
Modeling extremes of spatial and spatio-temporal phenomena is an important
branch of extreme value theory that has seen substantial developments in the
last decades and found many applications, especially in environmental sciences
(Davison and Gholamrezaee, 2012; Davison et al., 2012; Huser and Wadsworth,
2022). An example is the implementation of offshore wind farms that can be
vulnerable to extreme sea and wind conditions. In this specific context, applica-
tion studies have focused on modeling the extremes of significant wave heights,
a quantity measuring the severity of a sea state, over a given area (see Figure
1). Statistical extreme-value analyses for these data will be used to illustrate
the models and methods reviewed in this chapter.

Figure 1: Daily hindcast2 significant wave heights (Hs, [m]) off the French coast
during winter months (JFM) from 1995 to 2015. Left panel: study region. Right
panel: marginal 95% empirical quantile at each location.

Extreme value statistics rely on two important different paradigms, the so-
called Block-Maximum (BM) and Peaks-Over-Threshold (POT) methods. In
a nutshell, the BM approach is based on the study of the maxima of the phe-
nomenon over different periods of times (typically monthly or yearly maxima),
while the POT approach focuses on occurrences of the phenomenon that ex-
ceed a fixed high threshold. Probability theory then shows that two classes of
limit distributions arise when considering asymptotic behavior. By the Fisher-
Tippett-Gnedenko theorem, the probability distribution of maxima over large
blocks is well approximated by a Generalized Extreme Value (GEV) distribu-
tion, whereas the Pickands-Balkema-de Haan theorem states that the probabil-
ity distribution of exceedances over a high threshold is well approximated by
a Generalized Pareto (GP) distribution. Importantly, the two theorems hold

2Hindcast data refers to historical outputs from numerical models
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under the same tail-regularity assumption on the distribution of the underly-
ing phenomena (the so-called first-order condition), so that the choice between
the two approaches belongs to the statistician and could be motivated by the
application setting. Note in passing that a third approach, the so-called Point-
Process approach, has the conceptual and theoretical advantage to encompass
both the BM and POT methods. However, it is far less popular in practice and
in applications, so that we do not emphasize it here.

In the univariate setting, the two notions of maxima and of exceedances over
a threshold are unambiguous. This is not any more the case in the multivariate
or spatial setting. Regarding the BM approach, maxima are typically defined
as componentwise maxima in the multivariate setting, and as pointwise max-
ima in the spatial setting. This gives rise to the theory of multivariate GEV
distributions and of max-stable random fields.One difficulty is that the use of
componentwise and pointwise maxima results in “composite observations" or
“composite events", since for instance the yearly maxima over a domain occur
on different days at different locations. From a theoretical point of view, this is
related to de Haan’s constructive representation of a max-stable random vector
(or random field) as the pointwise maximum of infinitely many random vectors
(or random fields) representing the underlying extreme events (De Haan, 1984).
The complexity of this representation makes the simulation and statistical anal-
ysis of max-stable random vectors and random fields quite difficult, and this has
been subject of very active and fruitful research throughout the last decades.

Regarding the POT approach in a multivariate or spatial setting, the mean-
ing of an exceedance over a high threshold is not straightforward. It was first
defined using the sup-norm, meaning that a random field is large if it is large
at some location at least (in a multivariate setting, see Rootzén and Tajvidi
(2006).From a mathematical stance, this perspective allows to work in the space
of (continuous) random fields endowed with the sup-norm and to develop the
theory of simple Pareto processes (Ferreira and de Haan, 2014), where simple
refers to a specific choice of marginal distributions. Moreover, a close rela-
tionship between functional regular variation, simple max-stable processes and
simple Pareto processes can be established. Interestingly, the simple Pareto
process has a much simpler probabilistic structure than the corresponding max-
stable process, which facilitates its simulation and statistical modeling. From
an applied perspective, however, the use of the sup-norm is quite restrictive,
since the notion of an extreme event can be very different depending on the ap-
plication context. As proposed in Dombry and Ribatet (2015) and de Fondeville
and Davison (2018), it makes sense to use a risk functional adapted to the spe-
cific application to decide whether an event is extreme or not, and to define
functional exceedances of the spatial field over a high threshold with respect to
this risk functional. The resulting models are called simple r-Pareto processes,
where r stands for risk (note that Dombry and Ribatet (2015) uses the termi-
nology ℓ-Pareto process with ℓ standing for loss). The last conceptual step that
ensures general practical applicability through the notion of generalized Pareto
processes is to allow for flexibility in the marginal tail index: while the simpler
model considers a positive tail index that does not vary with the spatial loca-
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tion, de Fondeville and Davison (2018) defines the generalized r-Pareto process
that allows for a general tail index (positive, null or negative) that can possibly
vary spatially.

The structure of this chapter is as follows. In § 2, we first review the theory of
Pareto processes and the various approaches developed in this context. Then, in
§ 3, we discuss modeling, inference and simulation of Pareto processes. Finally,
the remaining two sections provide an application and some concluding remarks.

2 Theory of Pareto processes
Following Ferreira and de Haan (2014), we first introduce the simple Pareto
process and generalized Pareto process, which extend the POT approach to
exceedances in a random field with respect to the sup-norm. Subsequently,
exceedances with respect to a more general risk functional are considered for
modeling flexibility and lead to the definition of generalized r-Pareto process
(Dombry and Ribatet, 2015; de Fondeville and Davison, 2018).

2.1 The simple Pareto process
We first define the simple Pareto process and introduce its main properties. It
is motivated from the wish to adopt a POT perspective for spatial extremes,
where the notion of exceedance is understood with respect to the sup-norm.

Consider a compact subset S of R2, which corresponds to the finite spatial
window where the random process is observed, and let C+(S) denote the space
of non-negative real-valued continuous functions on S endowed with the sup-
norm

∥f∥ = max
s∈S

|f(s)|, f ∈ C+(S).

We say that f ∈ C+(S) exceeds the threshold u if ∥f∥ > u, meaning that
f(s) > u at some location s ∈ S.

Definition 2.1. We say that Z = (Z(s))s∈S is a simple Pareto process if it can
be written in the product form Z = RY satisfying the following structure:

• R has standard unit Pareto distribution, i.e., P(R > u) = 1/u for u > 1;

• Y = (Y (s))s∈S is a nonegative continuous random process satisfying P(∥Y ∥ =
θ) = 1 for some θ > 0, and E[Y (s)] = 1 for all s ∈ S;

• R and Y are independent.

The distribution of Z depends only on the distribution of Y , called the
spectral measure and denoted by ρ. We call Z the simple Pareto process with
spectral measure ρ. The spectral measure is defined on the sphere C+

θ (S) =
{f ∈ C+(S) : ∥f∥ = θ} of the sup-norm. The norm ∥Z∥ satisfies

P(∥Z∥ > u) = P(θR > u) = θu−1, u > θ,
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and has unit Pareto distribution with scale θ, which is called the areal extremal
coefficient of Z. Note that R and Y can be obtained from Z as R = θ−1∥Z∥
and Y = θZ/∥Z∥. Finally, the condition E[Y (s)] = 1 ensures a normalization
of the marginal distributions: for all s ∈ S,

P(Z(s) > u) = P(RY (s) > u) = E[min(1, u−1Y (s))], u > 0,

is equal to u−1 when u > θ. Therefore, the marginal tail is ultimately standard
unit Pareto.

Example 1. Starting from any stochastic process U = (U(s))s∈S with paths
almost surely in C+(S) \ {0}, we can consider the normalized process Y (s) =
Ỹ (s)/E[Ỹ (s)] with Ỹ = U/∥U∥. Then, the distribution of Y defines a valid
spectral measure, and we can construct the corresponding Pareto process by
setting Z = RY , where R is a random variable with standard Pareto distribution
and independent of U . For example, if G is a continuous standard Gaussian
process on S and U = exp(G) is the associated log-Gaussian process, then the
associated spectral process is obtained using Ỹ (s) = exp(G(s)−maxS G), s ∈ S.

Next, we state elementary properties of the simple Pareto process, the
first one being the form of its finite-dimensional marginal distributions. For
s1, . . . , sk ∈ S and r1, . . . , rk > 0, we compute the multivariate survival func-
tion

P(Z(s1) > u1, . . . , Z(sk) > uk) = P(R > max
1≤i≤k

ui/Y (si))

= E[min(1, u−1
1 Y (s1), . . . , u

−1
k Y (sk))].

Similar formulas can be obtained for events of the form {Z > f} or {Z ≤ f}
for f ∈ C+(S):

P(Z > f) = E

[
min

(
1,min
s∈S

Y (s)

f(s)

)]
,

P(Z ≤ f) = 1− E

[
min

(
1,max

s∈S

Y (s)

f(s)

)]
.

The second important property is the so-called POT-stability. For a mea-
surable subset A ⊂ C+(S) and u > 1, the simple Pareto process satisfies

P(u−1Z ∈ A | ∥Z∥ > θu) = P(Z ∈ A).

This states that conditionally on the exceedance ∥Z∥ > uθ, the rescaled Pareto
process u−1Z has the same distribution as the original process Z. To prove this,
it suffices to verify the equality for sets of the form

A = {f : θ−1∥f∥ > v, θf/∥f∥ ∈ B} with v > 0 and B ⊂ C+
θ (S).

For such sets, we can compute

P(u−1Z ∈ A | ∥Z∥ > uθ) = P(R > uv, Y ∈ B | R > u)

= P(R > v)P(Y ∈ B)

= P(Z ∈ A).
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This POT-stability is the reason why Pareto processes play a central role in
the POT approach, in the same way as max-stability is a central property in
the BM approach. To wit, it can be proven that a nondegenerate stochastic
process satisfying the POT-stability property is (up to a power transform) a
Pareto process in the sense of Definition 2.1 – see (Ferreira and de Haan, 2014,
Theorem 2.1) or (Dombry and Ribatet, 2015, Theorem 2) for precise statements.

The third important property is the following homogeneity property, which
forms the basis for joint tail extrapolation. It states that for each measurable
subset A ⊂ {f ∈ C+(S) : ∥f∥ ≥ θ}, we have

P(Z ∈ uA) = u−1P(Z ∈ A), u > 1.

The proof is straightforward from POT-stability, because the assumption on A
implies

P(Z ∈ uA) = P(Z ∈ uA, ∥Z∥ > uθ)

= P(∥Z∥ > uθ)P(u−1Z ∈ A | ∥Z∥ > uθ)

= u−1P(Z ∈ A).

This property is useful for extrapolation in practice since for large u, the event
uA often defines an extreme event for which {Z ∈ uA} has not been observed,
so that its probability cannot be estimated empirically. In view of the above
equality, its probability is the product of the small number u−1 and the prob-
ability of the non-extreme event {Z ∈ A}, where the latter can be estimated
directly through its relative frequency within a sample of observations.

We now introduce the fundamental theorem justifying the introduction of
the simple Pareto process and its use in spatial extreme value theory. In a
nutshell, it states the equivalence of the approximation used in the BM and
POT methods and the regular variation (RV) assumption. We consider here
a standardized non-negative continuous random field X = (X(s))s∈S , i.e., we
assume standard Pareto margins,

P(X(s) > u) = u−1 for all u > 1 and s ∈ S. (1)

The case of general margins will be considered in the next section.

Theorem 2.1. Let X = (Xs)s∈S be a standardized continuous random field.
Then the following statements are equivalent:

(RV) there exists a measure ν on C+(S) such that

nP(X ∈ nA) −→ ν(A) as n→ ∞ (2)

for all measurable subsets A ⊂ C+(S) that are bounded away from 03 and
continuity sets of ν4;

3The measurable set A ⊂ C+(S) is bounded away from 0 if inff∈A ∥f∥ > 0.
4A set A is a continuity set of ν if ν(∂A) = 0 with ∂A denoting the boundary of A.
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(BM) X belongs to the maximum domain of attraction of a continuous simple
max-stable random field η, i.e.

n−1 max(X1, . . . , Xn)
d−→ η in C+(S) as n→ ∞,

where Xi, i ≥ 1, are independent copies of X and the maximum is taken
pointwise;

(POT) the normalized exceedance of X over a high threshold converges to a simple
Pareto process Z, i.e.,

u−1X
∣∣ ∥X∥ > uθ

d−→ Z in C+(S) as u→ ∞. (3)

The three limiting objects are closely related: the exponent measure of η in
(BM) is equal to the measure ν appearing in (RV); the distribution of the Pareto
process Z in (POT) is characterized by

P(Z ∈ ·) = ν(· ∩ {f : ∥f∥ > θ})
ν({f : ∥f∥ > θ})

with θ = ν({f : ∥f∥ > 1}),

and the spectral measure ρ is given as

ρ(·) = ν({f : θf/∥f∥ ∈ · , ∥f∥ > θ)}
ν({f : ∥f∥ > θ})

.

A consequence of the preceding Theorem is that there is a one-to-one asso-
ciation of simple Pareto processes and simple max-stable processes. This asso-
ciation is made explicit with the spectral representation of simple max-stable
processes (De Haan, 1984). Any continuous simple max-stable process η on S
can be represented in the form

η(s) = max
i∈N

Γ−1
i Yi(s), s ∈ S, (4)

where (Γi)i∈N are the points of a homogeneous point process on (0,∞) and, in-
dependently, (Yi)i∈N are i.i.d. non-negative continuous random processes such
that E[Yi(s)] = 1 for all s ∈ S, and ∥Yi∥ = θ is almost surely constant. The
associated simple Pareto process is Z(s) = RY (s), where Y has the same dis-
tribution as the processes Yi.

Example 2. As an illustration, one can derive the form of the Pareto process
associated with the celebrated Brown-Resnick class (Kabluchko et al., 2009),
or more generally with the class of max-stable processes associated with log-
Gaussian processes. These max-stable processes can be represented in the form

η(s) = max
i≥1

Γ−1
i Ỹi(s), s ∈ S,

where (Γi)i≥1 is as above and (Ỹi)i≥1 are i.i.d. continuous log-Gaussian pro-
cesses, such that E[Ỹi(s)] = 1 for all s ∈ S. More precisely, one can write
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Ỹi(s) = exp(Gi(s)− σ2(s)/2) where Gi are continuous Gaussian processes with
zero mean and variance function E[G2

i (s)] = σ2(s). In this representation, the
spectral process Ỹ is a log-Gaussian process that does not have a constant sup-
norm.

The associated Pareto process has a spectral function Y with norm θ =
E[∥Ỹi∥] and distribution characterized by

P(Y ∈ A) = θ−1E
[
∥Ỹ ∥ × 1{θỸ /∥Ỹ ∥∈A}

]
, A ⊂ C+

θ (S) measurable.

The distribution of the spectral process Y is fully determined by the probabil-
ity distribution of the log-Gaussian process Ỹ , but still it is quite involved to
simulate according to this distribution (Oesting et al., 2018); see Section 3.2
below.

2.2 The generalized Pareto process
Following Ferreira and de Haan (2014), the notion of a generalized Pareto pro-
cess is deduced from the notion of simple Pareto process by a suitable trans-
formation of the marginal distributions. Let Z be a simple Pareto process with
spectral measure ρ on C+

θ (S), and let µ, σ, ξ be continuous functions on S, with
σ positive. The generalized Pareto process Zµ,σ,ξ is defined by

Zµ,σ,ξ(s) = µ(s) + σ(s)
Z(s)ξ(s) − 1

ξ(s)
, s ∈ S,

with the usual convention Z(s)ξ(s)−1
ξ(s) = log(Z(s)) when ξ(s) = 0.

Its marginal distribution at location s is given by

P(Zµ,σ,ξ(s) > u) = P
[
Z(s) >

(
1 + ξ(s)

u− µ(s)

σ(s)

)1/ξ(s)]
,

of which the tail is equal to(
1 + ξ(s)

u− µ(s)

σ(s)

)−1/ξ(s)

for u > µ(s) + σ(s) θ
ξ(s)−1
ξ(s) .

Hence, the tail function is ultimately equal to the tail of the Generalized Pareto
distribution with parameters (µ(s), σ(s), ξ(s)).

The generalized Pareto process is justified by a general result stating the
equivalence of BM and POT approaches. Theorems 3.1 and 3.2 in Ferreira
and de Haan (2014) generalize Theorem 2.1 to random processes with general
margins that are necessarily standardized, and are summarized in the following
single theorem.

Theorem 2.2. Let X = (X(s))s∈S be a continuous random field, and consider
independent copies Xi, i ≥ 1, of X. The following two statements are equivalent:
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(BM) There exist continuous functions an > 0 and bn, n ≥ 1, defined on S, such
that (

max
1≤i≤n

Xi(s)− bn(s)

an(s)

)
s∈S

d−→ (η(s))s∈S as n→ ∞.

(POT) There exist continuous functions ãu > 0 and b̃u, u > 0, defined on S, such
that

lim
u→∞

P
(
X(s) > b̃u(s) for some s ∈ S

)
= 0

and

X − b̃u
ãu

∣∣∣ {X(s) > b̃u(s) for some s ∈ S} d−→ Z, u→ ∞. (5)

Then, the limit process η in (BM) is a continuous max-stable process and the
limit process Z in (POT) is a generalized Pareto process. Furthermore, the two
processes share the same index function γ(s) which corresponds to the extreme
value index of the marginal distribution of η(s), Z(s) or X(s).

2.3 Risk functionals and r-Pareto processes
As discussed in the introduction, the notion of exceedance in a multivariate or
spatial setting is not unique, and several notions could be useful to the practi-
tioner. A natural idea introduced in Dombry and Ribatet (2015); de Fondeville
and Davison (2018, 2022) is to define the notion of an extreme event through
a risk functional. A risk functional is defined on the space C(S) of continuous
functions on S and is a function r : C(S) → R that assigns to each spatial con-
figuration f = (f(s))s∈S a risk r(f). A realization f is considered as extreme
when its risk r(f) is large.

For example, Buishand et al. (2008) are interested in the total amount of
rainfall over a catchment S, i.e., r(f) =

∫
S
f(s)ds, where f(s) represents the

amount of precipitation at location s ∈ S. More generally, for spatial extreme
rainfall, de Fondeville and Davison (2018) consider risk functionals of the form
rp(f) =

(∫
S
|f(s)|pds

)1/p with p > 0; for large p, the risk functional get closer to
the maximum risk functional maxs∈S |f(s)|, while smaller values of p allow all
locations to contribute to the value of the risk functional in a more balanced way.
To model extreme heatwaves over Europe, Koh et al. (2024) consider a risk func-
tional r as the spatial mean of temperature anomalies r(f) = |S|−1

∫
S
f(s)ds.

Another example concerns the situation where a specific location s0 ∈ S is of
interest with the risk functional chosen as r(f) = f(s0).

The theory of r-Pareto processes (Dombry and Ribatet, 2015) and Gen-
eralized r-Pareto processes (de Fondeville and Davison, 2018, 2022) considers
convergence of the normalized exceedances

X − bu
au

∣∣∣ r(X) > au
d−→ Z, u→ ∞.
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The theory provides general conditions on the stochastic process X for such a
convergence to hold and characterizations of the limit process Z.

Relatively simple conditions can be given in the framework of regularly
varying stochastic processes and homogeneous risk functionals. A continuous
stochastic process is called regularly varying on C(S) with exponent α > 0 and
spectral measure σ (a probability measure on the unit sphere C1(S)), noted
X ∈ RVα(C(S), σ), if there exists a normalisation sequence (bn) such that

nP (X/∥X∥ ∈ A, ∥X∥ > ubn) −→ u−ασ(A), n→ ∞,

for all u > 0 and A ⊂ C1(S) (continuity set of σ). Necessarily, the sequence bn
satisfies nP(∥X∥ > bn) → 1, and we also have the convergence

nP (X/bn ∈ ·) −→ ν(·), n→ ∞,

where the limit measure ν is homogeneous of order −α, i.e., ν(tA) = t−αν(A) for
any t > 0 and measurable set A ⊂ C(S), and has infinite mass (with explosion
of the mass around the function 0).

Theorem 2.3 (Dombry and Ribatet 2015). Assume that X ∈ RVα(C(S), σ).
Let r : C(S) → [0,∞) be a risk functional assumed to be 1-homogeneous, i.e.,
r(uf) = ur(f) for all u > 0. If r is continuous at 0 and does not vanish
σ-almost-everywhere, then the normalized r-exceedances of X converge in dis-
tribution:

u−1X
∣∣ r(X) > u

d−→ Z, as u→ ∞, (6)

where Z
d
= RY with R and Y independent, R possessing a standard Pareto

distribution with index α ( i.e., P(R > u) = u−1/α, u > 1) and Y a distribution
characterized by

P(Y ∈ · ) =
∫
r(f)α1{f/r(f)∈ · }σ(df)∫

r(f)ασ(df)
. (7)

Equivalently, we have

P(Z ∈ · ) = ν( · ∩ {f : r(f) > 1})
ν({f : r(f) > 1})

.

The form of the limit distribution implies that r(Y ) = 1 almost surely, so
that r(Z) = R has a standard Pareto distribution with index α. The condition
that r is non-negative is not restrictive, because one can always replace r(f) by
r+(f) = max(r(f), 0). Also, the result can be adapted for β-homogeneous risk
functionals with β > 0, because one can always replace r(f) by r(f)1/β , where
r1/β is 1-homogeneous.

Example 3. Specific models for regularly varying random fields with index α
are max-stable random processes with α-Fréchet margins, and one can consider
the corresponding r-Pareto processes. Assume η is an α-Fréchet max-stable
process represented in the form

η(s) = max
i∈N

Γ−1/αỸi(s), s ∈ S,
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with (Γi)i∈N the points of a homogeneous point process on (0,∞), and (Ỹi)i≥1

i.i.d. copies of a non-negative random field Ỹ satisfying E[Ỹ (s)α] < ∞. The
r-Pareto process takes the form Z = RY as in Theorem 2.3, where Equation (7)
can be rewritten as

P(Y ∈ A) =
E
[
r(Ỹ )α1{Ỹ /r(Ỹ )∈A}

]
E
[
r(Ỹ )α

] .

For the simple max-stable process considered in Example 2, an important case
arises for the risk functional r(f) = f(s0). Here, α = 1 and Ỹ (s) = exp(G(s)−
σ2(s)/2) and, according to Dombry et al. (2016, Proposition 6), Y is again a
log-Gaussian process given by

Y (s) = exp

(
G(s)−G(s0)−

1

2
Var
(
G(s)−G(s0)

))
. (8)

Similarly, the class of extremal-t processes (Opitz, 2013) also gives rise to explicit
formulas, see Dombry et al. (2016, Proposition 7) and Thibaud and Opitz (2015).

2.4 Generalized r-Pareto processes
In this section, we finally discuss the approach of de Fondeville and Davison
(2018) that extends the construction of r-Pareto processes and convergence to
such processes to a general extreme value index ξ ∈ R (positive, null or negative).
In their work, the extreme value index ξ is assumed constant over the domain S
(unlike in Section 2.2), the risk functional is not necessarily homogeneous, and
a generalization of the condition of functional regular variation is used. The
random field X is assumed to satisfy the generalized regular-variation condition
X ∈ GRV(ξ, an, bn, ν), which means that the following two properties hold: the
1-dimensional margins satisfy, for all s ∈ S,

lim
n→∞

nP

(
X(s)− bn(s)

an(s)
> x

)
= (1 + ξx)

−1/ξ
+ ,

where x+ = max(x, 0) denotes the positive part of a scalar x. If furthermore
the appropriately normalized process satisfies the functional convergence

lim
n→∞

nP

((
1 + ξ

X − bn
an

)1/ξ
+

∈ ·
)

= ν(·) in C+(S) \ {0}.

We use the usual convention (1 + ξz)1/ξ = exp(z) when ξ = 0.
These assumptions allow for the existence of a limit for the process (X −

bn)/an conditioned on exceedances of the risk r
(
(X − bn)/an

)
≥ u. Here the

risk is evaluated on the normalized process, which is somewhat unnatural since
it is not the scale of observations, and the normalizing functions are a priori un-
known. In order to push the analysis further, convenient and mild assumptions
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are stated in terms of the asymptotic proportionality of the normalizing func-
tion an(s) ∼ ānA(s) and of the associated risk, r(an) ∼ ān as n → ∞. Under
such considerations, de Fondeville and Davison (2022, Theorem 1) obtain⌊

X − bn
an

⌋ ∣∣∣ r(X − bn
r(an)

)
> u

d−→ Z, n→ ∞,

where Z is called the generalized r-Pareto process and ⌊·⌋ denotes a truncation
operation handling possible small values. We refer to the original paper for a
precise statement; here, we rather focus on the structure of the limit, which is
important for modeling purposes.

Definition 2.2 (de Fondeville and Davison 2022). Let ξ ∈ R, a > 0 and b be
continuous functions on S and ν be a −1-homogeneous measure on C+(S)\{0}.
Assume that the risk functional r : C(S) → R is valid in the sense that

A =

{
f ∈ C+(S) : r

(
A
fξ − 1

ξ

)
≥ 0

}
satisfies ν(A) ∈ (0,∞), where A = a/r(a). The associated generalized r-Pareto
process is

Z(s) = a(s)
Y (s)ξ − 1

ξ
+ b(s), s ∈ S,

where Y is the stochastic process on A with distribution ν(· ∩ A)/ν(A).

If we assume that for some s0 ∈ S, u0 > 0, the following implication,

r((f − b)/r(a)) > 0 ⇒ r((tf − b)/r(a)) > 0,

holds for all t > 1 and f such that f(s0) ≥ u0, then the marginal distribution
of Z at s0 satisfies

P (Z(s0) > u | Z(s0) > u0) =

(
1 + ξ

u− u0
σ(s0)

)−1/ξ

, u > u0,

with scale parameter σ(s0) = a(s0) + ξ(u − b(s0)), i.e., the tail of Z(s0) is of
generalized Pareto type.

3 Models, Simulation and Statistical Inference
Generalized r-Pareto processes and their various subclasses described above can
be used as statistical models for spatial extreme-event episodes and can serve
different purposes. It is possible to estimate model parameters to gain better
knowledge on the behavior of joint spatial extremes, for example spatial range
parameters characterizing spatial extent and coefficients θ characterizing occur-
rence frequency of risk exceedances in terms of the functional r. Another goal
can be to estimate probabilities of various joint extreme events. Furthermore,
models can be used for stochastic simulation of new extreme-event episodes,
potentially much more extreme than those available in the data. For exam-
ple, stochastic extreme-weather generators can produce weather input data for
models that are used to assess extreme-event impacts in risk assessment studies.
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3.1 Pareto process models
Many commonly used models for spatial extremes are most naturally formulated
in terms of the constructive representation of max-stable processes through the
spectral construction (4), from which we can derive representations for r-Pareto
processes for practically relevant choices of the risk functional r. For processes
of Brown–Resnick type (Kabluchko et al., 2009) already discussed in Examples 2
and 3, the dependence structure is fully characterized by the variogram function
of the Gaussian process G1, given by γ(s1, s2) = E[((G1(s1)−G1(s2))

2] for any
two locations s1, s2 ∈ S; for stationary and isotropic models of the variogram
function, it depends only on the Euclidean distance h = ∥s1 − s2∥. The Pareto
processes themselves are always nonstationary since they are defined on a fixed
domain S using a risk functional whose values also depend on S, and in some
cases even on specific fixed locations, e.g., on s0 ∈ S in r(f) = f(s0).

Parametric models can be obtained by choosing a parametric variogram
function, such as the classical choice of using a power variogram γ(h) = (h/β)α

with scale β > 0 and shape α ∈ (0, 2). The power variogram is unbounded,
and as a consequence the bivariate extremal coefficients, given by the normal-
izing constant θ(h) = Φ(

√
γ(h)/2) if S = {s1, s2} and r = max, can take any

value in [1, 2), with 1 indicating perfect asymptotic dependence and 2 asymp-
totic independence. The Gaussian process G1 in (4) associated with the power
variogram is the two-dimensional fractional Brownian motion, i.e., a Gaussian
process with stationary increments. For variogram functions with a finite upper
bound, such as γ(h) = 2(ρ(0) − ρ(h)) corresponding to a stationary Gaussian
process G1 with mean zero and covariance function ρ, the extremal coefficient
θ(h) remains bounded away from 2 as h→ ∞.

Another flexible class of models are elliptical r-Pareto processes (Thibaud
and Opitz, 2015), resulting from setting Yi = (Gi)

α
+/E[(Gi)

α
+] in the spectral

construction (4) of the corresponding max-stable processes known as extremal-t
processes (Opitz, 2013). In these processes, a positive probability mass P(Z(s) =
0) > 0 arises in the simple Pareto process Z (and therefore also at the lower
marginal endpoints of the corresponding generalized Pareto processes) and must
be taken into account in inference procedures (Thibaud and Opitz, 2015).

Finally, the construction principle described in Example 1 is very general and
flexible since a large variety of processes U could be used in the construction,
but it has so far not been widely applied in practice. Often, already existing
max-stable models were used as the starting point for obtaining r-Pareto models.

3.2 Simulation of Pareto processes
This section provides some algorithms, R code and figures for the simulation of
Pareto processes. First, we present general methodology with a few theoretical
results and R code (using the geoR package (Ribeiro Jr et al., 2022) for the
simulation of spatial Gaussian fields), and we then introduce the recent mev
package (Belzile, 2023) that provides built-in functions for some of the most
popular models. More simulations can be found in the R Markdown script in

13



the supplemental material to this chapter.
The methods by which Pareto processes and the variants discussed above can

be simulated depend on the choice of the risk functional r and the structure of
the measure ν. Recall that the probability distribution of the r-Pareto process
for a given measure ν as introduced in (2) is

ν( · ∩A1)

ν(A1)
with A1 = {f ∈ C+(S) : r(f) ≥ 1},

i.e., it is the measure ν truncated to keep only r-exceedances above threshold 1
and renormalized into a probability measure.

For some specific combinations of ν and r, the distribution of the Pareto
process corresponds to a well-known distribution that is easy to simulate from.
For example, in the Brown–Resnick and extremal-t models with risk function
r(f) = f(s0) for a fixed location s0 ∈ S, the spectral function Y in the r-
Pareto process Z = RY is a log-Gaussian or (marginally tranformed) Student’s
t process, respectively; see Example 3 above and Engelke et al. (2015); Thibaud
and Opitz (2015). Then, simulation can be performed using standard tools
for Gaussian process simulation, for example with the geoR package as in the
following R code.

grid = as.matrix(expand.grid(1:20, 1:20))
s0 = 110 # Index of conditioning location
distmat = as.matrix(dist(grid)) # Matrix of distances
# Define the power variogram
vario = function(h,beta=1,alpha=1.5){(h/beta)^alpha}
gamma = vario(distmat) # Variogram matrix
# Simulation of a Gaussian random field:
set.seed(123)
G = geoR::grf(grid = grid, cov.pars = c(1, 1.5),

cov.model="power")$data
# Compute the corresponding spectral process:
Y = exp(G-G[s0]-gamma[,s0])
# Simulation of a standard Pareto variable:
R = evd::rgpd(n = 1, loc = 1, scale = 1, shape = 1)
# Construct the simple Pareto process:
Z = R*Y

Elaborating on this simple example, one can derive the distribution for sim-
ulation of the r-Pareto process associated with risk functionals of the more
general form

r(f) =

K∑
k=1

πkf(sk) or r(f) =

∫
S

f(s)π(s)ds, (9)

where π ≥ 0 is a probability distribution, i.e.,
∑K
k=1 πk = 1 or

∫
S
π(s)ds = 1,

respectively. The following result is closely related to simulation algorithms for
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Figure 2: One realization on logarithmic scale of an r-Pareto process (i.e., with
µ(s) = 0, σ(s) = 1 and γ(s) = 0 in the generalized r-Pareto process) with
r(f) = f(s0), using a Brown-Resnick model and a power variogram defined as
γ(h) = (h/β)α. Left panel: β = 1, α = 1.5. Right panel: β = 1.5, α = 0.8. The
red square highlights the conditioning site s0.

Brown-Resnick processes based on the spectral decomposition with respect to
the L1-norm, see Dieker and Mikosch (2015) and Dombry et al. (2016).

Proposition 1. In the setting of Theorem 2.3, assume thatX ∈ RVα(C
+(S), σ)

with α = 1. Denote by Z(s) = RY (s) the Pareto process associated with the risk
functional rs(f) = f(s) and, similarly, let Z(r) = RY (r) be the Pareto process
associated with the risk functional r defined by the convex combination in (9).
Then,

Y (r) d
=

Y (τ)

r(Y (τ))

with τ ∼ π̃ representing a random sampling point with distribution

(π̃k)1≤k≤K =

(
πk
∫
f(sk)σ(df)∫
r(f)σ(df)

)
1≤k≤K

or

(π̃(s))s∈S =

(
π(s)

∫
f(s)σ(df)∫

r(f)σ(df)

)
s∈S

,

in the discrete and continuous case, respectively.

Proof. We outline the proof of Proposition 1 for the discrete case. According to
Equation (7), the spectral measure associated with the risk functional rs is

P(Y (s) ∈ · ) =
∫
f(s)1{f/f(s)∈ · }σ(df)∫

f(s)σ(df)
,
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and the spectral measure associated with the risk functional r is

P(Y (r) ∈ ·) =
∫
r(f)1{f/r(f)∈ · }σ(df)∫

r(f)σ(df)
.

In the discrete case, we have r(f) =
∑K
k=1 πkf(sk), so that

P(Y (r) ∈ · ) =
∑K
k=1 πk

∫
f(s)1{f/r(f)∈ · }σ(df)∫
r(f)σ(df)

=

K∑
k=1

πk
∫
f(sk)∫

r(f)σ(df)
P
(
Y (sk)/r(Y (sk)) ∈ ·

)
=

K∑
k=1

π̃kP
(
Y (sk)/r(Y (sk)) ∈ ·

)
.

Therefore, the distribution of Y (r) is a mixture of the distributions of Y (sk)/r(Y (sk)),
k = 1, . . . ,K, with mixture distribution π̃k, k = 1, . . . ,K, which provides the
representation with a random sampling point τ .

Proposition 1 allows simulation in the case of linear risk functionals, provided
that simulation according to Y (s) is feasible. The following code continues the
preceding example with the simulation of the Pareto process associated with
the risk functional r(f) = K−1

∑K
k=1 f(sk), where S = {s1, . . . , sK} denotes

the simulation grid. Since we use a stationary variogram function, π̃k = 1/K
for all k = 1, . . . ,K, i.e., the sampling weight is the same for all locations.

# Randomly choose conditioning location uniformly:
tau = sample(1:nrow(grid),1)
# Simulation of a Gaussian random field:
G = geoR::grf(grid = grid, cov.pars = c(1, 1.5),

cov.model="power")$data
# Compute the corresponding spectral process:
Y = exp(G-G[tau]-gamma[,tau])
# Simulation of a standard Pareto variable:
R = evd::rgpd(n = 1, loc = 1, scale = 1, shape = 1)
# Construct the simple Pareto process:
Z = R*Y/sum(Y)

One can further enlarge the class of risk functionals for which simulation is
feasible by rejection sampling in cases where it is relatively easy to sample ac-
cording to a specific risk functional but one wants to generate samples according
to another risk functional. This is the purpose of the next result and requires a
domination condition of the risk.

Proposition 2. Let r1 and r2 be two 1-homogeneous risk functionals such that
r2 ≤ Mr1 with a positive and finite constant M . If simulation of the Pareto
process Z(r1) is feasible, then Z(r2) can be simulated by drawing independent
copies of Z(r1) until r2(Z(r1)) ≥M and then setting Z(r2) =M−1Z(r1).
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Proof. We assume it is possible to simulate Z(r1) with distribution

P(Z(r1) ∈ · ) = ν( · ∩A1)

ν(A1)
with A1 = {f : r1(f) ≥ 1},

and the goal is to simulate Z(r2) with distribution

P(Z(r2) ∈ · ) = ν( · ∩A2)

ν(A2)
with A2 = {f : r2(f) ≥ 1}.

The homogeneity of the risk functionals, together with the bound r2 ≤ Mr1,
imply the inclusion A2 ⊂M−1A1, because

f ∈ A2 ⇒ r2(f) ≥ 1 ⇒ Mr1(f) ≥ 1 ⇒ r1(Mf) ≥ 1 ⇒ Mf ∈ A1.

Then, the (−α)-homogeneity of ν implies

ν( · ∩M−1A1)

ν(M−1A1)
=
Mαν((M · ) ∩A1)

Mαν(A1)
= P(M−1Z(r1) ∈ · ).

This shows that M−1Z(r1) has the same distribution as “ν conditioned on
M−1A1” (with a slight abuse of language because ν is an infinite measure);
conditioning further on A2 ⊂M−1A1 yields the distribution of Z(r2) and justi-
fies the use of rejection sampling.

It is often useful to apply Proposition 2 by choosing r1 = 1
|S|
∑
s∈S f(s)

with S a finite simulation grid with cardinality |S|. If it is possible to simulate
according to r(f) = f(s), then, according to Proposition 1, simulation of Z(r1)

becomes feasible. Standard 1-homogeneous risk functionals satisfying r2 ≤Mr1
include the following examples:

- minimum: r2(f) = mins∈S f(s) ≤ r1(f), i.e., M = 1;

- maximum: r2(f) = maxs∈S f(s) ≤ |S| r1(f), i.e., M = |S|;

- any order statistics r2(f) of the sample {f(s)}s∈S , including the median,
where we can set M = |S| by analogy with the maximum;

- lp-norm: r2(f) = (
∑
s∈S f(s)

p)1/p ≤Mr1(f) with M = 1 if p ∈ (0, 1) and
M = |S|p−1 if p > 1.

The following code continues the previous examples with the simulation
of the Pareto process associated with the maximum risk functional r(f) =
maxs∈S f(s), using the rejection method.

Z1 = rep(0,nrow(grid))
while(max(Z1)<nrow(grid)){

s0 = sample(1:nrow(grid),1)
G = geoR::grf(grid = grid, cov.pars = c(1, 1.5),

cov.model="power")$data)
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Y = exp(G-G[s0]-gamma[,s0])
R = evd::rgpd(n = 1, loc = 1, scale = 1, shape = 1)
Z1 = R*Y/mean(Y)

}
Z2 = Z1/nrow(grid)

The R package mev (Belzile, 2023) allows for simulation of r-Pareto pro-
cesses and generalized r-Pareto processes, with the functions rparp and rgparp
respectively. The user can specify the risk functional with the argument riskf,
where currently available risks includes maxima, minima, geometric average,
location-conditioning value and L2 norm, and a specific dependence model us-
ing the argument model (e.g., “br" for the Brown-Resnick model) along with a
user-defined semivariogram (argument vario) or a parameter matrix (argument
sigma).

Figure 3 depicts a simulated example of a Brown-Resnick model with power
variogram and risk functional r = max, using the following code. Visually, a
clear difference with Figure 2 is that the spatial maximum is not located near a
fixed conditioning location but can arise at any location of the simulation grid
with the same probability.

grid = as.matrix(expand.grid(1:20, 1:20))
nsim = 5 # Number of simulated observations
sim.max = mev::rparp(n=nsim, riskf = ’max’, vario=vario,

coord=grid, model=’br’)

Figure 3: One realization on logarithmic scale (see caption of Figure 2) of an
r-Pareto process with r(X) = maxs∈S f(s), using a Brown-Resnick model and
a power variogram defined as γ(h) = (h/β)α with β = 1, α = 1.5. Left panel:
using the procedure described in Proposition 2. Right panel: using the R package
mev, also based on rejection sampling.
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Finally, we outline the idea of directly resampling the extreme-risk events in
a dataset at hand. It is possible to simulate a new sample of r-Pareto processes
RkY

(r)
k , k = 1, . . . ,K, with potentially very large sample size K and much

higher risk than observed in the data, through resampling procedures that do
not require any parametric assumptions and statistical inferences on the de-
pendence structure. One proceeds by drawing new variables Rk ∼ Pareto(1),
whereas empirical spectral processes Y (r)

j , j = 1, . . . ,m, are extracted from the
data. The principle of this approach was described by Ferreira and de Haan
(2014). Palacios-Rodríguez et al. (2020) implement it for “lifting" extreme pre-
cipitation episodes to higher risk levels on a spatiotemporal domain S, and
Opitz et al. (2021) further apply nonparametric spatial resampling techniques
to obtain spectral processes Y rk different from the observed ones but possessing
similar spatial patterns.

3.3 Statistical inference for Pareto processes
We consider a setting with i.i.d. processesXi and dataXi(sj) available for times
i = 1, . . . , n and locations sj , j = 1, . . . , D, and write Xi = (Xi(s1), . . . , Xi(sD))

T

for the data vector at time i. The following methods can be adapted to settings
with time-varying data availability at locations, for example in partially missing
data, but to keep notation concise we will not address such extensions.

We set Sdata = {s1, . . . , sD} for statistical inference, such that the risk func-
tional rdata can be assessed for data, where rdata(z) = maxDj=1 zj for the classical
(generalized) Pareto process. Due to the equivalence of the existence of limits
for various risk functionals r discussed in § 2, it is feasible to first estimate a
model using a specific combination of Sdata and rdata and then conduct simu-
lation and prediction with different S and r. For example, Sdata can contain
irregularly spaced observation stations, whereas S can be a fine regular spatial
pixel grid covering the study area. Nevertheless, Sdata, rdata, S and r must
be chosen carefully when we use asymptotic representations with finite-sample
data, especially when estimated models can suffer from certain biases that could
be further amplified after switching to different S and r.

Generalized r-Pareto processes and their subclasses can be constructed and
estimated by assuming equality of the left- and right-hand side in one of the
limits (3), (5) and (6), for fixed r or u, respectively. To fix an appropriate
threshold u for rdata(Xi), several aspects should be taken into account: the
exceedance region {z : r(z) > u} should include the extreme events for which we
seek statistical predictions; the number of replicates Xi satisfying rdata(Xi) > u
should be large enough to keep estimation uncertainties moderate; the POT-
stability should be checked – there should be no stochastic dependence between
Ri = rdata(Xi) and Xi/rdata(Xi), and known distributional properties of Ri
(e.g., being standard Pareto in the case of r-Pareto processes), should be verified.
In many real-data applications, POT-stability is not well achieved in available
data at observed levels of extremenes.Nevertheless, the class of asymptotic POT-
stable models, i.e. generalized r-Pareto processes, can provide useful predictions
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and a good working dependence model in practice, although estimations of joint-
tail probabilities with strong extrapolation beyond the observed range of data
may be biased.

3.3.1 Handling marginal distributions

Subsequently, we focus on inference for r-Pareto processes where data are avail-
able on the standardized marginal scale, i.e., with marginal standard Pareto
distributions as defined in (1). The assumption of temporal stationarity of
processes Xi may require further data preprocessing or subsetting. Marginal
distributions of data are allowed to be nonstationary and are usually not known
beforehand, and a first modeling step is necessary to appropriately specify them
and transform data to the standardized marginal scale. In the case where gen-
eralized r-Pareto processes are used, the parameter fields µ(s), σ(s) and ξ(s)
must be estimated (Palacios-Rodríguez et al., 2020; de Fondeville and Davison,
2022).

A standard approach for estimating marginal distributions, motivated by
univariate asymptotic theory, consists of using a Generalized Pareto (GP) distri-
bution for excesses (Xi(sj)− uj) | (Xi(sj) > uj) above an appropriately chosen
high marginal quantile uj , j = 1, . . . , D. With risk functionals rdata for which
the conditioning event in the relevant limit among (3), (5), (6) includes values
below one of the marginal thresholds, we also need to specify the marginal distri-
butions below the thresholds uj . The empirical distribution function of Xi(sj),
i = 1, . . . , n, can be used below the marginal threshold (Coles and Tawn, 1991).
When focus is primarily on estimating the dependence model of the r-Pareto
process, often the empirical distribution functions are used for both body and
tail of marginal distributions, without specifying a GP distribution for the tail.

3.3.2 Maximum likelihood

With a slight abuse of notation, we write Xi(sj) for the marginally standard-
ized data, i.e., possessing standard Pareto distribution P(Xi(sj) > u) = 1/u,
u > 1; other choices such as the unit Fréchet distribution are also possible since
they lead to the same limits in (3) and (6). Inference approaches for parametric
dependence models can resort to maximization of likelihood variants (Thibaud
and Opitz, 2015; de Fondeville and Davison, 2018), or of other objective func-
tions based on the probability density, such as gradient scores (de Fondeville
and Davison, 2018; Koh et al., 2024). The latter approach bypasses the numer-
ical calculation of the r-extremal coefficient θ, which is often challenging when
θ depends on the model parameters.

We fix a risk functional rdata : RD+ → [0,∞) and a threshold u > 0 to
identify the extreme events, which satisfy rdata(Xi) > u, and we denote by
nu the number of extreme events and by i1, . . . , inu

their time indices. The
realizations of the r-Pareto process are given by Zik = Xik/u, k = 1, . . . , nu.
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Consider the intensity function

λdata(z) = − ∂D

∂z1 × · · · × zD
νdata([0, z]

C) (10)

of the measure νdata defined with respect to Sdata. We indicate a paramet-
ric model by using its parameter vector ψ as superscript. The r-Pareto log-
likelihood function is

ℓ(ψ) =

n∑
i=1

1(r(Xi) > u)× log

(
λ
(ψ)
data(Zi)

θ(ψ)

)
=

nu∑
k=1

log

(
λ
(ψ)
data(Zik)

θ(ψ)

)
,

where θ(ψ) = νdata{z : rdata(z) ≥ 1}. A computational bottleneck often re-
sides in calculating θ(ψ) through numerical integration of λ(ψ)data, but for some
choices of rdata this constant does not depend on ψ, such that fast likeli-
hood computations are possible, e.g., with θ = 1 for rdata(f) = f(s) and for
rdata(f) =

∑D
j=1 f(sj)/D (Opitz et al., 2015; Engelke et al., 2015; de Fondeville

and Davison, 2018).
When interest is in rdata(f) = maxDj=1 f(sj)/uj for a threshold vector (u1, . . . , uD)T

and risk threshold u = 1, partial censoring can be applied, where components
of Zik that fall below 1 are considered as censored. Then, partial derivatives in
(10) are taken only for non-censored components, whereas for censored compo-
nents zj is replaced by uj (Thibaud and Opitz, 2015; de Fondeville and Davison,
2018). Multivariate integrals arising in the log-likelihood function for this ap-
proach can be calculated using Quasi-Monte-Carlo techniques (de Fondeville and
Davison, 2018). We now provide some likelihood-related formulas pertaining to
the Brown–Resnick process.

Example 4 (Brown–Resnick model). Various forms of expressions for λdata
and related quantities were derived for the Brown–Resnick model (Ribatet and
Sedki, 2013; Wadsworth and Tawn, 2014; Engelke et al., 2015; de Fondeville
and Davison, 2018). As in de Fondeville and Davison (2018), a pivotal role in
the following formulas is taken by the first component s1, but the roles of the
different locations s1, . . . , sD are indeed exchangeable. First, define a quadratic
matrix with D − 1 rows and columns,

Σ
(ψ)
data = (γi,1 + γ1,j − γi,j)2≤i,j≤D , γi,j = γ(si, sj), 1 ≤ i, j ≤ D,

where γ is the semi-variogram characterizing the dependence structure. With
z̃ = log(zi/z1) + γi,1, j = 2, . . . , D, we obtain the intensity function

λ
(ψ)
data(z) =

∣∣∣Σ(ψ)
data

∣∣∣−1/2

(2π)(D−1)/2z21z2 × . . .× zD
exp

(
−1

2
z̃T
(
Σ

(ψ)
data

)−1

z̃

)
, z ≥ 0.

When we use rdata(f) = f(s1) for the risk functional, the r-extremal co-
efficient is θ = 1 and the probability density of R is 1/r2, r > 1. Then, the
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probability density of the log-spectral process Y = Z/R (where R = Z1) is
y21λ

(ψ)
data(y), and for the Brown–Resnick model this expression corresponds to a

log-Gaussian random vector of dimensionD−1 with mean vector (−γj,1)j=2,...,D

and covariance matrix Σ
(ψ)
data, as already stated in Equation (8).

3.3.3 Gradient scoring

To bypass the calculation of multivariate integrals which becomes prohibitively
costly with increasing dimension, de Fondeville and Davison (2018) propose us-
ing score matching. The purpose of proper scoring rules usually is to compare
the predictive performance of various models. However, the minimization of the
score between a parametric model and the dataset can also provide a consis-
tent and asymptotically normal estimator under mild conditions (Dawid et al.,
2016). The gradient score is based on the gradient of the log-likelihood and
provides an interesting choice for estimating (generalized) r-Pareto processes
since the normalizing constant θ cancels out. Moreover, a weighting scheme can
be applied that mimics partial censoring by down-weighting the contributions
of relatively small values in r(Zik) and in the margins of Zik . This approach
requires a differentiable risk functional r. To overcome this limitation, smooth
approximations can be used; for instance, the p-norm with large enough p quite
accurately approximates the maximum risk functional; see §4 and de Fondeville
and Davison (2018). For detailed formulas of score matching and expressions
for the Brown–Resnick model we refer to de Fondeville and Davison (2018); an
R implementation is available in the package mvPot.

3.3.4 Likelihood-free neural Bayes estimators

Efficient likelihood-free inference methods were recently developed using neural
Bayes estimators, where a neural network is constructed and trained to predict
the unknown parameters by using large amounts of realizations of the paramet-
ric model, simulated according to many different parameter configurations, as
input data (Richards et al., 2023; Sainsbury-Dale et al., 2023). Benefits of such
estimators are that they do not require computing normalizing constants in the
likelihood and scale very well to settings with very large numbers of data loca-
tions in Sdata. While the training phase of the neural network could still require
substantial computational resources, the estimators are amortized, which means
that a trained neural estimator can be used at very low computational cost to
estimate the parameters for large numbers of datasets.

4 Application example
We give some background on the data used for the application examples below;
it is described in detail in the supplementary material. It consists in significant
wave heights here denoted by Hs, a quantity related to the energy of the waves
and, consequently, to their severity. Data is provided by the hindcast sea-states
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database ResourceCODE (Accensi et al., 2022) and is accessible with the R
package resourcecode (Raillard, 2023). It is provided on a non-regular grid of
more than 300000 nodes covering the European Atlantic waters, more refined
close to the coast. At each location, several sea-state parameters are available
at hourly time step from 1994 to 2020. In the following, daily data (taken as the
observation at 12 am) from 1995 to 2015 are considered, and only the months of
January to March are kept, corresponding to the season during which the most
extreme Hs are usually observed. We focus on a study area S near the French
coast; see Figure 1. In the end, the dataset comprises 1895 observations of Hs

at 100 locations.
The inference is performed using the R package mvPot (de Fondeville and

Belzile, 2023), and we follow the accompanying tutorial (de Fondeville, 2019).
As presented in §3.3, data are first marginally normalized to a standard Pareto
distribution: for each location s ∈ S, we estimate a threshold u(s), defined as the
0.95 empirical quantile at site s. Above this thresold, we fit a GP distribution,
using for example the function fpot from the R package evd, and below we
consider the empirical cumulative distribution function.

We then model the extremal dependence structure of the marginally nor-
malized data by fitting an r-Pareto process associated with the risk functional
r(X) = maxs∈S X(s), and we assume a parametric form for the spectral process
Y . A common choice is to consider a log-Gaussian model, with power variogram
γ(h) = (h/β)α.

The estimation procedure is performed using the gradient scoring rule ap-
proach of de Fondeville and Davison (2018) described in §3.3.3. Complete re-
producible R codes are provided in a supplementary file. The main idea is to
estimate the parameters by minimizing the peaks-over-threshold gradient score
function. In the mvPot package, this function is named scoreEstimation. It
takes as arguments the observed exceedances obs, i.e. the events satisfying
r(Xi) > u; the matrix of coordinates loc; the variogram model vario (de-
fined as a function of the distance h); the weighting function weightFun and its
derivative dWeightFun; and the marginal threshold u, that is typically taken as
a high quantile of r(Xi). As explained in §3.3, POT-stability can be checked to
assess the value of u.

scoreEstimation(obs, loc, vario, weightFun,dWeightFun, u)

Finally, to validate the estimated dependence model, we consider the spa-
tial extremogram as a measure of extremal dependence: for any two locations
s1, s2 ∈ S, it is defined as the asymptotic conditional exceedance probability

χ(h) = lim
u→∞

χu(h) = lim
u→∞

P(X(s1) > u|X(s2) > u),

where h = ∥s1 − s2∥. Within the mev package, the empirical extremogram (for
fixed threshold u) can be obtained using the function extremo by specifying the
data matrix dat, the matrix of coordinates coord and the marginal probability
threshold margp:
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Figure 4: Empirical extremogram χu for u = 0.95 (light dots) and u = 0.98 (dark
dots), and theoretical extremogram obtained using the estimated parameters
(solid line), as functions of the distance.

extremo(dat=hs_dat, margp=0.95, coord=coordinates, plot=T)

Figure 4 depicts the theoretical values of the extremogram based on the es-
timated parameters of the dependence model (solid red line), along with the
empirical estimates at two different thresholds, as a function of the distance h.
Looking at the empirical estimates, one can see that for a fixed threshold, even
at relatively far distances, the empirical extremogram values remain relatively
high and indicate positive extremal dependence. Though, for higher quantiles,
the strength of dependence decreases. This means that a subasymptotic model
for spatial extremes, capable to capture dependence strength that decreases rel-
atively strong for more extreme joint events, could be an interesting alternative
here.

Finally, given the relatively large amount of data available and potentially
nonstationary dependence with respect to distance to the coastline, more so-
phisticated models than the one illustrated here could be inferred and prove
useful.

5 Conclusion
In this chapter, we have presented and illustrated fundamental elements of
asymptotic theory, methods and models for generalized r-Pareto processes and
important subclasses. This approach extends the idea of peaks-over-threshold
modeling to multivariate vectors and stochastic processes by allowing for flex-
ibly choosing a risk functional to characterize joint extreme events as risk ex-
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ceedances. This spatial modeling framework is still quite recent, and further
methodological developments and a more widespread adoption in various ap-
plied fields can be expected in the future, especially thanks to its increased
flexibility as compared to max-stable processes and its good interpretation in
terms of original events and not pointwise maxima.

A recurrent numerical challenge in peaks-over-threshold modeling is the com-
putation of integrals that arise from censoring mechanisms and are often defined
in high dimension equal to the number of data locations. Several methods have
proven useful to bypass this bottleneck, such as gradient scoring, still anchored
in likelihood-based inference, or completely likelihood-free techniques with re-
cent neural Bayes estimators.

Many case studies, including the application example in this chapter, reveal
that POT-stability is not reached in the observed extremes of many environmen-
tal processes since the strength of extremal dependence tends to decrease when
increasing thresholds. Nevertheless, we emphasize that POT-stable models pro-
vide an elegant mathematical framework for modeling joint extreme events and
remain useful for inferring extremal dependence characteristics, and also for
predicting joint-event probabilities, but predictions will tend to be biased when
extrapolating very far into the joint tail.
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